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Preface

Almost exactly twenty years ago, I submitted the first two journal papers of my
research career to IEEE Transactions on Microwave Theory and Techniques (MTT).
These papers described my initial explorations of what later became known as the
finite-difference time-domain (FD-TD) method for Maxwell's equations. The two
papers, and the Ph.D. dissertation research that they reported, grew from a graduate
seminar course at Northwestern University in bioelectromagnetic hazards that Prof.
Morris Brodwin had conducted in 1972. During my independent study for this seminar,
I sought to obtain a model for UHF and microwave penetration into the human eye to
better understand the formation of "microwave cataracts,” which had been observed in a
number of radar technicians during World War II. At first, there appeared to be no viable
means to solve Maxwell's equations for the complex, three-dimensional biological tissue
geometry represented by the eye, its surrounding muscle and fat tissues, and its
embedding within the bony orbit of the skull. Analytical models were available for the
small set of generic shapes for which the Helmholtz equation could be solved using the
separation of variables technique. However, these simple shapes, including the half
space, the layered half space, the sphere, the layered sphere, and the infinite cone, were
very inadequate for modeling the tissue geometry of the eye. Further, a back-of-the-
envelope estimate of the implications of the required tissue and wavelength space
resolution ruled out the frequency-domain method of moments, then capable of solving
for only a few hundred field unknowns. The eye geometry required the solution of
almost 100,000 field unknowns, two to three orders of magnitude beyond anything
published in the moment method community at that time.

Almost having given up on Prof. Brodwin's seminar project, I found myself
randomly leafing through back issues of IEEE Transactions on Antennas and
Propagation in the dark, claustrophobic stacks of the old Tech library (replaced years
later by a large, bright, open building). It was then that I stumbled upon Kane Yee's
1966 paper. Six years had gone by since its publication, with very sparse references to it
recorded in Science Citation Index. And yet the paper was the Grail. 1 sensed that the
Yee algorithm had tremendous promise. It could handle material inhomogeneities and did
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not require matrix inversion, meaning that I could use the University's Control Data CDC
6400 computer to crunch the problem to its conclusion. Of course, a few "minor" details
had to be solved, such as sourcing a plane wave, obtaining a rudimentary absorbing
boundary condition, understanding the algorithm's numerical stability properties, and
progressing from one to two to three dimensions in my code development.

So, my 1975 papers in MTT were published. And landed with a thud. Being eager,
brash, and absolutely naive, I had expected the electromagnetics community to seize upon
the marvelous Yee algorithm and apply it to everything. However, with the exception of
the few industrial research firms and U.S. Government agencies active in the
electromagnetic pulse area, FD-TD remained essentially unused for more than a decade.

Now, after much hard work and the welcome help of a rapidly growing user
community, FD-TD is being used worldwide. And for just about everything, as I had
foreseen in 1975.

It is my profound hope that the readers of this book, whether university students or
professionals, can use and enjoy its material at a number of different levels. There is
sufficient tutorial exposition for a class in computational electromagnetics at the senior
undergraduate or first-year graduate level, at which the students have the traditional core
electromagnetics background. I have taught such a course from drafts of this book for
six years at Northwestern, and similar courses have been taught for the past two years at
the University of Colorado at Boulder by my colleague, Melinda Piket-May. Over a ten-
week academic quarter, it is possible for students to assimilate the first eight chapters,
write their own working FD-TD codes in two dimensions with wave source and
absorbing boundary conditions, and then use their codes to implement radiation and
scattering models of their own design. Over an academic semester, it is possible to
augment these basics with two or three of the remaining chapters, as selected by the
instructor, to specialize in advanced topics involving unstructured meshing, electronics
modeling, antennas, or parallel-processing software.

For the professional, this book is intended to be comprehensive and self-teaching.
There is exposure to virtually all of the latest topics in FD-TD theory and practice, and a
quite exhaustive list of references and bibliographic materials.

I gratefully acknowledge the contributors of the invited chapters in this book:
Stephen Gedney and Faiza Lansing, Thomas Jurgens and Gregory Saewert, Melinda
Piket-May, Eric Thiele, and Stephen Barnard. Also acknowledged are the contributions
of my graduate students, who did the really hard work. A special thanks goes to my
steadfast friend, Evans Harrigan, who has believed in FD-TD modeling ever since we
met, and saw to it that my students had all of the time on Cray's marvelous
supercomputers that they needed to do their work. Finally, I acknowledge my wife,
Sylvia, and sons, Mike and Nate, who somehow were able to keep their composure
while sharing a home with a very driven person who was utterly thrilled with the highs
and quite agonized with the lows of FD-TD developments over twenty years.

This book is the culmination of a major phase in my life. However, the FD-TD
story is only beginning. Let's move on to develop detailed FD-TD electromagnetics
models of microchips, microlasers, and microcells, and bring the power of Maxwell's
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equations to bear upon society's needs in ultrahigh-speed communications technology.
In this manner, electromagnetic wave specialists can augment their current role in
enabling people to freely communicate with each other worldwide, at the speed of light.

Allen Taflove
Wilmette, Illinois
March 16, 1995
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