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The predecessor of this book, Computational Electrodynamics: The Finite
Difference Time Domain Method, appeared in summer, 1995. I am gratified with its
high level of use by both the university and industrial research communities.
It is frequently cited in refereed journal papers as the primary background reference for

Preface

FDTD methods and applications.

Since the publication of the 1995 book, there has been much progress in this field.
When the publisher contacted me regarding a possible updating and expansion of the
original work, I responded with a proposal for an entirely new book that would instead

complement the original tutorial material. The basic ideas behind this book are:

Provide a convenient single-source reference on the state of the FDTD art
for university graduate students and faculty and professional engineers and
scientists involved in electromagnetics technology;

Build upon the strong base in FDTD theory presented in the 1995 book,
while minimizing the duplication of content;

Select the most important advances made in FDTD theory and applications
since 1995;

Present the absolute latest research results possible, organized into major
themes that are mutually reinforcing;

Engage experts in each topic area to write invited chapters that provide
in-depth coverage;

Encourage the chapter authors to provide ample and well-explained tutorial
material in sufficient depth to permit the readers to replicate their results;

Conduct a very active editorial role so that the final chapter manuscripts
have a uniform style, read with a common “voice,” and have common
symbols and notation. That is, the book should read like a book, and not a
disjointed collection of material cobbled together.

xvii



Chapter 1 is intended to provide an annotated FDTD literature review that is so
comprehensive that it alone merits constant usage of the book. In this chapter, Dr.
Shlager and Prof. Schneider substantially expand and update the review that they recently
published in IEEE Antennas and Propagation Magazine. While their new review lays
out the literature background for all of the material in the chapters that follow, it is
noteworthy that these authors had no knowledge of the identities of the other contributors
to this book. This was a strategy that Shlager and Schneider proposed to ensure
complete impartiality in their review.

The theme of Chapters 2 and 3 involves new techniques aimed at reducing numerical
dispersion and computer resources in FDTD approaches. In Chapter 2, Prof. Turkel
reports recent progress in compact fourth-order spatial-differencing methods.
The Ty(2,4) and Ty(4,4) algorithms investigated in this chapter permit 8:1 reductions in
gridding density in each Cartesian direction relative to the classic Yee algorithm for
comparable solution accuracy. Ty(2,4) is especially intriguing since it can be directly and
easily overlaid on existing Yee grids, and uses Yee's leapfrog time stepping.
Prof. Turkel further demonstrates how abrupt material boundaries can be treated in a
manner that preserves the fourth-order accuracy of the basic numerical method.
This approach has significant promise for incorporation in many existing FDTD codes.

In Chapter 3, Prof. Katehi, Dr. Harvey, and Prof. Tentzeris review their recent
pioneering work in applying wavelet technology to FDTD methods. Their multiresolution
time-domain technique permits an unprecedented control of the distance and time scales
of the electromagnetic phenomena to be modeled, and yields significant reductions in
numerical dispersion and computer burdens. Unique to this method is its ability to
automatically adapt to changing needs for local space-time resolution as the various wave
species being modeled propagate through the mesh.

The theme of Chapters 4, 5, and 6 involves recent advances in fundamental aspects
of grid-based time-domain Maxwell’s equations algorithms: (1) generalized meshes;
(2) perfectly matched layer absorbing boundary conditions; and (3) periodic structures.
In Chapter 4, a multi-disciplinary group of authors having university, national laboratory,
and aerospace industry backgrounds (Prof. Gedney, Dr. Roden, Dr. Madsen, Dr.
Mohammadian, Dr. Hall, and Dr. Shankar, and Mr. Rowell) combine forces to provide a
comprehensive discussion of finite-difference and finite-volume time-domain techniques
implemented on generalized meshes, including those that are unstructured.
Their discussion extends over 100 pages and is intended to be both broad and deep.
The authors’ careful and detailed exposition of the theory is supported by computed
examples for electromagnetic wave interactions with a variety of three-dimensional
structures.

In Chapter 5, Prof. Gedney thoroughly discusses recent advances in PML absorbing
boundary conditions, including means to terminate lossy and dispersive media.
He details the most recent understanding of the nature and mutual relationships of the
Berenger, stretched-coordinate, and uniaxial PML formulations. = Comprehensive
parametric studies are reported to allow the reader to optimally choose the PML
parameters for best efficiency under a variety of practical modeling circumstances.
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In Chapter 6, Dr. Maloney and Dr. Kesler review in detail their promising new work
in modeling periodic structures within the confines of finite-sized FDTD space lattices.
Several potential approaches are examined with regard to numerical stability, dispersion,
accuracy, and efficiency. Practical examples involving a microwave photonic bandgap
structure, a frequency selective surface, and an antenna array are discussed. This work
opens new possibilities for FDTD modeling of an entire class of structures that
previously could be investigated only by applying frequency-domain mode-matching or
moment-method techniques.

The theme of Chapters 7 through 11 involves recent progress in FDTD modeling of
specific, high-interest engineering applications in microwaves, millimeter waves, and
optics technology. In Chapter 7, Dr. Maloney and Prof. Smith provide a detailed tutorial
discussion of the key aspects of FDTD modeling of antennas. They then report a detailed
benchmark FDTD study of a standard-gain microwave horn antenna used for transmitting
and receiving, and demonstrate that superb correspondence can be obtained with high-
quality measurements when the FDTD modeling is done with care and proper attention to
details. The chapter concludes with examples of emerging FDTD modeling applications
involving microwave photonic bandgap structures, ground-penetrating radar, and
antenna-radome interaction.

In Chapter 8, Dr. Houshmand, Prof. Itoh, and Prof. Piket-May show how FDTD
methods can be efficiently and systematically applied to model high-speed electronic
circuits of all types, whether microwave amplifiers or digital circuits. On the microwave
side, a key theoretical advance involves the development of simple (yet robust) Norton’s
and Thevenin’s equivalent circuits “looking into” the FDTD space lattice.
These equivalent-circuit connections into the FDTD solver permits its direct interfacing
with the popular SPICE circuit-analysis software or with special-purpose state-variable
circuit algorithms. On the digital-circuit side, specific FDTD techniques are presented
to calculate the effective inductance of complicated, multiplane, power-distribution
systems for multichip modules. In addition, an engineering case history is reviewed
involving the use of FDTD in designing an ultrahigh-speed, 2.5-GHz clock-distribution
scheme for a multichip module employing low-impedance Josephson-junction logic.
Design trades-off are discussed.

In Chapter 9, Prof. El-Ghazaly reviews his pioneering work in combining FDTD
electromagnetic wave modeling with the physics of charge transport within millimeter-
wave MESFETs. Such a first-principles model is especially useful at frequencies in the
many tens or even hundreds of gigahertz, where the lumped-circuit transistor models
used in Chapter 8 (to link with Norton’s or Thevenin’s equivalent circuits of the FDTD
grid) may lose accuracy. In this elevated-frequency regime, the simultaneous motion of
semiconductor charges and electromagnetic fields across the transistor leads to mutual
charge-field interactions that require a self-consistent model. After discussing the
algorithmic aspects of the combined charge and electromagnetic wave simulator, the
author goes into considerable detail regarding examples of full-physics MESFET design.
A global design process is detailed wherein the MESFET physics is modeled while
accounting for the input and output matching networks using a convolutional approach.
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In Chapter 10, Prof. Hagness discusses recent applications of FDTD modeling to
micron-scale optical resonators useful for low-threshold, high-speed lasers and practical
optical signal processors. A variety of such structures are reviewed, including vertical-
cavity surface-emitting lasers, photonic-bandgap structures, and strongly confined,
waveguide-coupled, microrings and microdisks. The microrings and microdisks are
particularly challenging for FDTD simulations since: the waveguide coupling is via the
evanescent field (causing the sensitivity to gap dimensions to be high); resonator Q
factors range up to 10,000; multimoding in the disk occurs due to various radial
whispering-galley modes; and resonance splitting can occur due to nuances of surface
roughness. The key aspects of these modeling challenges are thoroughly discussed, and
engineering tradeoff studies of important design parameters are conducted.

In Chapter 11, Prof. Gandhi reviews his pioneering work in using FDTD to evaluate
the dosimetry and engineering aspects of human exposure to a wide variety of
electromagnetic fields including those generated by 60 Hz power lines, VHF plane
waves, ultrawideband electromagnetic pulses, and handheld wireless personal
communications devices. Rigorous analytical, numerical, and experimental validations of
the FDTD modeling approach are provided for canonical antennas adjacent to brain-
equivalent phantoms. Experimental validations are also provided for FDTD predictions
of far-field radiation patterns and near-field absorption within skull and brain tissues
when actual cellular telephones are positioned adjacent to the human head. Here, highly
detailed anatomical models derived from MRI scans are used in the FDTD investigations.

The twelfth and final chapter (by Prof. Chew) has its own theme: to provide an
excellent, highly detailed tutorial discussion of imaging and inverse problems in
electromagnetics. In addition to the widely used frequency-domain forward-scattering
techniques used for this purpose, this chapter shows how FDTD modeling can be
advantageously applied. =~ Numerous examples of two- and three-dimensional
reconstructions are provided to indicate both the potential and limitations of existing
inverse-scattering methods and algorithms.

In assembling this book, I gratefully acknowledge the chapter contributors.
Each one devoted considerable time wrenched from their busy schedules to create detailed
and expert scholarly works, always under deadline pressure. Their biographical sketches
appear at the end of the book. Also acknowledged are the helpful contributions of my
graduate students, especially Milica Popovic, who assisted mightily in dealing with a
variety of electronic downloads. I1bid a fond farewell to Susan Hagness who now goes
on to have graduate students of her own as a professor.

Finally, I acknowledge my wife, Sylvia, and younger son, Nate, now completing
his sophomore year at New Trier High School. Quoting in part from the preface of the
1995 book, they “somehow were able to keep their composure while sharing a home
with a very driven person...” In this case, it meant having to deal with a husband/dad
who slaved on the computer for months on end until the wee hours every night, and
generally wasn’t much fun at all. (My older son, Mike, missed his Dad’s isolation and
grumpiness. He has been away from home as a freshman at the University of Iowa
during most of the editing of this book. Lucky!)
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The FDTD story is continuing. As indicated by the scope of the experts’
contributions in this book, the electromagnetics engineering community is indeed rapidly
moving “to develop detailed FDTD models of microchips, microlasers, and microcells,
and bring the power of Maxwell’s equations to bear upon society’s needs in
ultrahigh-speed communications technology.” More so than ever before, I believe that
electromagnetics engineers have a special responsibility to utilize their technical
knowledge to enable people to freely communicate. We can best understand each other
when we talk to each other. This is what our human society is all about.

Allen Taflove
Wilmette, Illinois
June 1998
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