Contents

Preface

1. **Chapter 1 Reinventing Electromagnetics**
 1.1 Background
 1.1.1 The Heritage of the 1980s
 1.1.2 The Rise of Partial Differential Equation Methods
 1.1.3 Interdisciplinary Impact of Emerging Time-Domain PDE Solvers
 1.2 History of Space-Grid Time-Domain Techniques for Maxwell's Equations
 1.3 General Characteristics of Space-Grid Time-Domain Approaches
 1.3.1 Classes of FD-TD and FV-TD Algorithms
 1.3.2 Predictive Dynamic Range
 1.4 Scaling to Very Large Problem Sizes
 1.4.1 Algorithm Scaling Factors
 1.4.2 Computer Architecture Scaling Factors
 1.5 Defense Applications
 1.5.1 RCS Modeling of Entire Aircraft to 1 GHz
 1.5.2 Desirable Additional Modeling Capabilities for Defense Applications
 1.6 Dual-Use Electromagnetics Technology
 1.6.1 Antenna Design
 1.6.2 Bioelectromagnetic Systems 1: Hyperthermia Treatment of Cancer
 1.6.3 Bioelectromagnetic Systems 2: Physics of Human Vision
 1.6.4 Digital Circuit Packaging and Interconnects
 1.6.5 Incorporation of Models of Active Circuit Devices
 1.6.6 Subpicosecond Photonic Devices
 1.7 Conclusions
 1.8 Supplemental Reading

References

Chapter 2 The One-Dimensional Scalar Wave Equation

2.1 Introduction
2.2 Propagating-Wave Solutions
2.3 Finite Differences
2.4 Finite-Difference Approximation of the Scalar Wave Equation
2.5 Dispersion Relations for the One-Dimensional Wave Equation
2.6 Numerical Phase Velocity
 2.6.1 Case 1: Very Fine Mesh
 2.6.2 Case 2: Magic Time Step
 2.6.3 Case 3: Dispersive Wave Propagation
2.7 Numerical Group Velocity
 2.7.1 Case 1: Very Fine Mesh
 2.7.2 Case 2: Magic Time Step
2.8 Numerical Stability
 2.8.1 The Time Eigenvalue Problem
 2.8.2 The Space Eigenvalue Problem
 2.8.3 Enforcement of Stability

Problems
Chapter 3 Introduction to Maxwell's Equations and the Yee Algorithm 51
 3.1 Introduction 51
 3.2 Maxwell's Equations in Three Dimensions 51
 3.3 Reduction to Two Dimensions 54
 3.3.1 TM Mode 55
 3.3.2 TE Mode 55
 3.4 Reduction to One Dimension 56
 3.4.1 TM Mode 56
 3.4.2 TE Mode 57
 3.5 Equivalence to the Wave Equation in One Dimension 57
 3.6 The Yee Algorithm 59
 3.6.1 Basic Ideas 59
 3.6.2 Finite Differences and Notation 61
 3.6.3 Finite-Difference Expressions for Maxwell's Equations in Three Dimensions 64
 3.6.4 Space Region with a Continuous Variation of Material Properties 67
 3.6.5 Space Region with a Finite Number of Distinct Media 68
 3.6.6 Space Region with Nonpermeable Media 70
 3.6.7 Reduction to the Two-Dimensional TM and TE Modes 71
 3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Form 72
 3.6.9 Divergence-Free Nature 76
 3.6.10 Exponential Time-Stepping 77
References 79
Problems 79

Chapter 4 Numerical Stability 81
 4.1 Introduction 81
 4.2 Basic Stability Analysis Procedure, TM Mode 82
 4.3 Time Eigenvalue Problem 83
 4.4 Space Eigenvalue Problem 85
 4.5 Enforcement of Stability 87
 4.6 Extension to the Full Three-Dimensional Yee Algorithm 88
 4.7 Generalized Stability Problem 90
 4.7.1 Boundary Conditions 90
 4.7.2 Variable and Unstructured Meshing 91
 4.7.3 Lossy, Dispersive, Nonlinear, and Gain Materials 91
References 92
Bibliography on Stability of Finite-Difference Methods 92
Problems 92

Chapter 5 Numerical Dispersion 93
 5.1 Introduction 93
 5.2 Basic Procedure 94
 5.3 Substitution of Traveling-Wave Trial Solutions 95
 5.4 Extension to the Full Three-Dimensional Yee Algorithm 96
 5.5 Comparison with the Ideal Dispersion Case 97
 5.6 Reduction to the Ideal Dispersion Case for Special Grid Conditions 101
 5.7 Dispersion-Optimized Basic Yee Algorithm 101
 5.8 Dispersion-Optimized Yee Algorithm with Fourth-Order Accurate Spatial Central Differences 102
 5.8.1 Formulation 102
Chapter 6 Incident Wave Source Conditions for Free Space and Waveguides

6.1 Introduction
6.2 Requirements for the Plane Wave Source Condition
6.3 Insertion of the Incident Wave As an Initial Condition
6.4 The Hard Source
6.5 Total-Field/Scattered-Field Formulation
 6.5.1 Ideas
 6.5.2 One-Dimensional Example
 6.5.3 Two-Dimensional Example
 6.5.4 Calculation of the Incident Field to Implement the Connecting Condition
 6.5.5 Extension to Three Dimensions
6.6 Pure Scattered-Field Formulation
 6.6.1 Application to PEC Structures
 6.6.2 Application to Lossy Dielectric Structures
6.7 Choice of Incident Plane Wave Formulation
6.8 Waveguide Source Conditions
 6.8.1 Pulsed Electric Field Hard Source
 6.8.2 Total-Field/Reflected-Field Formulation
 6.8.3 Resistive Source and Load Conditions

Chapter 7 Absorbing Boundary Conditions for Free Space and Waveguides

7.1 Introduction
7.2 Bayliss-Turkel Scattered-Wave Annihilating Operators
 7.2.1 Spherical Coordinates
 7.2.2 Cylindrical Coordinates
7.3 Engquist-Majda One-Way Wave Equations
 7.3.1 One-Term and Two-Term Taylor Series Approximations
 7.3.2 Mur Finite-Difference Scheme
 7.3.3 Trefethen-Halpern Generalized and Higher-Order ABCs
 7.3.4 Theoretical Reflection Coefficient Analysis
 7.3.5 Numerical Experiments
7.4 Higdon Operator
7.5 Liao Extrapolation
7.6 Mei-Fang Superabsorption
7.7 Berenger Perfectly Matched Layer
 7.7.1 Theory, Two-Dimensional TE Case
 7.7.2 Theory, Two-Dimensional TM Case
 7.7.3 Theory, Full-Vector Three-Dimensional Case
 7.7.4 Numerical Experiments Verifying the Effectiveness of PML ABC
7.8 Absorbing Boundary Conditions for Waveguides

References
Problems
Chapter 8 Near-to-Far-Field Transformation

8.1 Introduction
8.2 Two-Dimensional Transformation, Phasor Domain
 8.2.1 Application of Green’s Theorem
 8.2.2 Far-Field Limit
 8.2.3 Reduction to Standard Form
8.3 Obtaining Phasor Quantities Via Discrete Fourier Transformation
8.4 Surface Equivalence Theorem
8.5 Extension to Three Dimensions, Phasor Domain
8.6 Time-Domain Near-to-Far-Field Transformation

References
Problems

Chapter 9 Dispersive, Nonlinear, and Gain Materials

9.1 Introduction
9.2 Recursive Convolution Method, Linear Isotropic Case
 9.2.1 Total-Field Formulation
 9.2.2 Scattered-Field Formulation
 9.2.3 Discussion
9.3 Recursive Convolution Method, Linear Gyrotropic Case
 9.3.1 Time-Domain Susceptibility Functions
 9.3.2 Time-Stepping Algorithm
 9.3.3 Discussion
9.4 Auxiliary Differential Equation Method, Linear Isotropic Case
 9.4.1 Introduction: The Single-Relaxation Dispersion, Initial Formulation
 9.4.2 Multiple Lorentzian Relaxations, Refined Formulation
 9.4.3 Comparison with the Recursive Convolution Method
9.5 Auxiliary Differential Equation Method, Nonlinear Lorentz Media (Nonlinear Optics)
 9.5.1 Governing Equations
 9.5.2 Equivalent System of Ordinary Differential Equations
 9.5.3 Algorithm
 9.5.4 Results for Temporal Solitons
 9.5.5 Results for Spatial Solitons
 9.5.6 Discussion
9.6 Auxiliary Differential Equation Method, Lorentz Gain Media (Active Lasing Materials)
 9.6.1 Theory and Numerical Implementation
 9.6.2 Generic Validations
 9.6.3 Discussion

References
Problems

Chapter 10 Local Subcell Models of Fine Geometrical Features

10.1 Introduction
10.2 Basis of Contour-Path FD-TD Modeling
10.3 The Simplest Contour-Path Subcell Models
 10.3.1 Diagonal Split-Cell Model for PEC Surfaces
 10.3.2 Average Properties Model for Material Surfaces
10.4 The Contour-Path Model of the Narrow Slot
10.5 The Thin Wire

References
Problems
10.6 Conformal Modeling of Curved Surfaces
 10.6.1 Two-Dimensional PEC Structures, TE Case
 10.6.2 Two-Dimensional PEC Structures, TM Case
 10.6.3 Illustrative Results, Aluminum Winglike Object
 10.6.4 Three-Dimensional PEC Structures
 10.6.5 Two-Dimensional Material Structures
10.7 The Thin Material Sheet
 10.7.1 Basis
 10.7.2 Illustrative Results
10.8 Dispersive Surface Impedance
 10.8.1 Maloney-Smith Method
 10.8.2 Beggs et al. Method
 10.8.3 Lee et al. Method
10.9 Relativistic Motion of PEC Boundaries
 10.9.1 Basis
 10.9.2 Illustrative Results
10.10 Numerical Stability
References
Additional Bibliography
Problems

Chapter 11 Explicit Time-Domain Solution of Maxwell’s Equations
Using Nonorthogonal and Unstructured Grids
11.1 Introduction
11.2 Nonuniform Orthogonal Grids
11.3 Locally Conformal Grids, Globally Orthogonal
11.4 Global Curvilinear Coordinates
 11.4.1 Nonorthogonal Curvilinear FD-TD Algorithm
 11.4.2 Stability Criterion
11.5 Irregular Nonorthogonal Structured Grids
11.6 Irregular Nonorthogonal Unstructured Grids
 11.6.1 Generalized Yee Algorithm
 11.6.2 Inhomogeneous Media
 11.6.3 Practical Implementation of the Generalized Yee Algorithm
11.7 A Planar Generalized Yee Algorithm
 11.7.1 Time-Stepping Expressions
 11.7.2 Projection Operators
 11.7.3 Efficient Time-Stepping Implementation
11.8 Analysis of Printed Circuit Devices Using the Planar Generalized Yee Algorithm
References
Problems

Chapter 12 The Body of Revolution FD-TD Algorithm
12.1 Introduction
12.2 Field Expansion
12.3 Difference Equations for Off-Axis Cells
 12.3.1 The ϵ_r Patch Integral
 12.3.2 The ϵ_r Patch Integral
 12.3.3 The ϵ_r Patch Integral
 12.3.4 Difference Equations
<table>
<thead>
<tr>
<th>Chapter 14 FD-TD and Antenna Analysis</th>
<th>475</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>475</td>
</tr>
<tr>
<td>14.2 Antenna Characteristics</td>
<td>477</td>
</tr>
<tr>
<td>14.2.1 Antenna Fields and Radiation Patterns</td>
<td>477</td>
</tr>
<tr>
<td>14.2.2 Antenna Impedance</td>
<td>479</td>
</tr>
<tr>
<td>14.3 The Monopole Over a PEC Ground Plane</td>
<td>480</td>
</tr>
<tr>
<td>14.4.1 Modeling Considerations</td>
<td>480</td>
</tr>
<tr>
<td>14.4.2 Results</td>
<td>482</td>
</tr>
<tr>
<td>14.4.3 Discussion</td>
<td>483</td>
</tr>
<tr>
<td>14.5 Waveguide and Horn Antennas</td>
<td>487</td>
</tr>
<tr>
<td>14.5.1 Two-Dimensional Horn Antenna</td>
<td>487</td>
</tr>
<tr>
<td>14.5.2 Three-Dimensional Waveguide Radiator</td>
<td>489</td>
</tr>
<tr>
<td>14.5.3 Discussion</td>
<td>490</td>
</tr>
<tr>
<td>14.6 The Vivaldi Slotline Array</td>
<td>491</td>
</tr>
<tr>
<td>14.6.1 Background</td>
<td>491</td>
</tr>
<tr>
<td>14.6.2 The Planar Element</td>
<td>493</td>
</tr>
<tr>
<td>14.6.3 The Two-Element Vivaldi Pair</td>
<td>496</td>
</tr>
<tr>
<td>14.6.4 The Quad Element</td>
<td>498</td>
</tr>
<tr>
<td>14.6.5 The Linear Phased Array</td>
<td>498</td>
</tr>
<tr>
<td>14.6.6 Active Impedance of the Phased Array</td>
<td>503</td>
</tr>
<tr>
<td>14.7 Linear Superposition</td>
<td>506</td>
</tr>
<tr>
<td>References</td>
<td>507</td>
</tr>
<tr>
<td>Bibliography</td>
<td>509</td>
</tr>
<tr>
<td>Projects</td>
<td>510</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures</th>
<th>511</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Introduction</td>
<td>511</td>
</tr>
<tr>
<td>15.2 Scattering and Radar Cross Section</td>
<td>512</td>
</tr>
<tr>
<td>15.2.1 Small PEC Cube, Broadside Incidence</td>
<td>512</td>
</tr>
<tr>
<td>15.2.2 Nine-Wavelength T-Shaped Conducting Target</td>
<td>514</td>
</tr>
<tr>
<td>15.2.3 Generic Curved-Surface Targets, Conformally Modeled</td>
<td>515</td>
</tr>
<tr>
<td>15.2.4 Full-Scale Military Fighter Aircraft</td>
<td>516</td>
</tr>
<tr>
<td>15.3 Penetration and Coupling</td>
<td>517</td>
</tr>
<tr>
<td>15.3.1 Empty Cylindrical PEC Cavity</td>
<td>517</td>
</tr>
<tr>
<td>15.3.2 Loaded Missile Guidance Section</td>
<td>518</td>
</tr>
<tr>
<td>15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle</td>
<td>522</td>
</tr>
<tr>
<td>15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle</td>
<td>525</td>
</tr>
<tr>
<td>15.4 Biological Tissue Structures</td>
<td>529</td>
</tr>
<tr>
<td>15.4.1 The First FD-TD Biological Tissue Model: The Human Eye</td>
<td>530</td>
</tr>
<tr>
<td>15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis</td>
<td>530</td>
</tr>
<tr>
<td>15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod</td>
<td>535</td>
</tr>
<tr>
<td>15.5 Microlaser Cavities</td>
<td>538</td>
</tr>
<tr>
<td>References</td>
<td>541</td>
</tr>
<tr>
<td>Bibliography</td>
<td>543</td>
</tr>
</tbody>
</table>
Preface

Almost exactly twenty years ago, I submitted the first two journal papers of my research career to *IEEE Transactions on Microwave Theory and Techniques (MTT)*. These papers described my initial explorations of what later became known as the finite-difference time-domain (FD-TD) method for Maxwell's equations. The two papers, and the Ph.D. dissertation research that they reported, grew from a graduate seminar course at Northwestern University in bioelectromagnetic hazards that Prof. Morris Brodwin had conducted in 1972. During my independent study for this seminar, I sought to obtain a model for UHF and microwave penetration into the human eye to better understand the formation of "microwave cataracts," which had been observed in a number of radar technicians during World War II. At first, there appeared to be no viable means to solve Maxwell's equations for the complex, three-dimensional biological tissue geometry represented by the eye, its surrounding muscle and fat tissues, and its embedding within the bony orbit of the skull. Analytical models were available for the small set of generic shapes for which the Helmholtz equation could be solved using the separation of variables technique. However, these simple shapes, including the half space, the layered half space, the sphere, the layered sphere, and the infinite cone, were very inadequate for modeling the tissue geometry of the eye. Further, a back-of-the-envelope estimate of the implications of the required tissue and wavelength space resolution ruled out the frequency-domain method of moments, then capable of solving for only a few hundred field unknowns. The eye geometry required the solution of almost 100,000 field unknowns, two to three orders of magnitude beyond anything published in the moment method community at that time.

Almost having given up on Prof. Brodwin's seminar project, I found myself randomly leafing through back issues of *IEEE Transactions on Antennas and Propagation* in the dark, claustrophobic stacks of the old Tech library (replaced years later by a large, bright, open building). It was then that I stumbled upon Kane Yee's 1966 paper. Six years had gone by since its publication, with very sparse references to it recorded in *Science Citation Index*. And yet the paper was the Grail. I sensed that the Yee algorithm had tremendous promise. It could handle material inhomogeneities and did
not require matrix inversion, meaning that I could use the University's Control Data CDC 6400 computer to crunch the problem to its conclusion. Of course, a few "minor" details had to be solved, such as sourcing a plane wave, obtaining a rudimentary absorbing boundary condition, understanding the algorithm's numerical stability properties, and progressing from one to two to three dimensions in my code development.

So, my 1975 papers in MTT were published. And landed with a thud. Being eager, brash, and absolutely naive, I had expected the electromagnetics community to seize upon the marvelous Yee algorithm and apply it to everything. However, with the exception of the few industrial research firms and U.S. Government agencies active in the electromagnetic pulse area, FD-TD remained essentially unused for more than a decade.

Now, after much hard work and the welcome help of a rapidly growing user community, FD-TD is being used worldwide. And for just about everything, as I had foreseen in 1975.

It is my profound hope that the readers of this book, whether university students or professionals, can use and enjoy its material at a number of different levels. There is sufficient tutorial exposition for a class in computational electromagnetics at the senior undergraduate or first-year graduate level, at which the students have the traditional core electromagnetics background. I have taught such a course from drafts of this book for six years at Northwestern, and similar courses have been taught for the past two years at the University of Colorado at Boulder by my colleague, Melinda Piket-May. Over a ten-week academic quarter, it is possible for students to assimilate the first eight chapters, write their own working FD-TD codes in two dimensions with wave source and absorbing boundary conditions, and then use their codes to implement radiation and scattering models of their own design. Over an academic semester, it is possible to augment these basics with two or three of the remaining chapters, as selected by the instructor, to specialize in advanced topics involving unstructured meshing, electronics modeling, antennas, or parallel-processing software.

For the professional, this book is intended to be comprehensive and self-teaching. There is exposure to virtually all of the latest topics in FD-TD theory and practice, and a quite exhaustive list of references and bibliographic materials.

I gratefully acknowledge the contributors of the invited chapters in this book: Stephen Gedney and Faiza Lansing, Thomas Jurgens and Gregory Saewert, Melinda Piket-May, Eric Thiele, and Stephen Barnard. Also acknowledged are the contributions of my graduate students, who did the really hard work. A special thanks goes to my steadfast friend, Evans Harrigan, who had believed in FD-TD modeling ever since we met, and saw to it that my students had all of the time on Cray's marvelous supercomputers that they needed to do their work. Finally, I acknowledge my wife, Sylvia, and sons, Mike and Nate, who somehow were able to keep their composure while sharing a home with a very driven person who was utterly thrilled with the highs and quite agonized with the lows of FD-TD developments over twenty years.

This book is the culmination of a major phase in my life. However, the FD-TD story is only beginning. Let's move on to develop detailed FD-TD electromagnetics models of microchips, microlasers, and microcells, and bring the power of Maxwell's
equations to bear upon society's needs in ultrahigh-speed communications technology. In this manner, electromagnetic wave specialists can augment their current role in enabling people to freely communicate with each other worldwide, at the speed of light.

Allen Taflove
Wilmette, Illinois
March 16, 1995