COMPUTATIONAL ELECTRODYNAMICS

The Finite-Difference
Time-Domain Method

ALLEN TAFLOVE

Contents

Prefa	ce	xv
Chap	ter 1 Reinventing Electromagnetics	1
1.1	Background	1
	1.1.1 The Heritage of the 1980s	1
	1.1.2 The Rise of Partial Differential Equation Methods	3
	1.1.3 Interdisciplinary Impact of Emerging Time-Domain PDE Solvers	4
1.2	History of Space-Grid Time-Domain Techniques for Maxwell's Equations	4
1.3		6
	1.3.1 Classes of FD-TD and FV-TD Algorithms	7
	1.3.2 Predictive Dynamic Range	8
1.4	Scaling to Very Large Problem Sizes	9
	1.4.1 Algorithm Scaling Factors	9
	1.4.2 Computer Architecture Scaling Factors	10
1.5	Defense Applications	11
	1.5.1 RCS Modeling of Entire Aircraft to 1 GHz	11
	1.5.2 Desirable Additional Modeling Capabilities for Defense Applications	11
1.6	Dual-Use Electromagnetics Technology	14
	1.6.1 Antenna Design	14
	1.6.2 Bioelectromagnetic Systems 1: Hyperthermia Treatment of Cancer	23
	1.6.3 Bioelectromagnetic Systems 2: Physics of Human Vision	23
	1.6.4 Digital Circuit Packaging and Interconnects	24
	1.6.5 Incorporation of Models of Active Circuit Devices	25
	1.6.6 Subpicosecond Photonic Devices	27
1.7		29
	mental Reading	29
Referen	ices	30
Chap	ter 2 The One-Dimensional Scalar Wave Equation	35
2.1	Introduction	35
2.2	Propagating-Wave Solutions	35
2.3	Finite Differences	36
2.4	Finite-Difference Approximation of the Scalar Wave Equation	38
2.5	Dispersion Relations for the One-Dimensional Wave Equation	40
2.6	Numerical Phase Velocity	42
	2.6.1 Case 1: Very Fine Mesh	43
	2.6.2 Case 2: Magic Time Step	43
	2.6.3 Case 3: Dispersive Wave Propagation	44
2.7	Numerical Group Velocity	45
	2.7.1 Case 1: Very Fine Mesh	45
	2.7.2 Case 2: Magic Time Step	46
2.8	Numerical Stability	46
	2.8.1 The Time Eigenvalue Problem	47
	2.8.2 The Space Eigenvalue Problem	48
	2.8.3 Enforcement of Stability	49
Proble	ns	50

Chapt	er 3	Introduction to Maxwell's Equations and the Yee Algorithm	51
3.1	Introdu	_	51
		ell's Equations in Three Dimensions	51
		ion to Two Dimensions	54
	3.3.1		55
	3.3.2	TE Mode	55
3.4		ion to One Dimension	56
	3.4.1	TM Mode	56
		TE Mode	57
3.5		lence to the Wave Equation in One Dimension	57
	•	ee Algorithm	59
		Basic Ideas	59
		Finite Differences and Notation	61
		Finite-Difference Expressions for Maxwell's Equations in Three Dimensions	64
		Space Region with a Continuous Variation of Material Properties	67
		Space Region with a Finite Number of Distinct Media	68
		Space Region with Nonpermeable Media	70
		Reduction to the Two-Dimensional TM and TE Modes	71
		Interpretation as Faraday's and Ampere's Laws in Integral Form	72
		Divergence-Free Nature	76
		Exponential Time-Stepping	77
Reference			79
Problem			79
Chapt	er 4	Numerical Stability	81
4.1	Introdu	•	81
4.2		Stability Analysis Procedure, TM Mode	82
		Eigenvalue Problem	83
4.4		Eigenvalue Problem	85
	-	ement of Stability	87
		ion to the Full Three-Dimensional Yee Algorithm	88
		alized Stability Problem	90
•••		Boundary Conditions	90
		Variable and Unstructured Meshing	91
		Lossy, Dispersive, Nonlinear, and Gain Materials	91
Reference		Lossy, Dispersive, Ivolutical, and Gain Waterials	92
		n Stability of Finite-Difference Methods	92
Problem		i Sability of Fillic-Difference Memors	92
Chapt	er 5	Numerical Dispersion	93
5.1	Introdu	<u>-</u>	93
5.2		Procedure	94
5.3		tution of Traveling-Wave Trial Solutions	95
5.4		ion to the Full Three-Dimensional Yee Algorithm	96
5.5		arison with the Ideal Dispersion Case	97
5.6	-	tion to the Ideal Dispersion Case for Special Grid Conditions	101
5.0 5.7		sion-Optimized Basic Yee Algorithm	101
5.8	-	sion-Optimized Yee Algorithm with Fourth-Order Accurate Spatial Central	101
3.0	Disper		102
		Formulation	102

	5.8.2	Example	103
	5.8.3	Pros and Cons	104
Probler	ns		105
Chan	ter 6	Incident Wave Source Conditions for Free Space	
Cinap	tti U	and Waveguides	107
6.1	Introd	luction	107
6.2		irements for the Plane Wave Source Condition	108
6.3		ion of the Incident Wave As an Initial Condition	108
6.4		lard Source	109
6.5	Total	Field/Scattered-Field Formulation	111
	6.5.1	Ideas	111
	6.5.2	One-Dimensional Example	114
		Two-Dimensional Example	117
		Calculation of the Incident Field to Implement the Connecting Condition	121
	6.5.5	Extension to Three Dimensions	126
6.6	Pure :	Scattered-Field Formulation	135
	6.6.1	Application to PEC Structures	135
	6.6.2	Application to Lossy Dielectric Structures	136
6.7	Choic	e of Incident Plane Wave Formulation	137
6.8	Wave	guide Source Conditions	138
	6.8.1	Pulsed Electric Field Hard Source	138
	6.8.2	Total-Field/Reflected-Field Formulation	140
	6.8.3	Resistive Source and Load Conditions	141
Referen	ices		142
Proble	ns		142
Chap	ter 7	Absorbing Boundary Conditions for Free Space	
-		and Waveguides	145
7.1		luction	145
7.2	Bayli	ss-Turkel Scattered-Wave Annihilating Operators	147
	7.2.1	Spherical Coordinates	148
	7.2.2	Cylindrical Coordinates	151
7.3		uist-Majda One-Way Wave Equations	153
	7.3.1	One-Term and Two-Term Taylor Series Approximations	154
		Mur Finite-Difference Scheme	158
	7.3.3	Trefethen-Halpern Generalized and Higher-Order ABCs	160
	7.3.4	Theoretical Reflection Coefficient Analysis	163
*	7.3.5	Numerical Experiments	165
		on Operator	171
		Extrapolation	174
7.6		Fang Superabsorption	178
7.7		ger Perfectly Matched Layer	181
		Theory, Two-Dimensional TE Case	182
		Theory, Two-Dimensional TM Case	188
	7.7.3	· · · · · · · · · · · · · · · · · · ·	189
		Numerical Experiments Verifying the Effectiveness of PML ABC	190
7.8		rbing Boundary Conditions for Waveguides	195
Referer	ices		198
Proble	ms		201

Chapt	ter 8 Near-to-Far-Field Transformation	203
8.1	Introduction	203
8.2	Two-Dimensional Transformation, Phasor Domain	204
	8.2.1 Application of Green's Theorem	205
	8.2.2 Far-Field Limit	206
	8.2.3 Reduction to Standard Form	208
8.3	Obtaining Phasor Quantities Via Discrete Fourier Transformation	210
8.4		213
	Extension to Three Dimensions, Phasor Domain	215
8.6	Time-Domain Near-to-Far-Field Transformation	219
Referen	ces	224
Problen	ns	225
Chap	ter 9 Dispersive, Nonlinear, and Gain Materials	227
$9.\bar{1}$	Introduction	227
9.2	Recursive Convolution Method, Linear Isotropic Case	228
	9.2.1 Total-Field Formulation	228
	9.2.2 Scattered-Field Formulation	233
	9.2.3 Discussion	237
9.3	Recursive Convolution Method, Linear Gyrotropic Case	237
	9.3.1 Time-Domain Susceptibility Functions	239
	9.3.2 Time-Stepping Algorithm	240
	9.3.3 Discussion	246
9.4	Auxiliary Differential Equation Method, Linear Isotropic Case	246
	9.4.1 Introduction: The Single-Relaxation Dispersion, Initial Formulation	246
	9.4.2 Multiple Lorentzian Relaxations, Refined Formulation	251
	9.4.3 Comparison with the Recursive Convolution Method	254
9.5	Auxiliary Differential Equation Method, Nonlinear Lorentz Media (Nonlinear Optics)	257
,	9.5.1 Governing Equations	258
	9.5.2 Equivalent System of Ordinary Differential Equations	259
	9.5.3 Algorithm	261
	9.5.4 Results for Temporal Solitons	263
	9.5.5 Results for Spatial Solitons	266
	9.5.6 Discussion	269
9.6	Auxiliary Differential Equation Method, Lorentz Gain Media (Active Lasing Material	ls) 270
7.0	9.6.1 Theory and Numerical Implementation	270
	9.6.2 Generic Validations	274
	9.6.3 Discussion	274
Refere		274
Proble		278
Char	oter 10 Local Subcell Models of Fine Geometrical Features	281
_	1 Introduction	281
	1 introduction 2 Basis of Contour-Path FD-TD Modeling	282
		283
10.	The Simplest Contour-Path Subcell Models 10.3.1 Diagonal Split-Cell Model for PEC Surfaces	283
	10.3.1 Diagonal Spin-Cell Model for Material Surfaces 10.3.2 Average Properties Model for Material Surfaces	285
10	4 The Contour-Path Model of the Narrow Slot	286
		288
10	5 The Thin Wire	20

10.6	Conformal Madellain of Chemical Sunforce	292
10.6	Conformal Modeling of Curved Surfaces	292
	10.6.1 Two-Dimensional PEC Structures, TE Case	296
	10.6.2 Two-Dimensional PEC Structures, TM Case	296
	10.6.3 Illustrative Results, Aluminum Winglike Object 10.6.4 Three-Dimensional PEC Structures	298
		300
10.7	10.6.5 Two-Dimensional Material Structures	304
10.7	The Thin Material Sheet	304
	10.7.1 Basis	309
10.0	10.7.2 Illustrative Results	312
10.8	Dispersive Surface Impedance	
	10.8.1 Maloney-Smith Method	314
	10.8.2 Beggs et al. Method	320
	10.8.3 Lee et al. Method	327
10.9	Relativistic Motion of PEC Boundaries	331
	10.9.1 Basis	331
	10.9.2 Illustrative Results	335
10.10	Numerical Stability	338
Reference	38	338
Additiona	al Bibliography	341
Problems		342
~		
Chapte	er 11 Explicit Time-Domain Solution of Maxwell's Equations	2.42
	Using Nonorthogonal and Unstructured Grids	343
	Introduction	343
11.2	Nonuniform Orthogonal Grids	344
11.3	Locally Conformal Grids, Globally Orthogonal	353
11.4	Global Curvilinear Coordinates	353
	11.4.1 Nonorthogonal Curvilinear FD-TD Algorithm	353
	11.4.2 Stability Criterion	359
11.5	Irregular Nonorthogonal Structured Grids	361
11.6	Irregular Nonorthogonal Unstructured Grids	368
	11.6.1 Generalized Yee Algorithm	369
	11.6.2 Inhomogeneous Media	374
	11.6.3 Practical Implementation of the Generalized Yee Algorithm	376
11.7	A Planar Generalized Yee Algorithm	377
	11.7.1 Time-Stepping Expressions	379
	11.7.2 Projection Operators	380
	11.7.3 Efficient Time-Stepping Implementation	381
	Analysis of Printed Circuit Devices Using the Planar Generalized Yee Algorithm	382
Reference	· · · · · · · · · · · · · · · · · · ·	390
Problems	S	393
Chapte	er 12 The Body of Revolution FD-TD Algorithm	397
12.1	Introduction	397
12.2	Field Expansion	398
12.3	Difference Equations for Off-Axis Cells	398
	12.3.1 The e _r Patch Integral	400
	12.3.2 The e_{ϕ} Patch Integral	402
	12.3.3 The e_z Patch Integral	404
	12.3.4 Difference Equations	407
	•	
	xi	

12.3.5 Surface-Conforming Patch Integrals	410
12.4 Difference Equations for On-Axis Cells	412
12.4.1 The e_z Patch Integral Near the Axis	412
12.4.2 The e_{ϕ} Patch Integral Near the Axis	414
12.4.3 The h_r Patch Integral Near the Axis	416
12.5 Numerical Stability	417
12.6 PML Absorbing Boundary Condition	417
12.6.1 BOR FD-TD Background	417
12.6.2 Extension of PML to the BOR Waveguide Case	420
12.6.3 Examples	421
12.7 Application to Particle Accelerator Physics	423
12.7.1 Definitions and Concepts	423
12.7.2 Examples	426
References	429
Problems	430
Chapter 13 Modeling of Electromagnetic Fields in High-Speed	401
Electronic Circuits	431
13.1 Introduction	431
13.2 Basic Circuit Parameters	432
13.2.1 Transmission Line Parameters	432
13.2.2 Impedance	433
13.2.3 S-Parameters	434
13.3 Differential Capacitance Calculation	434
13.4 Differential Inductance Calculation	435
13.5 Lumped Inductance Due to a Discontinuity	437
13.5.1 Flux/Current Definition	437
13.5.2 Fitting $Z(\omega)$ or $S_{mn}(\omega)$ to an Equivalent Circuit	438
13.5.3 Discussion: Choice of Methods	439
13.6 Parallel Coplanar Microstrips	439
13.7 Multilayered Interconnect Modeling Example	44 0
13.8 Digital Signal Processing and Spectrum Estimation Techniques	442
13.8.1 Prony's Method	443
13.8.2 Autoregressive Models	447
13.8.3 System Identification	453
13.9 Modeling of Lumped Circuit Elements	456
13.9.1 FD-TD Formulation Extended to Circuit Elements	456
13.9.2 The Resistor	458
13.9.3 The Resistive Voltage Source	459
13.9.4 The Capacitor	459
13.9.5 The Inductor	460
13.9.6 The Diode	461
13.9.7 The Bipolar Junction Transistor	463
13.10 Direct Linking of FD-TD and SPICE	465
References	470
Additional Bibliography	472
Problems	473

14.1 Introduction 475 14.2 Antenna Characteristics 477 14.2.1 Antenna Fields and Radiation Patterns 477 14.3 Motivation for Using FD-TD in Antenna Design 478 14.4 The Monopole Over a PEC Ground Plane 480 14.4.1 Modeling Considerations 480 14.4.2 Results 482 14.4.3 Discussion 483 14.5.4 Waveguide and Horn Antennas 487 14.5.2 Three-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 488 14.5.3 Discussion 490 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 Active Impedance of the Phased Array 498 14.7 Linear Superposition 503 References 507 Bibliography 508 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2.2 Nine-Wavelength T-Shaped Conducting Target 512	Chapter 14 FD-TD and Antenna Analysis	475
14.2.1 Antenna Fields and Radiation Patterns 477 14.2.2 Antenna Impedance 479 14.3 Motivation for Using FD-TD in Antenna Design 479 14.4 The Monopole Over a PEC Ground Plane 480 14.4.1 Modeling Considerations 481 14.4.2 Results 482 14.4.3 Discussion 483 14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.3 Discussion 490 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.5 The Linear Phased Array 498 14.6.5 The Linear Phased Array 498 14.6.5 The Linear Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 501 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512		
14.2.2 Antenna Impedance 479 14.3 Motivation for Using FD-TD in Antenna Design 479 14.4 The Monopole Over a PEC Ground Plane 486 14.4.1 Modeling Considerations 480 14.4.2 Results 482 14.4.3 Discussion 483 14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 488 14.5.3 Discussion 490 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element Vivaldi Pair 496 14.6.5 The Linear Phased Array 493 14.7 Linear Superposition 503 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 512 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.3.2 Loaded Miissile Guidance Section		
14.3 Motivation for Using FD-TD in Antenna Design 479 14.4 The Monopole Over a PEC Ground Plane 486 14.4.1 Modeling Considerations 486 14.4.2 Results 482 14.4.3 Discussion 483 14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.3 Discussion 490 14.6 The Vivaldi Stottine Array 491 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514		
14.4 The Monopole Over a PEC Ground Plane 480 14.4.1 Modeling Considerations 482 14.4.2 Results 483 14.4.3 Discussion 483 14.5.1 Waveguide and Horn Antennas 487 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.3 Discussion 490 14.6. The Vivaldi Stottine Array 491 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515<		
14.4.1 Modeling Considerations 480 14.4.2 Results 482 14.4.3 Discussion 483 14.5 Waveguide and Horn Antennas 487 14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.3 Discussion 490 14.6.1 Background 491 14.6.2 The Planar Element 491 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 507 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 512 15.2.2 Stattering and Radar Cross Section 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 512 15.2.2 Fiell-Scale Military Fighter Aircraft 516 15.3 Penetration and Coupling 517 15.3.1 Empty Cylindrical PEC Cavity 517		
14.4.2 Results 482 14.4.3 Discussion 483 14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.3 Discussion 490 14.6 The Vivaldi Stottine Array 491 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 501 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 512 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.3. Penetration and Coupling 517 15.3. Penetration and Coupling 517 15.3. Penetration and Coupling 517 15.3. Penetration and Coupling 517 <t< td=""><td></td><td></td></t<>		
14.4.3 Discussion 483 14.5 Waveguide and Hom Antennas 487 14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 480 14.5.3 Discussion 490 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.5 The Linear Phased Array 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposit		
14.5. Waveguide and Horn Antenna 487 14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.3 Discussion 490 14.6. The Vivaldi Slotline Array 491 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 503 14.7 Linear Superposition 503 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522		_
14.5.1 Two-Dimensional Horn Antenna 487 14.5.2 Three-Dimensional Waveguide Radiator 489 14.5.3 Discussion 490 14.6 The Vivaldi Stotline Array 491 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Misitie Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522 15.4.2 Biological Tissue Structures 529	14.4.3 Discussion	
14.5.2 Three-Dimensional Waveguide Radiator 14.5.3 Discussion 490 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.2 The Planar Element Vivaldi Pair 496 14.6.3 The Two-Element Vivaldi Pair 497 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 499 14.6.6 Active Impedance of the Phased Array 490 14.7 Linear Superposition 600 600 600 600 600 600 600 600 600 60		
14.5.3 Discussion 490 14.6 The Vivaldi Slotline Array 491 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.2.4 Full-Scale Military Fighter Aircraft 516 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 5		
14.6 The Vivaldi Slotline Array 491 14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.2.4 Full-Scale Military Fighter Aircraft 516 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 530 15.4.2 Patient-Specific El	14.5.2 Three-Dimensional Waveguide Radiator	
14.6.1 Background 491 14.6.2 The Planar Element 493 14.6.3 The Two-Element Vivaldi Pair 496 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.2.4 Full-Scale Military Fighter Aircraft 516 15.3 Penetration and Coupling 517 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522 15.4 Biological Tissue Structures 529 15.4.1 The First FD-TD Biological Tissue Model: The Huma	14.5.3 Discussion	490
14.6.2 The Planar Element 14.6.3 The Two-Element Vivaldi Pair 14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 14.6.6 Active Impedance of the Phased Array 14.7 Linear Superposition References 507 Bibliography 509 Projects Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scade Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4.5 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities 849 498 498 498 498 498 498 49	14.6 The Vivaldi Slotline Array	491
14.6.3 The Two-Element Vivaldi Pair 14.6.4 The Quad Element 14.6.5 The Linear Phased Array 14.6.6 Active Impedance of the Phased Array 14.6.6 Active Impedance of the Phased Array 14.7 Linear Superposition References 507 Bibliography 709 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 512 Scattering and Radar Cross Section 515.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515.2.4 Full-Scale Military Fighter Aircraft 516 15.3 Penetration and Coupling 517 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 525 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 538 References 541	14.6.1 Background	491
14.6.4 The Quad Element 498 14.6.5 The Linear Phased Array 498 14.6.6 Active Impedance of the Phased Array 503 14.7 Linear Superposition 506 References 507 Bibliography 509 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.2.4 Full-Scale Military Fighter Aircraft 516 15.3 Penetration and Coupling 517 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 525 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 530 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models 529 Derived from Computed Tomography Imaging and An	14.6.2 The Planar Element	493
14.6.5 The Linear Phased Array 14.6.6 Active Impedance of the Phased Array 14.7 Linear Superposition References 507 Bibliography 709 Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4 Nitrolaser Cavities References 541	14.6.3 The Two-Element Vivaldi Pair	496
14.6.6 Active Impedance of the Phased Array 14.7 Linear Superposition References Bibliography Projects Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 510 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities 507 508 509 509 509 509 509 509 509	14.6.4 The Quad Element	498
14.6.6 Active Impedance of the Phased Array 14.7 Linear Superposition References Soft Bibliography Projects Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures Soft Introduction 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References Soft Soft Soft Soft Soft Soft Soft Soft	14.6.5 The Linear Phased Array	498
14.7 Linear Superposition References Soff Bibliography Projects Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 507 507 508 508 507 508 507 509 509 509 509 509 509 509	14.6.6 Active Impedance of the Phased Array	503
Bibliography Projects Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References	14.7 Linear Superposition	506
Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.2.4 Full-Scale Military Fighter Aircraft 516 15.3 Penetration and Coupling 517 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522 15.4.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 525 15.4.5 Biological Tissue Structures 529 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 530 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 530 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 535 References 541	References	507
Projects 510 Chapter 15 Electromagnetic Wave Scattering, Penetration, and Coupling for Complex Structures 511 15.1 Introduction 511 15.2 Scattering and Radar Cross Section 512 15.2.1 Small PEC Cube, Broadside Incidence 512 15.2.2 Nine-Wavelength T-Shaped Conducting Target 514 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 515 15.2.4 Full-Scale Military Fighter Aircraft 516 15.3 Penetration and Coupling 517 15.3.1 Empty Cylindrical PEC Cavity 517 15.3.2 Loaded Missile Guidance Section 518 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 522 15.4.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 525 15.4.5 Biological Tissue Structures 529 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 530 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 530 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 535 References 541	Bibliography	509
and Coupling for Complex Structures 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References	0 1 0	510
and Coupling for Complex Structures 15.1 Introduction 15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References	Chapter 15 Electromagnetic Wave Scattering, Penetration,	
15.2 Scattering and Radar Cross Section 15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References	and Coupling for Complex Structures	511
15.2.1 Small PEC Cube, Broadside Incidence 15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 512	15.1 Introduction	511
15.2.2 Nine-Wavelength T-Shaped Conducting Target 15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 518	15.2 Scattering and Radar Cross Section	512
15.2.3 Generic Curved-Surface Targets, Conformally Modeled 15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 515	15.2.1 Small PEC Cube, Broadside Incidence	512
15.2.4 Full-Scale Military Fighter Aircraft 15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 516 517 518 518 519 529 520 530 530 530 530 530 530 530	15.2.2 Nine-Wavelength T-Shaped Conducting Target	514
15.3 Penetration and Coupling 15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 517	15.2.3 Generic Curved-Surface Targets, Conformally Modeled	515
15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 517 518 518 519 519 519 519 519 519 519 519 519 519	15.2.4 Full-Scale Military Fighter Aircraft	516
15.3.1 Empty Cylindrical PEC Cavity 15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 518 522 525 526 527 528 530 530 530 530 530 530 530 530 530 530	15.3 Penetration and Coupling	517
15.3.2 Loaded Missile Guidance Section 15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 518		517
15.3.3 Spatial Decomposition via a Schelkunoff Equivalence Principle 15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 522 530 530 530 530 531 532 641		518
15.3.4 Cylindrical PEC Cavity Loaded by a Wire Bundle 15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 525 536 537 538 References		522
15.4 Biological Tissue Structures 15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 529 530 530 530 531 538 738 738 739 740 750 750 750 750 750 750 750		525
15.4.1 The First FD-TD Biological Tissue Model: The Human Eye 15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 530 530 530 530 531 530 531 531 532 533		529
15.4.2 Patient-Specific Electromagnetic Hyperthermia Models Derived from Computed Tomography Imaging and Analysis 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 538		530
Derived from Computed Tomography Imaging and Analysis 530 15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 535 15.5 Microlaser Cavities 538 References 541		
15.4.3 Visible Light Interactions with the Vertebrate Retinal Rod 15.5 Microlaser Cavities References 538		530
15.5 Microlaser Cavities 538 References 541		
References 541		
	· · · · · · · · · · · · · · · · · · ·	
		_

Chapter 16 Efficient FD-TD Algorithms for Vector and Multiprocessor Computers	545
16.1 Introduction	545
16.2 Pipelined RISC and Vector Processors	546
16.3 Multiprocessor Computers	551
16.3.1 Introduction to Parallelism	551
16.3.2 Parallel FD-TD Algorithm	555
16.3.3 Numerical Benchmarks	558
16.4 Parallel Nonorthogonal FD-TD Algorithms	560
16.5 Parallel Planar Generalized Yee Algorithm	561
16.5.1 The Parallel Algorithm	561
16.5.2 Spatial Decomposition Algorithms	564
16.6 Porting FDTD3D to the Cray T3D	570
16.6.1 Background	570
16.6.2 T3D Programming Models	570
16.6.3 Program Design Issues	572
16.6.4 Single-Processor Optimization	576
16.6.5 Performance	579
References	581
Problems	583
Author and Citation Index	585
Subject Index	59 1
About the Chapter Authors	597

Preface

Almost exactly twenty years ago, I submitted the first two journal papers of my research career to IEEE Transactions on Microwave Theory and Techniques (MTT). These papers described my initial explorations of what later became known as the finite-difference time-domain (FD-TD) method for Maxwell's equations. The two papers, and the Ph.D. dissertation research that they reported, grew from a graduate seminar course at Northwestern University in bioelectromagnetic hazards that Prof. Morris Brodwin had conducted in 1972. During my independent study for this seminar, I sought to obtain a model for UHF and microwave penetration into the human eye to better understand the formation of "microwave cataracts," which had been observed in a number of radar technicians during World War II. At first, there appeared to be no viable means to solve Maxwell's equations for the complex, three-dimensional biological tissue geometry represented by the eye, its surrounding muscle and fat tissues, and its embedding within the bony orbit of the skull. Analytical models were available for the small set of generic shapes for which the Helmholtz equation could be solved using the separation of variables technique. However, these simple shapes, including the half space, the layered half space, the sphere, the layered sphere, and the infinite cone, were very inadequate for modeling the tissue geometry of the eye. Further, a back-of-theenvelope estimate of the implications of the required tissue and wavelength space resolution ruled out the frequency-domain method of moments, then capable of solving for only a few hundred field unknowns. The eye geometry required the solution of almost 100,000 field unknowns, two to three orders of magnitude beyond anything published in the moment method community at that time.

Almost having given up on Prof. Brodwin's seminar project, I found myself randomly leafing through back issues of *IEEE Transactions on Antennas and Propagation* in the dark, claustrophobic stacks of the old Tech library (replaced years later by a large, bright, open building). It was then that I stumbled upon Kane Yee's 1966 paper. Six years had gone by since its publication, with very sparse references to it recorded in *Science Citation Index*. And yet the paper was the *Grail*. I sensed that the Yee algorithm had tremendous promise. It could handle material inhomogeneities and did

not require matrix inversion, meaning that I could use the University's Control Data CDC 6400 computer to crunch the problem to its conclusion. Of course, a few "minor" details had to be solved, such as sourcing a plane wave, obtaining a rudimentary absorbing boundary condition, understanding the algorithm's numerical stability properties, and progressing from one to two to three dimensions in my code development.

So, my 1975 papers in MTT were published. And landed with a thud. Being eager, brash, and absolutely naive, I had expected the electromagnetics community to seize upon the marvelous Yee algorithm and apply it to everything. However, with the exception of the few industrial research firms and U.S. Government agencies active in the electromagnetic pulse area, FD-TD remained essentially unused for more than a decade.

Now, after much hard work and the welcome help of a rapidly growing user community, FD-TD is being used worldwide. And for just about *everything*, as I had foreseen in 1975.

It is my profound hope that the readers of this book, whether university students or professionals, can use and enjoy its material at a number of different levels. There is sufficient tutorial exposition for a class in computational electromagnetics at the senior undergraduate or first-year graduate level, at which the students have the traditional core electromagnetics background. I have taught such a course from drafts of this book for six years at Northwestern, and similar courses have been taught for the past two years at the University of Colorado at Boulder by my colleague, Melinda Piket-May. Over a tenweek academic quarter, it is possible for students to assimilate the first eight chapters, write their own working FD-TD codes in two dimensions with wave source and absorbing boundary conditions, and then use their codes to implement radiation and scattering models of their own design. Over an academic semester, it is possible to augment these basics with two or three of the remaining chapters, as selected by the instructor, to specialize in advanced topics involving unstructured meshing, electronics modeling, antennas, or parallel-processing software.

For the professional, this book is intended to be comprehensive and self-teaching. There is exposure to virtually all of the latest topics in FD-TD theory and practice, and a quite exhaustive list of references and bibliographic materials.

I gratefully acknowledge the contributors of the invited chapters in this book: Stephen Gedney and Faiza Lansing, Thomas Jurgens and Gregory Saewert, Melinda Piket-May, Eric Thiele, and Stephen Barnard. Also acknowledged are the contributions of my graduate students, who did the really hard work. A special thanks goes to my steadfast friend, Evans Harrigan, who has believed in FD-TD modeling ever since we met, and saw to it that my students had all of the time on Cray's marvelous supercomputers that they needed to do their work. Finally, I acknowledge my wife, Sylvia, and sons, Mike and Nate, who somehow were able to keep their composure while sharing a home with a very driven person who was utterly thrilled with the highs and quite agonized with the lows of FD-TD developments over twenty years.

This book is the culmination of a major phase in my life. However, the FD-TD story is only beginning. Let's move on to develop detailed FD-TD electromagnetics models of microchips, microlasers, and microcells, and bring the power of Maxwell's

equations to bear upon society's needs in ultrahigh-speed communications technology. In this manner, electromagnetic wave specialists can augment their current role in enabling people to freely communicate with each other worldwide, at the speed of light.

Allen Taflove Wilmette, Illinois March 16, 1995