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Abstract

In recent times, the MATLAB language has
emerged as a popular alternative for program-
ming in diverse application domains such as sig-
nal processing and meteorology. The language
has a powerful array syntax with a large set of
pre-defined operators and functions that operate
on arrays or array sections, making it an ideal
candidate for applications involving substantial
array-based processing.

Yet, for all the programming convenience that
the language offers, designing a parser and scan-
ner capable of mimicking the language’s syn-
tax has proven to be an acutely difficult task.
The language has many context-sensitive con-
structions, and though numerous front-end im-
plementations of MATLAB and MATLAB-like
languages exist, not much has been discussed re-
garding the efficient compile-time parsing of such
languages or how its syntax impacts the parsing
process.

In this paper, we present the design and
implementation of a compiler front-end for the
MATLAB language. We discuss in detail both
the indigenously designed grammar responsible
for syntax analysis as well as the lexical speci-
fication that complements the grammar. In the
course of our attempts to emulate MATLAB’s
syntax, we were able to unravel certain key is-
sues relating to its syntax, such as the complica-
tions arising in parsing command-form function
invocations within a compile-time environment,
the context-sensitive interpretation of the sin-
gle quote character, and the translation of white
space within matrices into element separators.
The front-end effects a conversion of the original
source to an intermediate form in which state-
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ments are represented as abstract syntax trees
and the flow of control between statements by
a control-flow graph. All subsequent compiler
passes work on this intermediate representation.

The front-end was designed and implemented
as part of the MATCH project, which addresses
the translation of a MATLAB program by a com-
piler onto a heterogeneous target consisting of
embedded and commercial-off-the-shelf proces-
sors.

Keywords: syntax analysis for MATLAB, command-
form function invocations, single quote character, ma-
trices, colon expressions, assignments, control con-
structs

1 Introduction

The MATCH project [1] concerns itself with the task
of efficiently compiling code written in MATLABa for
a heterogeneous target system comprising embedded
processors, digital signal processors (DSPs) and field
programmable gate arrays (FPGAs) [5]. Since the lan-
guage is proprietary, the project also faced the addi-
tional onus of designing the grammar and the lexical
specification for it, in addition to actually implement-
ing the specifications using publically available auto-
matic parser and scanner generators.
MATLAB is a high performance language geared to-
ward technical computing [12]. The language provides
powerful features which enable matrices and arrays to
be efficiently and easily manipulated. The very high-
level nature of these features makes the usage of the
language very intuitive. In fact, the language’s sim-
plicity and ease of use are among the primary reasons

aMATLAB is a registered trademark of The MathWorks, Inc.
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behind its immense popularity in various application
areas. The language’s syntactic simplicity does not
compromise its expressive power; this fact along with
the interactive nature of the system and the fast pro-
totyping that it empowers have made it the language
of choice in research, analysis and development.

1.1 Motivation

From the perspective of syntax analysis, MATLAB of-
fers numerous challenges whose subtlety make them
interesting exercises in parser design. Examples of
these include tackling the single quote character, ef-
ficiently building uniform colon expressions and han-
dling matrix constructs. In fact, some of the language’s
traits make parsing in a compile-time environment a
much more complicated task and this resulted in cer-
tain modifications to the set of language features that
were finally supported by our compiler.

For instance, the syntax for invoking a function in
the command form is fraught with parsing ambiguity
when compiled. Because of dynamic binding, a partic-
ular name could refer to either a variable or a function
depending on the path of execution. As a consequence
(see § 3), in certain cases, it may not be possible to
establish at compile-time whether statements such as

A�+1;

correspond to a binary addition expression or to a
function invocation in the command form. In this pa-
per, the notation � will be used to denote a mixture of
one or more blanks and horizontal tabs.

Another example is the single quote character which
is used both as a complex conjugate transpose oper-
ator as well as a string literal demarcator [12]. This
dual role can lead to lexical matching problems since
the character can be associated with two tokens: the
CTRANSPOSE token (corresponding to the complex con-
jugate transpose operator) or the TEXT token (corre-
sponding to the string literal). Thus, while in the fol-
lowing MATLAB code fragment

Hello=1;

disp�’*Hello’;

the single quote character demarcates a string literal,b

in

Hello=1;

disp=1;

disp’*Hello’;

bThe MATLAB built-in function disp displays its argument.

it denotes the complex conjugate transpose operator.
In the latter code fragment, if there was no assign-
ment to disp before the statement disp’*Hello’, an
error would have resulted. That is, in the absence of
a preceding assignment to disp, disp’*Hello’ would
not have been regarded as a function invocation even
though the built-in function disp is visible at that
point. Alternately, if an assignment to disp had pre-
ceded the statement disp�’*Hello’, an error would
have occurred. This issue is further elaborated in § 5.
Matrices also pose certain non-trivial obstacles to
parsing. The constructions that MATLAB offers to
represent matrices are very user-friendly. Though
quite intuitive, these constructions add significance to
the actual textual layout of the matrix, making the
recognition of these structures much harder for the
parser-scanner duo. For example, the following lines
on the left define a 3 by 3 matrix having 1, 2, and -3+4
as the elements in the first row, 0.1, +.1i and .2 as
the elements in the second row, and a, (3) and b(3)
as the elements in the third row.

[1,�2�-3�+�4,

0.1�+.1i�.2

a�(3)�b(3);]

⇔
[1,2,-3+4;

0.1,+.1i,.2;

a,(3),b(3);]

What should be noted here is that the second element
in the first row is not 2-3+4, that the first element
in the second row is not 0.1+.1i and that the first
element in the third row is not a(3). The lines on the
right show the same matrix constructed using commas
and semicolons.
The above examples serve to demonstrate the com-
plexity of the parsing and scanning process in MAT-
LAB, especially when a formal grammar and lexical
description are not publically available, and when such
a specification has to be designed, duplicating as much
of the language’s observed syntax and behavior as pos-
sible. Some of these problems are peculiar to a com-
piler framework, since in the presence of interpretation,
the control flow is known by the time a statement is
parsed and executed. We mention and discuss these
issues in this paper, describing the solutions that we
have adopted to solve them in our implementation.

1.2 Background

Work in building a front-end began by experimenting
with the Free Software Foundation’s distribution for
GNU Octave [3], a language having much of MAT-
LAB’s syntactic and semantic features. Beginning
with Octave’s grammar, a core set of productions were
retained and modified with many more added to cap-
ture MATLAB’s syntax as faithfully as possible. The
lexical specification was written from scratch.



The front-end currently supports only a proper sub-
set of the MATLAB language. Support for structures
and cell arrays is presently unavailable in the front-
end. Furthermore, the current version of the parser
recognizes expressions, assignments, for loops, if
statements, global declarations, while loops, return
statements and a limited form of function invocations
in the command form. Both functions as well as scripts
can be processed by the front-end. Additional con-
structs such as switch and break statements can be
easily handled with relatively little modification to the
current grammar.
The main tools that were used in implementing
the front-end were bison and flex. Bison is an au-
tomatic parser generator in the style of yacc [9] (see
yacc(1)). Flex—which is a contraction of “Fast Lexi-
cal Analyzer”—is an automatic scanner generator that
was implemented as a rewrite of AT&T’s lex tool [11]
(see lex(1)), with some useful extensions over lex as
well as some incompatibilities. While bison was pri-
marily written by Richard Stallman as part of the
GNU project, flex was authored by Vern Paxson when
at Lawrence Berkeley Laboratory.

1.3 Related Work

Recently, there has been much interest and work
in compiling MATLAB programs into object code
[2, 15, 14, 3]. However, not much has been discussed
regarding the language’s syntactic nuances or how they
may be handled in a compile-time environment. To the
best of our knowledge, we are not aware of any previ-
ously published work that discusses the parsing of the
MATLAB language.
The MATLAB language is in many ways a new in-
carnation of the APL language [13]. Both languages
advocate a functional style of programming, support
a large repository of built-in (or primitive) functions
and treat data in much the same way—that is, as ar-
rays. In fact, there often exist direct correspondences
between APL’s primitive functions and MATLAB’s
built-in functions. A case in point is the ρ operator
in APL. In its monadic role, it resembles MATLAB’s
size built-in function, while in its dyadic role, it be-
haves like MATLAB’s reshape built-in function. An-
other example is the monadic ι APL primitive, also
known as the index generator function. This operator
resembles a specialized version of MATLAB’s colon
built-in function.
However, from the standpoint of syntax analysis, the
two languages present markedly different issues. The
APL language syntax is so regular that it can almost
be recognized by a finite state automaton [7]. On the

other hand, on account of the context-sensitivity of
the MATLAB language, it appears that the language’s
syntax cannot be described by a conventional LALR(1)
specification alone. On the flip-side, the same context-
sensitivity has imparted to the language an intuitive-
ness and richness that is among the chief reasons be-
hind its widespread popularity. Though APL is a rich
language in its own right, the same “regularness” is
probably also the reason behind the language’s noto-
riously cryptic syntactic structure.
In [8], a non-recursive parsing algorithm that uses
a two-symbol lookahead and that shifts between two
parsing states is briefly mentioned for a restricted ver-
sion of the APL language. These restrictions included
disallowing the usage of function names as either vari-
able names or label names, thereby eliminating the
possibility of parsing ambiguities arising from late
binding. Since supporting all of APL’s features would
necessarily entail some run-time parsing, researchers
have proposed systems that rely on “entry-time par-
tial parsers” and “run-time parser completers” [16] to
mitigate the run-time parsing overhead. Though such
methodologies can be carried over to MATLAB, it is
not clear how these techniques can be incorporated in
an optimizing compiler framework. Approaches such
as [17] parse and compile a class of APL programs that
do not utilize features that could dynamically change
the syntactic meaning of the program’s statements.
This approach is probably justifiable in light of em-
pirical evidence that suggests that most APL codes
abstain from using language features that alter the
syntactic structure of the program with each execution
instance [16, 6]. By excluding the support of some of
MATLAB’s language constructs, this is essentially the
philosophy that we also adopt in the MATCH com-
piler.
The complete source code containing the lexical
specification and the context-free grammar is available
as an appendix to [10], a technical report that describes
the design and implementation of the MATCH com-
piler front-end in greater detail.

1.4 Outline

The rest of the paper is organized as follows. In § 2,
we provide an overview of the MATLAB language, de-
scribing in brief some of its lexical aspects, besides in-
troducing the notion of M-files and showing a sample
MATLAB program. Terms such as “command form”
and “command-form invocation” will be explained in
this section. In § 3, we consider the implications of
MATLAB’s command-form function invocation syn-
tax and argue the reasons for supporting a limited



version of that syntax in our compiler. In § 4, we ac-
count for the grammar rules that enable assignments
to matrix-like left-hand sides which may also contain
multiple variables. The dual role played by the single
quote character and the issues that it entails are pre-
sented in § 5. Matrices in MATLAB and the manner
in which commas are inserted to separate elements are
explained in § 6. In § 7, we show how the syntax di-
rected translation process can be leveraged to parse all
colon expressions to a uniform full ternary tree form.
Finally, the structure of the conditional statement as
well as the shift-reduce conflicts that its grammar rules
give rise to are discussed in § 8.

2 Language Preliminaries

A MATLAB program basically consists of a sequence
of statements. A statement in MATLAB could be a
function call, an expression, an assignment, a control
construct or a global declaration. For example, the
statement

disp(’Hello�World!’);

invokes the built-in function disp that displays its ar-
gument on the standard output. The disp function
does not return a value; functions that do can be used
to build expressions. For instance,

r=rand(2)+1;

produces a 2 × 2 matrix of random values between 1
and 2 and assigns the result to the variable r. This is
an example of an assignment statement.

2.1 Command/Function Duality

In MATLAB, functions can be invoked in two ways.
In addition to the typical way of calling a function as
shown earlier with the disp and rand built-in func-
tions, MATLAB also allows for command-form func-
tion invocations. The disp(’Hello�World!’) exam-
ple shown above could have been rewritten as

disp�’Hello�World!’;

and the effect would have been the same. In general,
any function f that accepts a string argument e can be
invoked in the functional form (i.e., as f(e)) or in the
command form (i.e., as f�e) [12]. In the latter form,
the invocation is called a command-form function in-
vocation of f .

2.2 Lexical Specification Overview

A MATLAB identifier consists of a letter followed by
zero or more underscores, letters or digits. A MAT-
LAB numeric quantity can be free of a decimal point
and an exponent, or consist of either a decimal point
or an exponent or both. In the MATCH lexical spec-
ification, the name definitionc INTEGER represents nu-
meric quantities that are free of a decimal point and
exponent; all other numeric quantities correspond to
the DOUBLE name definition. For example, the char-
acter sequences 1e-2 and 1. associate with the name
definition DOUBLE, while the character sequence 1 as-
sociates with the name definition INTEGER. Figure 1
formally describes some of the name definitions used
in the lexical specification.

HSPACE [ \t]

HSPACES {HSPACE}+

NEWLINE \n|\r|\f

NEWLINES {NEWLINE}+

ELLIPSIS \.\.\.

CONTINUATION {ELLIPSIS}[^\n\r\f]*{NEWLINE}?

COMMENT \%[^\n\r\f]*{NEWLINE}?

IDENTIFIER [a-zA-Z][_a-zA-Z0-9]*

DIGIT [0-9]

INTEGER {DIGIT}+

EXPONENT [DdEe][+-]?{DIGIT}+

MANTISSA ({DIGIT}+\.)|({DIGIT}*\.{DIGIT}+)

FLOATINGPOINT {MANTISSA}{EXPONENT}?

DOUBLE ({INTEGER}{EXPONENT})|{FLOATINGPOINT}

NUMBER {INTEGER}|{DOUBLE}

IMAGINARYUNIT [ij]

Figure 1: Name Definitions

In MATLAB, there exist a couple of situations in
which horizontal spaces become significant. A hori-
zontal space is either a blank or a horizontal tab and
is denoted by the name definition HSPACE shown in Fig-
ure 1. Thus, the symbol � represents the lexical pat-
tern matched by the HSPACES name definition, which is
at least one horizontal space. Apart from functioning
as token demarcators and matrix element separators,
horizontal spaces can also influence the interpretation
of succeeding character sequences. In the MATCH
compiler front-end, they are cast away by the scan-
ner, so that the parser sees a token stream free of any
horizontal space.
Input lines in MATLAB can be continued onto mul-

cName definitions are basically shorthands that simplify the
main scanner specification (see flex(1)).



tiple lines. This “breaking” of long statements is ac-
complished by using a contiguous sequence of three
periods, subsequently followed by a newline, carriage-
return or form-feed character (i.e., a NEWLINE lexical
pattern). Everything beginning from the ellipsis until
and including the NEWLINE character—or until the end
of the input—are ignored.d Comments likewise begin
at a percent character (%) and continue until a NEWLINE
character, or until the end of the input.

2.3 M-files

Statements in a MATLAB program are separated from
each other by delimiters. Delimiters are sequences con-
sisting of an arbitrary mixture of comma (‘,’), semi-
colon (‘;’) and LINE tokens. Input files that contain
code written in MATLAB are called M-files. M-files
can either be functions (which may accept input ar-
guments and which may return output arguments), or
scripts (which neither accept inputs nor produce out-
puts). The former are often elaborately referred to
as function M-files to distinguish them from built-in
functions. Besides being and not being available in
files, there is no difference between the two. The main
distinction between functions and scripts is that while
the former execute in a workspace independent of the
caller’s environment, the latter execute in the caller’s
workspace.
Syntactically, functions and scripts are the same, ex-
cept that the first non-empty line in a function must
be the function definition line [10]. A LINE token,
which is returned by the lexical analyzer to the parser
whenever a COMMENT or a NEWLINES lexical pattern is
scanned by it, signifies an empty line. A program file
that is a script may either contain optional delimiters,
or contain a sequence of statements optionally pre-
ceded by delimiters. Additionally, external programs

dAt the time of this writing, the complete line continuation
specifics for MATLAB (in both versions 5.0 and 5.2) seemed
non-uniform and inconsistent. This is because in certain cases,
the line continuation sequence behaved as a token demarcator,
while not in other cases. For instance, while the following lines

disp1=2;

disp...

1

resulted in the value of disp1 being displayed, the following lines

disp1=2;

a=disp...

1

resulted in an error situation when an assignment to a was
attempted. More esoteric behavior was observed when the
line continuation sequence occurred within matrices and among
MATLAB keywords such as global and for.

can be made to act like MATLAB functions using the
shell escape mechanism [12].

2.4 Expressions

Expressions in MATLAB are composed as operations
on subexpressions. Subexpressions could be functions
returning values, results of an array section operation,
identifiers, matrices, string literals and quantities that
could either be numeric or imaginary. The MATCH
lexical specification enables two types of numeric quan-
tities to be identified (INTEGER and DOUBLE). In addi-
tion, the scanner identifies any number (i.e., NUMBER)
followed immediately by the imaginary unit as an
imaginary quantity. The imaginary unit is specified
by either of the characters i or j. This is a lexical
match and is not affected by any reaching definition
against the variables i or j. For instance, the charac-
ter sequence 2j will always be considered as an imagi-
nary quantity irrespective of any preceding definitions
against the variable j.

% Create a 1024 x 1024 array, initialized to 0.

a(1:1024,1:1024)=0;

% Set all values along the first column to 1+i.

a(:,1)=1+i;

%

% The Jacobi iteration.

%

a(2:1023,2:1023)=(a(1:1022,2:1023) ...

+a(3:1024,2:1023)+a(2:1023,1:1022) ...

+a(2:1023,3:1024))/4;

Figure 2: The Jacobi Iteration

To illustrate, we show a sample MATLAB code frag-
ment that performs the well-known Jacobi iteration in
Figure 2. The Jacobi iteration executes a four-point
stencil computation in which the values at each inte-
rior grid point (1022× 1022 in all) are updated as an
average of the values associated with its four cardi-
nal neighbors. This averaging operation is succinctly
expressed using MATLAB’s vector notation. In the
above code fragment, the right-hand side of the last as-
signment statement adds the values at corresponding
grid points in four conforming array sections and aver-
ages the result. The assignment to another conforming
array section achieves the desired update action.



3 Commands

As mentioned earlier, functions can either be invoked
in the functional form or in the command form in
MATLAB. For instance, we could invoke the built-
in function type either like type(’rank’) which cor-
responds to the functional form, or like type�rank
which corresponds to the command form. A statement
such as type�’rank’ also qualifies as a command-form
function invocation and is equivalent to type�rank.
A command-form invocation of a function occurs
whenever the first token on the MATLAB input line is
an identifier that corresponds to a function, and if the
second token is separated from the first by horizontal
spaces. The only exception to this rule is when the
second token is an opening parenthesis. In this case,
the invocation corresponds to a normal function call.
For example, the following lines

disp�1+2;

disp�(1+2);

display 1+2 and 3 as their respective results.
Therefore, if A.m is a function M-file, the statement
A�+1 results in an attempt to invoke the function M-
file with the string argument +1. In fact, A.m must
be defined as a function M-file that accepts at least
one input argument for this particular line of input to
work; otherwise MATLAB complains of an error.

command_form : name text_list

;

text_list : TEXT

| text_list TEXT

;

name : identifier

;

identifier : IDENTIFIER

;

Figure 3: Productions for command form

In the MATCH compiler, sentences that derive from
the command form non-terminal shown in Figure 3
require arguments to the function to be explicitly
quoted.e That is, only strings such as type�’rank’

eWe shall present grammar rules in a format compliant with
bison’s input syntax (see bison(1)). In general, non-terminal
symbol names will be in lowercase and terminal symbol names
will be in uppercase.

reduce to the command form non-terminal in the com-
piler front-end. Sentences such as type�rank are not
recognized as command-form function invocations and
result in a parse error. The MATLAB code fragment
in Figure 4 provides the reason behind the imposition
of this constraint.

% Suppose that a function M-file called

% A.m exists in the MATLAB M-file search

% path.

if (rand > 0.50)

A=1;

end;

A +1;

Figure 4: A Syntactically Ambiguous Code Fragment

Control can reach the statement A�+1 either after
executing the control construct—in which case, A will
be treated as a variable—or without executing the if
statement body—in which case, A will be regarded as
a function. Thus, on reaching the statement A�+1, it
is not clear to the compiler whether to parse the state-
ment as a function invocation in which the function A
is invoked with the string literal +1 as the only argu-
ment, or as the binary addition of the variable A with
the numeric constant 1. Hence, both the abstract syn-
tax trees (ASTs) shown in Figure 5 qualify as possible
parse trees for the above statement.

A

’+1’

+

A 1

Figure 5: Candidate Parse Trees

It must be emphasized that this is a parsing prob-
lem in addition to an inferencing one. This problem
is peculiar to the compiler and the MATLAB inter-
preter is not faced with the same predicament because
the parsing of A�+1 begins only after control reaches
it, by which time the parser is aware of the nature of
A. An interesting sidebar to this discussion is that if
A�+1 were the only statement in the above code frag-
ment and if A.m were a function M-file in the MAT-
LAB search path, MATLAB always parses it into the
left AST shown in Figure 5. That is, the statement



is always considered to be a command-form function
invocation irrespective of whether A accepts an input
argument and whether A produces a return value. On
the other hand, if the statement were A+1, MATLAB
will always parse it into the right AST shown in Fig-
ure 5, irrespective of whether A accepts an input ar-
gument and whether A returns a value. In this case,
the interpretation is that the value returned by an in-
vocation of the function A without arguments is added
to the numeric constant 1. Hence, if it turns out that
A does not return a value, the execution results in an
error.
The problem cited here is essentially one stemming
from delayed binding. In other words, it may not be
possible to conclusively say whether the A in A�+1 is
a variable or a function M-file until run-time. In that
way, the problem has an analogy in APL. Expressions
such as e+f in APL could be statically ambiguous if the
binding of e is not known until run-time. Depending
on whether e is bound to a monadic defined function or
a variable, the expression could mean either e(+(f))
or (e)+(f).
A strategy by which our compiler could have sup-
ported the interpreter’s full-fledged command-form
function invocation syntax would have been by cre-
ating and maintaining both ASTs against a statement
when in doubt. Apart from the fact that the parser
would now have to detect such syntactic ambiguities,
the creation and maintenance of two ASTs would have
further complicated analysis by subsequent compiler
passes. Hence, it was decided to eliminate the po-
tential for such parsing ambiguities by supporting a
limited version of MATLAB’s command-form function
invocation syntax, and by flagging ambiguities to the
programmer.

4 Assignments

Assignments in MATLAB come in three variations.
The first variation allows the assignment of an arbi-
trary expression to a variable or an array section. As
an example,

clear a;

a(1:2:3,1:3) = 2;

creates a 3 by 3 matrix against the variable a having
the element 2 along the first and third rows and the
element 0 in the remaining rows and columns. The
second variation is essentially the same as the first,
except that the variable or array section syntax is en-
closed within a pair of box brackets. For instance, the
previous example could have also been written as

clear a;

[a(1:2:3,1:3)] = 2;

and the same value would have been assigned to a.
The third form allows a function to return more than
one value. In this form, the right-hand side of the
assignment is restricted to be a function invocation.
This is illustrated in the following example using the
built-in function size.

[x y] = size(1);

4.1 Left-hand Sides

To describe the above three varieties of assignment
statements, the productions shown in Figure 6 can
be used. The non-terminals s assignee matrix and
m assignee matrix represent left-hand sides that are
enclosed within a pair of box brackets. While the for-
mer non-terminal captures single value left-hand sides,
the latter expands to multiple value left-hand sides.
These non-terminals are formally elaborated in Fig-
ure 7.

assignment : reference

’=’ expr

| s_assignee_matrix

’=’ expr

| m_assignee_matrix

’=’ reference

;

Figure 6: Productions for assignment

Do we need the non-terminals s assignee matrix
and m assignee matrix shown in Figure 7 to de-
note box-bracketed left-hand sides? Can’t we rely
on productions which expand to matrices to repre-
sent such left-hand side constructions? The answer
is no. Though the non-terminals s assignee matrix
and m assignee matrix correspond to sentences that
largely resemble matrices, they are not exactly the
same. Both sentences consist of a sequence of one
or more elements that are separated from each other
by horizontal spaces or commas and that are en-
closed within a pair of box brackets. But that is
where the resemblance stops. First, while matri-
ces allow for an optional comma after the last el-
ement, box-bracketed left-hand sides do not. Sec-
ond, semicolons and LINE token delimiters cannot be
used to separate elements in a box-bracketed left-hand
side. Third, the elements in an s assignee matrix or
m assignee matrix sentence can only be variables or
array sections. Fourth, any expression may be assigned



reference : name

| name

’(’ argument_list ’)’

;

name : identifier

;

identifier : IDENTIFIER

;

argument_list : ’:’

| expr

| ’:’ ’,’ argument_list

| expr ’,’ argument_list

;

s_assignee_matrix : LD reference RD

;

m_assignee_matrix : LD reference

’,’ reference_list RD

;

reference_list : reference

| reference

’,’ reference_list

;

Figure 7: Productions for the Left-hand Side

to an s assignee matrix whereas the same is not
true for an m assignee matrix. Fifth, assignments to
empty matrices are invalid. Notice that though the last
three differences could have been handled by incorpo-
rating semantic checks in the action part of the matrix
productions, the first two differences are purely syntac-
tic and warrant the introduction of new non-terminals
to describe such left-hand sides.
The non-terminal expr in the assignment and
argument list productions corresponds to a MAT-
LAB expression (see § 2.4). It must be noted that
the MATCH grammar does not permit assignments to
be a part of expressions. In other words, statements
such as (a=1)+1 are not allowed. This restriction is in
accordance with that observed in MATLAB.

4.2 The LD and RD Tokens

The tokens LD and RD shown in Figure 7 actually cor-
respond to the lexemes [ and ] respectively. These
lexemes also correspond to the tokens ‘[’ and ‘]’ that

the lexical analyzer returns when matrices are encoun-
tered (see § 6). Hence, why do we need to distinguish
the [ and ] lexemes in these two situations?

Scan next lexeme.

Start.

Is
[

the scanned
lexeme?

matching ]
Scan ahead to

in the input.

Relinquish read-ahead input.

Return [
to parser.

Relinquish read-ahead input.

Relinquish read-ahead input.

Return LD
to parser.

Return [
to parser.

Stop.

N

Is

the next
� ==

lexeme?

Is

the next
lexeme?

� =

Y

N

Y

N

Y

Figure 8: The LD, ‘[’ Tokens

If the grammar rules for s assignee matrix and
m assignee matrix had used the ‘[’ and ‘]’ tokens to
enclose the elements, a reduce-reduce conflict would
have arisen. To illustrate this, suppose that the to-
ken stream seen so far by the parser were ‘[’, ‘a’ and
‘]’. Then, the parser could either be in the mid-
dle of an assignment or an expression. That is, un-
til the ‘=’ token is seen, the parser could either be
in the midst of a sentence that ultimately reduces to
the s assignee matrix or m assignee matrix non-
terminals, or in the midst of a sentence that ultimately
reduces to a matrix. The default course of action
taken by the parser in such situations cannot be re-
lied on, since a reduction to the s assignee matrix or
m assignee matrix non-terminals must prevail in an
assignment context, while a reduction to the matrix
non-terminal must prevail in an expression context.
To remedy the above problem, the scanner returns
a separate pair of tokens whenever an assignment to
a box-bracketed structure is detected. The way this is
done is illustrated in Figure 8 and Figure 9. The steps
shown in these flow charts are implemented in the lex-
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to parser.
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� =

N

Y

N

Return RD
to parser.

Return ]
to parser.

Stop.

Y

Figure 9: The RD, ‘]’ Tokens

ical specification. For instance, to determine whether
an LD or ‘[’ token needs to be returned on encountering
the [ lexeme, the scanner reads ahead until a match-
ing box bracket is found. This read ahead is performed
in the action part of the \[ extended regular expres-
sion. If a matching closing box bracket is not found,
the lexical analyzer returns the token LEXERROR since
this is an error situation. If a matching closing box
bracket is found, the scanner determines whether the
next lexeme in the input is � ==. This is because while
[a,b]=size(1) is an assignment to a box-bracketed
structure, [a,b]==size(1) is an expression. Here we
use the symbol � to denote zero or more horizontal
spaces. If the next lexeme is indeed � ==, then the
opening box bracket is part of a matrix that occurs on
the left-hand side of an equality comparison expres-
sion. Thus, the scanner needs to return the ‘[’ token
in this situation. If the next lexeme in the input stream
is instead � =, an assignment to a box-bracketed struc-
ture is detected. Therefore, the scanner returns the LD
token in this case. If some other sequence of charac-
ters occurs as the next lexeme in the input stream, the
scanner once again returns the ‘[’ token. In all cases,
the lexical analyzer returns control to the parser only
after relinquishing the characters that were read ahead
back to the input.

5 The Single Quote Character

The actual role played by the single quote character is
determined by horizontal spaces that precede it. In

a non-matrix scenario, horizontal spaces within ex-
pressions are usually inconsequential. For instance,
the MATLAB expression statements 1+2 and 1�+2
and 1�+�2 are all the same, and it does not matter
whether horizontal spaces surround the binary plus
operator. However, there are situations wherein hori-
zontal spaces within expressions do become significant.
Apart from the obvious case of a matrix in which hor-
izontal spaces serve as element separators, the case
of the single quote character is another interesting in-
stance where horizontal spaces actually determine how
a character sequence must be interpreted.

Consider the following character sequence: A�’+1’;.
And suppose that the front-end has been able to as-
certain that the identifier A in the above character se-
quence actually corresponds to the function M-file A.m.
In addition, let the function definition line in A.m spec-
ify a single input argument and a single output argu-
ment. Therefore, the function M-file can be invoked
either with one argument or no arguments. Conse-
quently, how should the parser-scanner pair process
the above character sequence? Should the lexical ana-
lyzer return an IDENTIFIER token followed by a TEXT
token finally followed by a semicolon token, so that
the parser recognizes a command-form invocation of
a function—or should the lexical analyzer return the
token stream IDENTIFIER, CTRANSPOSE, ‘+’, INTEGER,
CTRANSPOSE, ‘;’ so that the parser recognizes an ex-
pression? Should the presence of the horizontal spaces
between the characters A and ’ be ignored so that the
character sequence A’+1’; is also treated in the same
way?

MATLAB interprets the single quote character by
always applying a simple rule: if a single quote
character immediately follows an INTEGER, DOUBLE,
IMAGINARY, IDENTIFIER, TRANSPOSE, CTRANSPOSE, ‘]’
or ‘)’ token, it is regarded to be the CTRANSPOSE to-
ken. Otherwise, it is considered to be the starting
demarcator of a string literal. Notice that this rule
resolves the above mentioned ambiguity. That is, the
character sequence A�’+1’; is scanned into the token
stream IDENTIFIER, TEXT, ‘;’ by this rule, whereas
the same rule causes the character sequence A’+1’;
to be scanned into the token stream IDENTIFIER,
CTRANSPOSE, ‘+’, INTEGER, CTRANSPOSE, ‘;’. Notice
also that by this rule, the character sequence 1�’; pro-
duces a syntax error.f

The MATCH scanner reproduces MATLAB’s single
quote semantics by using start conditions. The start
condition mechanism essentially enables the scanner to
“activate” only a subset of the rules in its lexical speci-

fThis is quite contrary to what one would intuitively expect!



fication depending on its current state. In the absence
of explicitly declared start conditions, the scanner al-
ways exists in a single state which is associated with
the start condition INITIAL. A scanner can be tran-
sited from one start condition to another by BEGIN
commands (see flex(1)). Extended regular expres-
sions that are prefixed by the construction <SC> where
SC is a declared start condition, are active only when
the scanner is in the start condition SC. Extended regu-
lar expressions that are not prefixed by <SC> are either
active or inactive in the start condition SC depending
on whether the start condition is inclusive or exclusive.
The predefined start condition INITIAL is inclusive.

To imitate MATLAB’s single quote semantics, the
scanner is always in one of two start conditions. These
are referred to as INITIAL and QuoteSC in the lexi-
cal specification. When in INITIAL, the scanner re-
gards the single quote character as the demarcator of
a string literal. When in QuoteSC, the scanner con-
siders the single quote character as the CTRANSPOSE
token. We thus have the extended regular expressions
<INITIAL>’[^’\r\f\n]*’ and <QuoteSC>’ whose ac-
tion parts return the tokens TEXT and CTRANSPOSE re-
spectively. Since a single quote character immediately
after an INTEGER, DOUBLE, IMAGINARY, IDENTIFIER,
TRANSPOSE, ‘]’, ‘)’ or CTRANSPOSE token should be re-
garded as the CTRANSPOSE token, the action parts of
the extended regular expressions responsible for each
of the above tokens except the last contain a BEGIN
command that changes the start condition to QuoteSC.
Once the scanner enters the QuoteSC start condition,
the only way it can exit this start condition—and thus
enter the start condition INITIAL—is if it scans lex-
emes such as ,, ( or *.g More importantly, a horizon-
tal space in the input causes the scanner to enter the
start condition INITIAL. Thus, while the character se-
quence A’’ is scanned by the lexical analyzer into the
token stream IDENTIFIER, CTRANSPOSE, CTRANSPOSE
(and not into the token stream IDENTIFIER, TEXT),
the character sequence A�’’ is scanned into the to-
ken stream IDENTIFIER, TEXT (and not IDENTIFIER,
CTRANSPOSE, CTRANSPOSE).

Finally, it must be mentioned that MATLAB consid-
ers the character sequence .’ to be the transpose oper-
ator only if it is not preceded by horizontal spaces. For
example, when provided with the character sequence
A�.’+1’, MATLAB parses it into the token stream
IDENTIFIER, TEXT. In this case, the lexeme associated
with the TEXT token is .+1.

gFor a full list, please refer to the lexical specification in [10].

6 Matrices

The syntactic constructs that MATLAB offers to enter
matrices are arguably among the most powerful fea-
tures of the language. They enable a programmer to
specify a matrix in the most intuitive manner possible.
For example,

[1�2

3�4]
⇔ [1,2;

3,4]

indicates a 2 by 2 matrix in MATLAB in which el-
ements in the first row are 1 and 2, while those in
the second row are 3 and 4. The language also pro-
vides the programmer the flexibility of using commas
as demarcators among row elements, and semicolons as
row separators. Thus, while the lines on the left show
the matrix constructed by using horizontal spaces and
newlines, the lines on the right show the same matrix
constructed by using commas and semicolons instead.
While the ability to input a matrix by visually laying
out its elements enhances the user-friendliness of the
MATLAB language, it considerably complicates the
design of a front-end for it. In the MATCH compiler
front-end, the parser does not see any horizontal space.
By working in tandem with the lexical analyzer, com-
mas are either inserted between the yet to be scanned
matrix elements, or the horizontal spaces among them
are converted to commas.
Within matrices, commas can be potentially in-
serted after a numeral, an identifier, an imaginary
quantity, a string literal, a closing parenthesis ()), a
transpose operator (.’), a complex conjugate trans-
pose operator (’) or a closing box bracket (]). We say
potentially because a comma insertion is not implied
in all cases. For instance, while [1�+2] and [1,+2]
are equivalent in MATLAB, the same is not true for
[1�+�2] and [1,+2]. In MATLAB, [1�+�2] is equiv-
alent to [1+2].

6.1 Bracket Nesting

Since horizontal spaces are stripped from the input by
the time the parser gets to process the token stream,
the front-end must know when these spaces have to
be treated specially, and when they can be simply ig-
nored. In the MATCH compiler front-end, this special
treatment is indicated by what is called the bracket
nesting of each character in the input. The bracket
nesting (BN) of a character is defined to be the to-
ken corresponding to the last unmatched opening box
bracket or opening parenthesis seen thus far in the in-
put. The BN of a character can therefore be ‘[’, LD,
‘(’ or “undefined”. We denote an undefined BN by



φ. For example, given the input sequence [x(1)]=2,
the character BNs are φ, LD, LD, ‘(’, LD, φ, φ and φ
respectively. That is, while 1 has a BN of ‘(’, all the
other characters within the box brackets have a BN
of LD. The remaining characters in the given input se-
quence have undefined BNs. We refer to the BN of the
character currently being scanned by the lexical ana-
lyzer as the current bracket nesting (CBN) of the input
stream. We thus see that horizontal spaces are signif-
icant only when their BN is either ‘[’ or LD. Hence,
while [1�+2] is equivalent to [1,+2], [(1�+2)] (or
[(1+�2)] or [(1�+�2)]) is the same as [(1+2)].

Comma insertion guided by Table 1.

expr → expr TRANSPOSE

expr → expr CTRANSPOSE

reference → name ’(’ argument list ’)’
identifier → IDENTIFIER

matrix → ’[’ rows ’]’

expr → TEXT

expr → IMAGINARY

expr → ’(’ expr ’)’

Reductions performed by the parser.

Y N

expr → DOUBLE

Insert comma in input, if required.

expr → INTEGER

Continue normal processing.

‘[’ or LD

the CBN?

Is

Figure 10: Comma Insertion Among Matrix Elements

Since the potential to insert a comma exists when-
ever the CBN is either ‘[’ or LD, the input is read
ahead in this situation with the aim of inserting a
comma. More precisely, the input is read ahead when
the CBN is either ‘[’ or LD and when the parser recog-
nizes a numeral, an imaginary quantity, a string literal,
a parenthesized expression, a transpose expression, a

conjugate transpose expression, a variable, a matrix,
a function call or an array indexing expression. This
fact is graphically shown in Figure 10.

Table 1: Comma Insertion Schematics

Last Processed Token Next Lexeme Prefix

Before After
� , ,

� ; ;

� ] ]

� * *

� ^ ^

� : :

� < <

� > >

� = =

� & &

INTEGER, � | |

DOUBLE, � / /

IMAGINARY, � \ \

TEXT, � � �

‘)’, ( ,( or (
CTRANSPOSE, �( ,( or (
TRANSPOSE, ’ ’

‘]’, .’ .’

IDENTIFIER �.’ �.’
� .* .*

� .^ .^

� ./ ./

� .\ .\

� ~= ~=

+ +

- -

�+� +�
�-� -�
� � ,�

6.2 The Comma Insertion Mechanism

The next issue that needs consideration is the actual
comma insertion specifics. Where in the unscanned in-
put, and under what circumstances should a comma be
inserted? For instance, given the input character se-
quence [1�2], the front-end must insert a comma after
the 1, effectively converting the character sequence to
[1,2]. Notice that the lexeme 1 corresponds to the
INTEGER token. On recognizing this token, the parser



applies the expr → INTEGER production without con-
sulting a lookahead.h Since the CBN is ‘[’ when this
reduction occurs, the front-end reads ahead, convert-
ing the yet to be scanned character sequence �2] to
,2]. In this way, it is ensured that the comma token
(‘,’) will be the next token that the scanner would
return to the parser, rather than the INTEGER token.

Table 1 summarizes all the cases that need to be
considered for comma insertion. For instance, the first
line of this table states that the front-end converts
[a�,b] to [a,b]. Similar remarks apply to the next
thirteen lines in the table. To recapitulate, � de-
notes zero or more horizontal spaces. While the �
symbol in Table 1 indicates a newline, carriage return,
form-feed or percent character, the � symbol repre-
sents a single horizontal space character. The “Next
Lexeme Prefix” column in this table refers to the ini-
tial part of the next lexeme that the lexical analyzer
would scan, before and after comma insertion; while
the “Before” sub-column denotes this initial part be-
fore comma insertion, the “After” sub-column repre-
sents the initial part after comma insertion. Observe
that the �( lexeme prefix gets converted to ( or ,( de-
pending on whether the current bracket nesting is LD
or not respectively. That is, while MATLAB regards
[x�(2)] as being [x,(2)] (and not [x(2)]), it treats
[x�(2)]=3 as an assignment to [x(2)]. Furthermore,
the ( lexeme prefix remains as ( or gets converted to
,( depending on whether the last processed token is an
IDENTIFIER token or not respectively. That is, while
[x(2)] remains unchanged, [1(2)] gets converted to
[1,(2)]. The last line in Table 1 denotes the comma
insertion action for all other lexemes whose prefixes do
not match any of the preceding rows; in this case, a
comma is inserted before the first non-horizontal space
character.

A special exception to the rules documented in Ta-
ble 1 occurs when the last processed token is either
an INTEGER or a DOUBLE and when the first character
in the unscanned input is alphabetic. This is because
character sequences such as [1a] would otherwise be
parsed as [1,a]. When provided with this charac-
ter sequence, MATLAB complains with the message
’Missing operator, comma, or semi-colon.’ af-
ter matching the lexeme 1. Yet, when provided with
character sequences such as [1.1.1], [a.1], [1[1]]
and [1i1], MATLAB parses them in the “expected”
way—as [1.1,.1], [a,.1], [1,[1]] and [1i,1] re-
spectively. This “anomalous” behavior was noticed

hIn fact, the grammar has been written in such a way so that
a lookahead is not consulted when any of the productions shown
in Figure 10 are applied.

only when a lexeme corresponding to the IDENTIFIER
token immediately followed a lexeme corresponding to
the INTEGER or DOUBLE tokens.

7 Colon Expressions

Colon expressions are a useful way to succinctly de-
scribe row vectors in which the elements form an arith-
metic progression. For example, the statement

a=1:4;

assigns the same value to a as does the assignment

a=[1,2,3,4];

A stride could also be provided, so that a=1:2:4 is
equivalent to a=[1,3]. More precisely, colon expres-
sions come in two basic flavors. The binary construc-
tion α : β describes the row vector

(α, α + 1, α+ 2, . . . , β)

and the empty matrix otherwise. The ternary con-
struction α : σ : β describes the row vector

(
α, α + σ, α+ 2σ, . . . , α+ �β − α

σ
�σ
)

if α ≤ β ∧ σ > 0, or α < β ∧ σ < 0, and the empty
matrix otherwise. As an example, 2:4 results in a row
vector with three elements: 2, 3 and 4. On the other
hand, 2:0:4 produces the empty matrix as the result.

colon_expr : expr ’:’ expr

| colon_expr ’:’ expr

;

Figure 11: Productions for colon expr

The colon operator (‘:’) is left associative. Thus,
constructions such as 1:2:2:2 and 1:2:2:2:2 corre-
spond to (1:2:2):2 and (1:2:2):2:2 respectively.
When evaluated, the former yields a row vector with
two elements, whereas the latter produces a scalar.
In a colon expression, the start, stride (if present)
and stop values must all be scalars. If any of these
are not scalars, MATLAB issues a warning and con-
siders their respective first elements to evaluate the
colon expression. Thus, when provided with the in-
put 1:2:3:4:5, MATLAB issues an alert (’Warning:
COLON arguments should be real scalars.’) and
produces a row vector having 1 and 5 as its elements.



To simplify the processing of colon expressions by
subsequent compiler passes, the MATCH parser al-
ways produces a full ternary tree as the AST of a
colon expression. In other words, the parser retains
colon expressions of the form α : σ : β and converts
colon expressions of the form α : β to α : 1 : β. It
should be stated here that a colon expression is differ-
ent from a colon “atom”. The latter is employed in
array indexing operations to denote the entire extent
of a particular array dimension. An example of a colon
atom is in the input a(:).
The grammar rules colon expr → expr ’:’ expr

and colon expr → colon expr ’:’ expr shown in
Figure 11 give rise to a shift-reduce conflict. This is
because if colon expr is the sentential form thus far
seen by the parser and if ‘:’ is the lookahead token,
the parser could either choose to shift the lookahead
token so as to subsequently apply the colon expr →
colon expr ’:’ expr production, or choose to imme-
diately apply the expr → colon expr production and
later the colon expr → expr ’:’ expr production.
However, to identify the stride and stop values of colon
expressions having more than two operands, the parser
should perform the shift action rather than the reduce
action. This is in fact the default course of action in the
event of a conflict. By doing so, the syntax-directed
translation process is exploited to efficiently determine
whether the expression following a colon operator is a
stride or stop value.
We could have replaced the above pair of gram-
mar rules by the single production expr → expr ’:’

expr and the parser would have supported the same
colon expression syntax. In fact, this replacement
would have eliminated the previously mentioned shift-
reduce conflict. However, casting the recognized colon
expression to the α : σ : β form becomes a compli-
cated affair involving the maintenance of some kind of
book-keeping information, and/or the allocation and
deallocation of temporary expressions.

8 Control Statements

The control constructs that are currently supported in
the MATCH compiler enable the conditional (if) or
iterative (for, while) execution of a body of state-
ments. From a syntactic perspective, these statements
do not pose a problem except that the grammar rules
responsible for each of these constructs introduce shift-
reduce conflicts.
Consider the conditional statement. It comprises an
expression associated with the if part of the statement
and a body of statements that is executed only if this

expression evaluates to true at run-time. The body
may be empty and is represented by the non-terminal
delimited input in Figure 12.

if_command : IF if_cmd_list END

;

if_cmd_list : expr delimited_input

opt_else

;

delimited_input : opt_delimiter

| opt_delimiter

delimited_list

;

delimited_list : statement delimiter

| statement delimiter

delimited_list

;

Figure 12: Productions for if command

opt_else :

| ELSE delimited_input

| ELSEIF expr

delimited_input opt_else

;

Figure 13: Productions for opt else

The conditional statement may also have multiple
elseif parts and an else part, but these are optional.
If present, each of the elseif parts possesses its own
expressions. It should be noted that the expressions
associated with the if and elseif parts can be sep-
arated from their respective statement bodies by only
horizontal spaces. For instance,

if�a�(2);�end;

is a valid conditional statement in which the elseif
and else parts are absent. The lexeme a forms
the conditional statement’s expression. The condi-
tional statement’s body is a single parenthesized ex-
pression. Since the expressions associated with the if
and elseif parts can be separated from their respec-
tive bodies by only horizontal spaces, this gives rise to
shift-reduce conflicts in the grammar. For example, if
we were to consider the following code fragment,

if�1�+2;�end;



should this be treated as a conditional statement in
which the expression is 1 and the body is the sin-
gle expression statement +2, or should this be re-
garded as a conditional statement in which the expres-
sion is 1+2 and the body is empty? The production
if cmd list → expr delimited input opt else in
Figure 12 generates two shift-reduce conflicts. These
two conflicts occur when the right-hand side of this
production has been seen until the non-terminal expr
and when the next token is either a ‘+’ or a ‘-’. In such
a situation, the parser could either choose to shift the
token (the default action) so that the expression rec-
ognized thus far becomes a subexpression of a binary
addition operation, or choose to apply the reduction
opt delimiter → εi so that the ‘+’ or ‘-’ tokens are
unary operators in an expression that finally reduces to
the non-terminal delimited input. As it turns out,
the default course of action taken by the parser to re-
solve this conflict suffices since this duplicates MAT-
LAB’s behavior.

In a similar manner, the grammar rule opt else →
ELSEIF expr delimited input opt else introduces
a pair of shift-reduce conflicts. Thus, the grammar
rules behind the conditional statement give rise to
four shift-reduce conflicts. Productions for the for
and while statements similarly give rise to two shift-
reduce conflicts each. The default course of action
that the parser takes in each of these cases—that is,
a shift action—is the desired way in which these con-
flicts should be resolved. It is probably worthwhile to
note here that the shift-reduce conflict problem posed
by MATLAB’s conditional and control statements is
quite different from the usual “dangling-else” problem
exhibited by similar constructs in other programming
languages such as Pascal [4].

9 Summary

In this paper, we presented the design and implemen-
tation of a front-end for the MATLAB language, apart
from discussing certain interesting context-sensitive
syntactic issues arising from the language as well as
their solutions. The MATCH compiler front-end has
been implemented and tested on a variety of MATLAB
programs. It is being used to compile code for embed-
ded processors, DSPs and FPGAs [5]. The language
recognized is a proper subset of MATLAB. The princi-
pal parts of the grammar and lexical specification were
mentioned and explained in some depth. In particu-
lar, we justified why the parser supports a limited form

iThe empty string is denoted by ε.

of MATLAB’s command-form function invocation syn-
tax, flagging syntactic ambiguities to the programmer
whenever they are detected. We also showed how com-
mas were inserted among matrix elements so that the
only delimiters visible to the parser were the comma,
semicolon and LINE tokens. The dual role played by
the single quote character and the syntactic issues that
it gave rise to were explained. Colon expressions and
their grammar rules were also briefly described. Fi-
nally, MATLAB’s assignment statements and control
constructs were discussed along with their respective
grammar rules.
We believe that the usefulness of this work lies in
aiding future front-end implementations for the MAT-
LAB language, besides pointing out possible areas
where the language may be modified or augmented so
as to make it more compiler-friendly, without sacrific-
ing its user-friendliness.
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