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Abstract. This paper deals with the problem of statically inferring the
shape of an array in languages such as MATLAB. Inferring an array’s
shape is desirable because it empowers better compilation and interpre-
tation; specifically, knowing an array’s shape could permit reductions
in the number of run-time array conformability checks, enable memory
preallocation optimizations, and facilitate the in-lining of “scalarized”
code. This paper describes how the shape of a MATLAB expression can
be determined statically, based on a methodology of systematic matrix
formulations. The approach capitalizes on the algebraic properties that
underlie MATLAB’s shape semantics and exactly captures the shape that
the MATLAB expression assumes at run time. Some of the highlights of
the approach are its applicability to a large class of MATLAB functions
and its uniformity. Our methods are compared with the previous shadow
variable scheme, and we show how the algebraic view allows inferences
not deduced by the traditional approach.

1 Introduction

In languages such as MATLAB1 and APL that lack type declarations, static knowledge
of an array’s intrinsic type and shape could improve the translated code’s execution
efficiency. For instance, it could enable the system to avoid conformability checks on
a function’s operands at run time, if certain guarantees can be made on the nature
of those operands at compile time. Besides, knowing how an array’s shape will evolve
during the course of a loop’s execution may permit the system to arrive at some estimate
of its size, thereby allowing the preallocation of the array outside the loop. This greatly
enhances performance, since the overhead of incremental array growth is avoided.
In this work, we examine the problem of statically inferring an array’s shape in the

MATLAB programming language. The language is representative of numerous other
interactive array languages such as APL and SETL, and was primarily chosen on
account of the immense popularity that it enjoys in the programming community. In
fact, the language’s extensive array support, coupled with its simplicity and interactive
nature, is the chief reason behind its emergence as the tool of choice for fast prototyping
and analysis.

1.1 Motivation

Consider the synthetic MATLAB code fragment shown in Figure 1.2 Here, the invo-
cations rand(m, n) and rand(x, y) return a pair of two-dimensional arrays (i.e.,

� This research was supported by DARPA under Contract F30602–98–2–0144.
1 MATLAB is a registered trademark of The MathWorks, Inc.
2 The symbol ← will be used to denote the assignment operation in MATLAB.



matrices) having the extents m, x and n, y along the first and second dimensions respec-
tively. Thus, even though there is no way of establishing the values of m, n, x and y at
compile time, we can still safely conclude at compile time that a and b have 〈m,n〉 and
〈x,y〉 as their respective shape tuples. However, what should the shape tuple of c be?
Note that c is the outcome of a*b where * is the MATLAB matrix multiply operation
[10]. According to the semantics of this operation, the answer “〈m,y〉, if n = x” is only
partly correct. This is because, if either a or b evaluate to scalars at run time (i.e.,
m = 1 ∧ n = 1 or x = 1 ∧ y = 1), the shape of c will be 〈x,y〉 or 〈m,n〉 respectively. In
fact, can we even determine the dimensionality of c at compile time? This is because,
if either a or b are scalars at run time, c will have as many dimensions as the other
operand. Since there is no “unique” shape tuple that can be statically ascribed to c,
should we maintain a list of candidate shapes against c, each of which could potentially
be the final shape of c? How then do we infer the shape of d in the given code excerpt
so as to take into consideration all possible “reaching” shapes of c?

m ← round(4*rand+1);
n ← round(5*rand+1);
x ← round(5*rand+1);
y ← round(6*rand+1);

a ← rand(m, n);
b ← rand(x, y);

c ← a*b;
d ← c+a;
e ← d-a;
f ← e./d;

Fig. 1. A Motivating Code Fragment

1.2 Related Work

In the recent past, the compiler community has witnessed much activity in the area of
compilation for the MATLAB language [4, 5, 13, 2, 9, 11]. The work due to Kaplan et al.
[8], based on the theory of lattices, was among the first that dealt with the problem of
automatically determining the type attributes in a programming language requiring no
declarations. In the work due to Budd [1], a partial ordering of intrinsic type and shape
was used in the type determination process. Data-flow techniques were then applied to
propagate type information across expressions, statements and procedures. However,
the notion of shape as used in [1] corresponded to the broad attributes of scalar, vector,
“fixed-size” array and “arbitrary” array, and it is not clear how the actual array extents
were automatically computed. The FALCON project [5] was among the early works
to examine the type determination problem in MATLAB. The FALCON system relies
on a static shape inference mechanism that essentially propagates an array’s “rank”
and shape when possible, and resorts to a dynamic strategy based on shadow variables
otherwise. Similar techniques have been adopted in the “Otter” MATLAB compiler
[13] and in Menhir [2]. Investigations into shape, using alternate approaches such as
category theory, have also been done [6]. These efforts have attempted to consider shape
in a broad context—that is, as structures not just limited to matrices and arrays,



but encompassing lists, trees and unlabeled graphs as well. The type of operations
considered were confined to those that permitted a complete static analysis of shape—
that is, operations in which the shape of the output was completely determined by the
shapes of the inputs.

1.3 Contributions

This paper presents a framework that makes it possible to statically describe the shape
of a MATLAB expression. The main contribution is that, unlike previous approaches,
the framework empowers useful inferences even in situations wherein the actual array
extents may not be statically determinable. This difference is important because current
techniques do not attempt further inferences from a statically unknown shape. The
following are the specific contributions of this work.

– A framework that, in addition to enabling a compact and exact static represen-
tation of shape for a large class of MATLAB functions, reveals useful properties
borne by the language’s shape semantics.

– We show how a compiler or interpreter could use the framework to reduce two
overheads: that due to array conformability checks, and that due to the incremental
growth of arrays in loops.

1.4 Outline

The rest of this paper is organized as follows. We begin with the underpinnings of the
framework in § 2. In § 3, we describe the framework by showing its application to an
important operator in MATLAB. Continuing with the same operator, we show in § 4
how the framework uncovers some of the important properties associated with its shape
semantics. In § 5, we discuss the applicability of the framework. Comparisons with the
current state of the art in shape determination are done in § 6. In § 7, we explain how
the framework can handle arbitrary control flow. Two important optimizations that the
framework allows, namely reduction in the array conformability check overhead and
array preallocation, are presented and discussed in § 8 and § 9. Finally, we conclude
the paper in § 10.

2 Preliminaries

All data in MATLAB is ultimately an array. For example, a scalar is an array of size
1 × 1. We use the shape-tuple notation 〈p1, p2, . . . , pm〉 to represent the shape of an
m-dimensional array whose respective extents from the first to the mth dimension are
p1, p2 and so on until pm.
In MATLAB, any m-dimensional array can be considered to have n dimensions,

where n > m, simply by regarding the higher dimensions to have unit extents. Since
higher dimensions are indicated to the right of lower dimensions in the shape-tuple
notation, trailing extents of unity are effectively of no significance to an array’s shape
in MATLAB. In other words, the shape tuples 〈2, 3, 4〉, 〈2, 3, 4, 1〉, 〈2, 3, 4, 1, 1〉 and so
on represent the same shape. We therefore say that these shape tuples are MATLAB-
equivalent.
For the sake of convenience, we impose the restriction that the shape tuple of an

array must have at least two components in its representation. With this proviso, a
column vector with three elements could have any of the shape tuples 〈3, 1〉, 〈3, 1, 1〉
and so on, but not 〈3〉.



The notion of equivalent shape tuples leads to the idea of an array’s canonical shape
tuple. An array’s canonical shape tuple is obtained from any of its equivalent shape
tuples by discarding all trailing extents of unity from the third component onwards.
For the column vector discussed above, the canonical shape tuple would be 〈3, 1〉 while
the canonical shape tuple for a scalar would be 〈1, 1〉.
We next define an array’s rank as the number of its dimensions. Because an array

will have an infinite set of shape tuples, it will also have an infinite set of ranks. For
example, an array having 〈5, 1, 2〉 as its canonical shape tuple will have a rank of 3 or
more. We therefore call the smallest rank that can be ascribed to an array its canonical
rank ; this equals the number of components in its canonical shape tuple.

2.1 Terminology

In the context of MATLAB expressions, we shall use the terms illegal arrays, scalars,
row vectors, column vectors and matrices to mean the following:

illegal array: An array that is the “outcome” of an ill-formed MATLAB
expression.
scalar: A legal array whose canonical rank is 2, and whose extents along the
first and second dimensions are 1 each.
row vector: A legal array whose canonical rank is 2, and whose extent along
the first dimension is 1.
column vector: A legal array whose canonical rank is 2, and whose extent
along the second dimension is 1.
matrix: A legal array whose canonical rank is 2.

Illegal arrays are an artificial construct introduced only for completeness. They are
meant to represent the result of an illegal MATLAB expression. For example, when a
2× 3 matrix is multiplied with a 4× 5 matrix in MATLAB, the run-time system will
complain of an error. The concept of an illegal array is meant to abstract such error
situations.
Notice the overlap in the above definitions. For instance, that which is a scalar could

also be regarded as a row vector, a column vector or a matrix. And a row vector or a
column vector is also a matrix. We shall use the phrase “higher dimensional array” to
describe legal arrays whose canonical ranks are at least 3. The term “array” by itself
(without any qualification) could mean an illegal array, a scalar, a row vector, a column
vector, a matrix or a higher dimensional array. MATLAB also supports empty arrays
[10]; these are legal arrays that contain no data but yet have a shape. To encompass
the empty array construct, we allow the shape-tuple components to also be zero.

2.2 Shape Algebra Basics

Consider the set LS of all square diagonal matrices of order 2 or more, in which the
principal diagonal elements belong to the set of nonnegative integersW. We shall follow
the convention of denoting an n × n square diagonal matrix having p1, p2 and so on
until pn as its principal diagonal elements by 〈p1, p2, . . . , pn〉. Thus,

〈p1, p2, . . . , pn〉 =



p1 0 . . . 0
0 p2 . . . 0
...
...
. . .
...

0 0 . . . pn


.



By using 〈p1, p2, . . . , pn〉 to also represent the shape tuple of a MATLAB array, we in
effect infuse the notation the power of matrix arithmetic. The choice of square diagonal
matrices to capture the essence of an array’s shape was motivated by the fact that under
the usual matrix arithmetic operations of addition, subtraction, multiplication, division
(i.e., inverse), and multiplication by a scalar, the result is also square diagonal.
We additionally include the concept of “illegal shape tuples” so as to represent the

shape of an illegal MATLAB array. We do this by considering a set IS of integer square
diagonal matrices whose members do not belong to LS. A suitable choice for IS would
be:

IS = {〈π1, π2〉, 〈π1, π2, 1〉, 〈π1, π2, 1, 1〉, . . . } (1)

where π1 and π2 are integers such that either π1 < 0 or π2 < 0 or both. Consider
the augmented set S = LS ∪ IS. We can easily define an equivalence relation ℘ on S
such that two elements in this set are related by ℘ if they are MATLAB-equivalent.
That is, for any s, t ∈ S, s℘ t if and only if either s and t are identical or differ by
trailing extents of unity from the third component on. Hence, if s = 〈p1, p2, . . . , pk〉
and t = 〈q1, q2, . . . , ql〉 where k, l ≥ 2, then

s℘ t =⇒



s = t if k = l,

s = 〈q1, q2, . . . , ql, 1, . . . , 1〉 if k > l,

t = 〈p1, p2, . . . , pk, 1, . . . , 1〉 if k < l.
(2)

Notice that the set of illegal shape tuples IS forms an equivalence class by this relation.
Furthermore, observe that the shape tuple of a MATLAB expression can be any element
in some equivalence class under ℘. Each equivalence class in the set of equivalence
classes under ℘—called the quotient set of S by ℘ (see [14])—corresponds to a canonical
shape tuple and vice versa.

3 Shape Inferring Framework

The shape inferring framework determines the shape tuple of a MATLAB expression,
given the shape tuples of its operands. Every MATLAB function can have its shape
semantics modelled algebraically by a shape-tuple operator. The shape-tuple operator
(also called the shape-tuple function) gives us the shape of a MATLAB function’s result,
given the shapes of its operands.
To illustrate the actual mechanics of the shape inferring process, we shall consider

the problem of determining the shape of a MATLAB matrix multiply expression. That
is, given the MATLAB statement c ← a*b where the shape tuples of a and b are
s = 〈p1, p2, . . . , pk〉 and t = 〈q1, q2, . . . , ql〉 respectively and where k, l ≥ 2, we shall see
how the shape tuple u = 〈r1, r2, . . . , rm〉 of the outcome c can be computed. We begin
by reprising the shape semantics of the matrix multiply operation in MATLAB [10]:

The function * is defined when one of the operands is a legal array and the
other is a scalar. If both operands are nonscalars, then they must be matrices
such that the extents along the second dimension of a and the first dimension
of b match. Any other combination of shapes produces a run-time error.

The first question that needs to be addressed is what should the rank of the result c
be. By answering this question, we would know the number of array extent components
m in the shape tuple u of c. However, we cannot “accurately” answer this question at
compile time in the sense that the canonical rank will, in the most general setting, be



determinable only at run time. For instance, in the case of c ← a*b, the canonical
rank of c could be anywhere between 2 to max(k, l) depending on the run-time values
of p1, p2, . . . , pk and q1, q2, . . . , ql. Whatever may be the canonical shape tuple of the
result, by virtue of the equivalence relation ℘ introduced in § 2.2, it will be equivalent to
a shape tuple having max(k, l) components. Therefore, we can conservatively determine
the rank of c at compile time as being

R(c) = max(k, l). (3)

3.1 Shape Predicates

The next issue that needs to be addressed is detecting when a MATLAB matrix multi-
ply operation is well defined. For this, we enlist the services of three “shape-predicate”
functions—θ, β and α—that map a shape tuple s to the 0/1 set B. These functions
predicate three conditions that could be associated with a given shape tuple. The func-
tion θ : S 	→ B is called the correctness shape predicate and maps all legal shape tuples
to 1 and all illegal shape tuples to 0. If the shape tuple s indicates a MATLAB matrix,
the matrix shape predicate β : S 	→ B is defined to be 1; otherwise it is 0. If s indicates
a MATLAB scalar, the scalar shape predicate α : S 	→ B is defined to be 1, and 0
otherwise. Note that the terminology of § 2.1 is used here.
From their definitions, each of the shape-predicate functions can be expressed math-

ematically in terms of the shape-tuple components. If u = 〈r1, r2, . . . , rm〉, we have the
following:

β(u) = θ(u)δ(r3 − 1)δ(r4 − 1) . . . δ(rm − 1), (4)

α(u) = δ(r1 − 1)δ(r2 − 1)δ(r3 − 1) . . . δ(rm − 1). (5)

In Equations (4) and (5), δ denotes the discrete Delta function defined on the integer
domain:

δ(i) =

{
0 if i �= 0,
1 if i = 0.

(6)

The way the θ function is connected to the shape-tuple components is dependent on the
actual choice for the two-component illegal shape tuple π = 〈π1, π2〉 in Equation (1),
and does not affect the formulation of our framework. Observe that by Equations (4)
and (5), whenever β(u) or α(u) is 1, θ(u) must also be 1.
Getting back to the MATLAB statement c ← a*b, the correctness shape predicate

θ(u) should be 1 if the MATLAB expression a*b is well formed, and 0 otherwise. When
is a MATLAB matrix multiply well defined? According to the earlier stated semantics,
the outcome of a*b is a legal array so long as a and b are both legal, and either a
is a scalar, or b is a scalar, or a and b are matrices such that the extent of a along
its second dimension equals the extent of b along its first dimension. Couching these
semantics in mathematical language, we get

θ(u) = θ(s)θ(t)
(
1− (1− α(s))(1− α(t))(1− β(s)β(t)δ(p2 − q1))

)
. (7)

It is easy to verify that Equation (7) evaluates to 1 for a well-defined MATLAB ma-
trix multiply operation, and to 0 otherwise. For instance, if a were a scalar and b a
legal array, θ(s), θ(t) and α(s) would all become 1, so that θ(u) would simplify to 1,
irrespective of what β(t), p2 and q1 actually are. We therefore say that a scalar shape
tuple and any legal shape tuple always form a “legal shape-tuple combo” for the *
built-in function.



3.2 Shape Tuple

To formulate the shape tuple of the result, we take advantage of the fact that the shape-
tuple representation synonymously denotes a square diagonal matrix. This allows us to
algebraically calculate the shape tuple of the result using elementary matrix arithmetic
on the shape tuples of the operands. In the case of c ← a*b, we get

u = (1− θ(u))π∗ + θ(u)
(
s∗α(t) + t∗α(s)(1− α(t)) + (s∗Γ1 + t∗Γ2
+ ι∗ − Γ1 − Γ2)(1− α(s))(1− α(t))

)
.

(8)

In the above equation, each of the quantities π∗, s∗, t∗, ι∗, Γ1 and Γ2 designate
R(c)× R(c) = max(k, l)×max(k, l) integer square diagonal matrices. In Γ1, only the
first principal diagonal element is 1 and the rest are 0. In Γ2, only the second principal
diagonal element is 1 and the remaining are 0. The symbols π∗ and ι∗ respectively
represent the two-component illegal shape tuple π = 〈π1, π2〉 and the two-component
scalar shape tuple ι = 〈1, 1〉, appropriately “promoted” to R(c) components by ap-
pending unit extents. The quantities s∗ and t∗ are also obtained by promoting s and
t to R(c) components. By having all the matrices in Equation (8) to be of the same
size (i.e., R(c)× R(c)), the computation in the equation is well defined.

Example 1: Matrix Multiplication
Let us reconsider the previous MATLAB statement c ← a*b, and suppose that the
shape tuples for a and b are s = 〈p1, p2〉 and t = 〈q1, q2, q3〉 respectively. From Equa-
tion (3), R(c) = 3; after promoting the shape tuples s and t to R(c) components, we
get

s∗ =


p1 0 00 p2 0
0 0 1


, t∗ =


q1 0 00 q2 0
0 0 q3


.

From Equation (4), we have β(s) = θ(s) and β(t) = θ(t)δ(q3 − 1). From Equation (5),
we also have α(s) = δ(p1 − 1)δ(p2 − 1) and α(t) = δ(q1 − 1)δ(q2 − 1)δ(q3 − 1). These
values can be plugged into Equation (7) to obtain θ(u) = θ(s)θ(t)

(
1 −
(
1 − δ(p1 −

1)δ(p2 − 1)
)(
1− δ(q1 − 1)δ(q2 − 1)δ(q3 − 1)

)(
1− θ(s)θ(t)δ(q3 − 1)δ(p2 − q1)

))
. Hence,

from Equation (8), we get the shape tuple u of c to be

u =




C
(
p1B + q1A(1−B)

+p1(1−A)(1−B)
)

+(1−C)π1
0 0

0
C
(
p2B + q2A(1−B)

+q2(1−A)(1−B)
)

+(1−C)π2
0

0 0
C
(
B + q3A(1−B)

+(1−A)(1−B)
)

+(1−C)



,

where A = α(s),B = α(t), C = θ(u) and π∗ = 〈π1, π2, 1〉. Thus, if the respective values
for 〈p1, p2〉 and 〈q1, q2, q3〉 are, say 〈3, 2〉 and 〈4, 4, 1〉 at run time, θ(u) will become 0,
giving π∗ for u. The key point is that we now have a compact static representation
for the shape tuple of c that takes into account all possibilities.



4 Exposing an Algebra

The right-hand side of Equation (8) is essentially a linear sum of four terms:

(1− θ(u))π∗, θ(u)s∗α(t),

θ(u)t∗α(s)(1− α(t)), θ(u)(s∗Γ1 + t
∗Γ2 + ι

∗ − Γ1 − Γ2)(1− α(s))(1− α(t)).

It is easy to see that at any one time, only one of these four terms contributes to
the sum. For example, for an illegal shape-tuple combo, θ(u) will be 0 so that only
(1− θ(u))π∗ contributes to the sum. Thus, the expression computed in Equation (8)
will always equal one of the following: π∗, s∗, t∗ or s∗Γ1+ t

∗Γ2+ ι
∗−Γ1−Γ2. Since

these are all clearly members of S, Equation (8) defines a mapping �̈ from S× S to S.
In other words, [S, �̈] forms an algebraic system [14].

4.1 The Substitution Property

Let [X, •] be an algebraic system in which • is a binary operation. An equivalence
relation E on X is said to have the substitution property with respect to the operation
• if for any x1, x2, x′1, x′2 ∈ X, (x1Ex′1) ∧ (x2Ex′2) implies that (x1 • x2)E(x′1 • x′2)
[14]. It can be shown that with respect to the algebraic system [S, �̈], the equivalence
relation ℘ has the substitution property [7]. The substitution property implies that it
does not matter which among the equivalent shape tuples is chosen while computing
Equation (8); we are guaranteed to always arrive at shape tuples that will at worst
differ only by trailing extents of unity.

4.2 A Simpler Algebra

Equivalence relations such as ℘ that satisfy the substitution property with respect to
some algebraic system are usually called congruence relations [14]. Such relations enable
the construction of new and simpler algebraic systems from a given algebraic system.
For example, in the case of [S, �̈], the �̈ operation suggests the simpler operation
�̇ : S℘ × S℘ 	→ S℘ that works directly on the quotient set S℘ of S by ℘. Algebraic
systems such as [S℘, �̇], called quotient algebras [14], preserve many of the properties
of the parent algebras from which they are derived. Because these algebras operate
on equivalence classes, “relationship properties” seen in the parent algebra become
“equality properties” in the quotient algebra. For instance, if s were to denote the
equivalence class of the shape tuple s under ℘, then, for [S℘, �̇], the following two
properties can be shown to hold [7]:

π�̇s = s�̇π = π, (Annihilation) (9)

ι�̇s = s�̇ι = s. (Identity) (10)

5 Shape Inferring for MATLAB’s Built-in Functions

From the perspective of shape determination, it suffices to focus attention on only those
language operators that are built directly into the MATLAB system. These operators,
known as built-in functions, are similar to the primitives in APL, and ultimately com-
prise all MATLAB programs. Once we know how shape inferring works for each of
these functions, the hope is to determine the shapes of arbitrary MATLAB expressions
by composing the shape-tuple functions across the program.



The shape inferring framework presented here is aimed at a particular class of
MATLAB functions that we call Type I. (A detailed discussion of a novel shape-based
taxonomy of MATLAB’s built-in functions is available in [7].) Members of the Type I
class, which appear to be a significant majority in the language, produce results whose
shapes are completely determined by the shapes of the inputs. Common MATLAB
operators, such as matrix multiply and array addition, are Type I; in fact, we have have
been able to so far uncover nine quotient algebras to which are isomorphic the shape
semantics of over 50 Type I built-in functions [7]. These quotient algebras, called shape-
tuple class algebras, are summarized in Table 1. The table displays the various shape-
tuple class operators (such as the �̇ operator discussed in § 4), along with specimen
MATLAB expressions whose shape semantics they capture, as well as certain common
properties that they can be shown to possess (or not possess) [7]. As we shall in § 6,
these simple properties can often be leveraged to make useful inferences even when the
shapes are not statically known.

Table 1. Shape-Tuple Class Algebras

Shape-Tuple Class Operator Identity Associativity Commutativity Idempotent Law

�̇ (e.g., a*b) ι ✗ ✗ ✗

⊕̇ (e.g., a+b, a-b, a.*b) ι ✓ ✓ ✓

∇̇ (e.g., fft(a)) - - - -

�̇ (e.g., aˆb) ι ✓ ✓ ✗

¬̇ (e.g., a’) - - - -

�̇ (e.g., a/b) ✗ ✗ ✗ ✗

◦̇ (e.g., a.\b) ✗ ✗ ✗ ✗

�̇ (e.g., [a; b]) ✗ ✓ ✓ ✗

�̇ (e.g., [a, b]) ✗ ✓ ✓ ✗

6 Comparisons

The following two examples demonstrate the power of the framework. In both of these
examples, the algebraic properties of the shape-tuple operators involved are exploited
to perform a static inference.

Example 2: Comparisons with Rose’s Approach
For the code fragment shown in Figure 1, the static inference mechanism due to Rose
will fail because the extents of the matrices a and b will not be known exactly at compile
time. For both a and b, shadow variables will be generated at compile time to resolve
the shape information at run time. The approach will not be capable of important
static inferences such as (1) if the assignment to d succeeds, then the subsequent
assignment to e will also succeed and (2) that e and d will then have the same shape.
In our framework, we obtain the following two equations corresponding to those two



statements after consulting Table 1:

sd = sc⊕̇sa, (Eg-2.1)

se = sd⊕̇sa, (Eg-2.2)

where sc, sa, sd and se are the shape tuples of c, a, d and e respectively. By substi-
tuting Equation (Eg-2.1) into Equation (Eg-2.2), we obtain

se = (sc⊕̇sa)⊕̇sa,

which by associativity becomes se = sc⊕̇(sa⊕̇sa). By the idempotent law, this sim-
plifies to

se = sc⊕̇sa. (Eg-2.3)

Comparing Equations (Eg-2.1) and (Eg-2.3), we can conclude that se = sd. Thus, if the
assignment to d succeeds (in which case, sd won’t be π), the subsequent assignment to
e will also succeed and e and d will then have the same shape. Therefore at run time,
we need to perform conformability checking only for the first statement. Furthermore,
since e and d will always have the same shape, a simpler version of the ./ operator
could be used to compute f, which incidentally, can be inferred to have the same shape
as e and d.
Observe that this result is deducible by our framework even when a and b are arbi-

trary arrays, not necessarily just matrices. For example, if the last four statements in
Figure 1 were part of a function definition in which a and b were the formal parame-
ters, the framework would still arrive at the above result. Such a generalized inference
is not possible in Rose’s scheme.

Example 3: Inferring in the Presence of Loops
Consider the following code fragment that involves a while loop:

S1: a ← ...;
S2: b ← ...;
S3: while (...),
S4: c ← a.*b;
S5: a ← c;
S6: end;

From statement S4 and Table 1, we get

ui = si−1⊕̇t, (Eg-3.1)

where si, t and ui denote the respective shape tuples of a, b and c in the ith iteration
(i ≥ 1) of the loop. From statement S5, we also have

si = ui. (Eg-3.2)

Hence, by substituting Equation (Eg-3.1) into Equation (Eg-3.2), we arrive at

si = si−1⊕̇t.

Reusing the above, we get

si = (si−2⊕̇t)⊕̇t = si−2⊕̇(t⊕̇t) = si−2⊕̇t.



Proceeding thus, we can arrive at the following:

si = s0⊕̇t for all i ≥ 1. (Eg-3.3)

The result in Equation (Eg-3.3) is important because it leads to the following useful
inferences and optimizations: (1) the code fragment is shape correct if the assignments
to a and b in S1 and S2 are shape correct, and if a and b are initially shape conforming
with respect to the .* built-in function (both of these requirements are expressible by
the single condition s0⊕̇t �= π); (2) the shape of c will remain the same throughout the
loop’s execution; (3) the shape of a can potentially change only at the first iteration
of the loop; and (4) c can therefore be preallocated and a resized before executing the
loop.
It should be emphasized that these deductions are possible even when full knowledge

of the initial shapes of a and b is lacking; such inferences cannot be drawn if Rose’s
approach is used.

7 Handling Control Flow

To handle arbitrary control flow, we consider the SSA representation [3] of a MATLAB
program. By introducing an ancillary variable P , called the shadow-path variable, the
framework could be extended to support the φ construct that is central to the SSA
representation.
Consider a join node c ← φ(a, b) in the SSA form of a MATLAB program. The

shape of c could be inferred as follows:

R(c) = max(R(a),R(b)), (11)

θ(u) = δ(P − h)θ(s) + (1− δ(P − h))θ(t), (12)

u = (1− θ(u))π∗ + θ(u)
(
s∗δ(P − h) + t∗(1− δ(P − h))

)
. (13)

In Equations (12) and (13), P takes on an integer value at run time depending on how
execution flows. Each of the edges in the program’s control-flow graph that merge at
a join node are labeled with integers. At run time, the shadow-path variables assume
these values whenever control flows along those edges. The particular value h in Equa-
tions (12) and (13) is the integer label of the edge between the definition node for a and
the join node in question. Thus, though it may not be possible to exactly determine u
at compile time in such situations, we will still have an exact and compact symbolic
representation for it.

8 Reducing Array Conformability Checks

By enabling the computation of a shape-tuple expression prior to invoking the associ-
ated built-in function, the framework effectively permits an implementation to in-line a
built-in function’s conformability checking code at the call site. This in turn may facili-
tate a reduction in the overall conformability checking overhead through the application
of traditional compiler techniques such as copy propagation, common-subexpression
elimination (CSE) and dead-code elimination.
Figure 2 shows a translation of the code excerpt in Figure 1, with code due to the

framework indicated by a � prefix. The inferences that were made in Example 2 are re-
sponsible for the invocation rdivide= (a version of ./ that expects identically shaped



arguments), and for the assignments se ← sd and sf ← sd. The actual conformability
checks occur through the assert calls—assert (B) tests whether the Boolean expression
B is true at run time and exits if false. Note that for the first four shape tuples in Fig-
ure 2, no run-time assertions need to be made since the correctness shape predicates for
them are statically determinable. The same applies to the correctness shape predicates
θ(sa) and θ(sb) since they can be statically ascertained to be 1 each [7]. After applying
copy propagation to se and sf , two redundant calls to assert

(
θ(sd) = 1

)
are gener-

ated. By applying CSE, these two redundant calls can be identified and eliminated.
Dead-code elimination could then be used on the shape-tuple computations to produce
the final result shown in Figure 3.

� sm ← 〈1, 1〉
m ← round(4*rand+1);
� sn ← 〈1, 1〉
n ← round(5*rand+1);
� sx ← 〈1, 1〉
x ← round(5*rand+1);
� sy ← 〈1, 1〉
y ← round(6*rand+1);

� sa ← 〈m,n〉
a ← rand(m, n);
� sb ← 〈x, y〉
b ← rand(x, y);

� sc ← sa�̈sb; assert
(
θ(sc) = 1

)
c ← mtimes(a, b);
� sd ← sc⊕̈sa; assert

(
θ(sd) = 1

)
d ← plus(c, a);
� se ← sd; assert

(
θ(se) = 1

)
e ← minus(d, a);
� sf ← sd; assert

(
θ(sf ) = 1

)
f ← rdivide=(e, d);

Fig. 2. Checking Code In-lined

m ← round(4*rand+1);
n ← round(5*rand+1);
x ← round(5*rand+1);
y ← round(6*rand+1);

� sa ← 〈m,n〉
a ← rand(m, n);
� sb ← 〈x, y〉
b ← rand(x, y);

� sc ← sa�̈sb; assert(θ(sc) = 1)
c ← mtimes(a, b);
� sd ← sc⊕̈sa; assert(θ(sd) = 1)
d ← plus(c, a);
e ← minus(d, a);
f ← rdivide=(e, d);

Fig. 3. After CSE and Dead-code
Elimination

Note that all of the shape-tuple component arithmetic in the embedded code of
Figure 3 can be efficiently mapped by an interpreter or a compiler to a machine’s
instruction set since they only involve scalar, floating-point calculations.

9 Preallocation

Preallocation is an optimization that can often improve the performance of MATLAB
and APL codes. In [12], an improvement by a factor of 4 was observed for the Euler-
Cromer program in the FALCON benchmark suite, when this optimization was manu-
ally applied. The basic idea behind using the framework to realize this optimization is
to move all shape-tuple computations associated with the body of the loop, outside the
loop. This can be done if all the shape-tuple computations are of the Type I kind, since



in that case, each shape-tuple expression would be dependent only on earlier shape-
tuple expressions. For example, consider the for loop construct shown in Figure 4.
Given for i = expr, ...; end, MATLAB executes the loop n times, where n is
the number of columns in the MATLAB expression expr [10]. With every iteration of
the loop, i will be assigned the successive column vectors in expr . Modifications to
either expr or i within the body of the loop do not change the initially determined
iteration count n. (In that way, these loops resemble the do loops in FORTRAN 77.)

a ← ...; b ← ...;
c ← ...; e ← ...;
for i = e,

a ← [a; b];
c ← a.*c;

end;

Fig. 4. A MATLAB for Loop

� sa ← . . . ; sb ← . . . ; sc ← . . .
� se ← 〈p1, p2, . . . , pk〉
a ← ...; b ← ...; c ← ...; e ← ...;
� A← 0; C ← 0
� for j from 1 to p2 × · · · × pk

sa ← sa�̈sb; sc ← sa⊕̈sc
A← max(A, |sa|); C ← max(C, |sc|)

endfor
� resize a to A elements
� resize c to C elements
for i = e,

a ← [a; b];
c ← a.*c;

end;

Fig. 5. After Preallocation

The first statement in the loop body of Figure 4 will cause the array a to grow; the
construction [a; b] concatenates a and b along the first dimension. If an interpreter
were to directly execute the loop, the array a would be incrementally increased in
size with every iteration of the loop, thereby impacting performance. Instead, we move
the shape-tuple computations associated with these two MATLAB statements—which
are sa ← sa�̈sb and sc ← sa⊕̈sc from Table 1—outside the loop. This is shown in
Figure 5, where for brevity, the conformability checking code has been omitted. The
code hoisting is valid because these shape-tuple computations are only dependent on
the initial values of sa, sb and sc. In addition, we execute the hoisted shape-tuple
computations p2 × · · · × pk times where se = 〈p1, p2, . . . , pk〉, since this is the number
of times that the original loop would actually be executed. In the hoisted code, we also
track the maximum sizes of a and c through the variables A and C; these are updated
in every iteration to the maximum of their current value and the determinant of the
corresponding shape tuple. Thus, once the hoisted code finishes execution, we would
know exactly the sizes to which a and c must be finally grown.
The shape tuples themselves do not arbitrarily grow in size. This is because most

Type I built-in functions exhibit an important characteristic known as the bounded
property [7]: Whenever the ranks of their arguments are bounded by a suitable constant,
the ranks of their results will also be bounded by the same constant. Thus, if we were to
consider the MATLAB statement c ← ϕ(a, b) where ϕ is a Type I built-in function
that exhibits the bounded property, it will be possible to find a constant Rϕ such that
for all R(a) and R(b),

R(a) ≤ Rϕ ∧R(b) ≤ Rϕ =⇒ R(c) ≤ Rϕ. (14)



The bounded property is crucial because it enables us to conservatively estimate at
compile time the ranks of all expressions in programs that comprise solely of these
operators. Such an estimate would be possible even in the presence of general loops
since the arrays produced by these built-in functions will not arbitrarily grow in rank.
Thus, in the case of Figure 4, if k, l, m are the initial ranks of a, b and c respectively,
then during the loop’s execution, the canonical ranks of a and c will not be larger than
max(k, l) and max(k, l,m) respectively [7]. Hence, because the substitution property
is honored by the corresponding shape-tuple functions, we can perform all the shape-
tuple computations in Figure 5 assuming max(k, l,m) components. In this way, none
of the shape tuples have to be grown at all.
Note that in the case of many Type I built-in functions, Rose’s approach could

be adapted to implement preallocation as described above. This is because for this
class of built-in functions, the generated shadow variables will be dependent on only
previously generated shadow variables; thus, the shadow variable code will also be
eligible for code hoisting. However, unlike Rose’s approach, the framework may permit
tighter inferences in specific cases, such as that shown in Example 3.

10 Summary

In this paper, we have described a framework using which the shape of a MATLAB
expression can be expressed exactly and succinctly at compile time. The framework
covers a large class of built-in functions and reveals and exploits the algebras that
underlie each of them. The unique advantage of our framework over other approaches
is that it enables useful static inferences even in the absence of statically determinable
array extents. The framework’s utility is not restricted to MATLAB alone—it could be
applied to infer shapes in other array-based languages such as APL that share many
of MATLAB’s features.
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