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1 Introduction 1

1 Introduction

(MAthematica system for General-purpose Inferring and Compile-time Anal-
yses) is an extensible inference engine that can determine the types (value range, in-
trinsic type and array shape) of expressions in a MATLAB program. Written as a
Mathematica application, it is designed as an add-on module that any MATLAB com-
piler infrastructure can use to obtain high-quality type inferences.

About This Document This report only describes ’s capabilities; it doesn’t
describe the methods, techniques or coding used to achieve them. The intent is to show
what the system is capable of, and to demonstrate its usage.

1.1 A Type Inference Using

Lines In[1] and Out[1] below demonstrate a simple interaction with through
a notebook interface.a On line In[1] , the type function object is applied on
a representation of the MATLAB expression sqrt(2) . ’s response, shown on
Out[1] , is the inferred type of sqrt(2) . In this case, “type” is the expression {v, i, s}
where v, i and s are the value range, intrinsic type and array shape of sqrt(2) . Thus
Out[1] indicates that the value range of sqrt(2) is the point 1.41421, its intrinsic
type is the real number designator $real , and that its array shape is two-dimensional
with unit extents along both dimensions—that is, a scalar shape.

In[1]:= type[sqrt[2]]

Out[1]= �1.41421, $real, ��1, 1 �, 2 ��

1.2 Feature Support

The above is an example of a type inference on a single MATLAB expression.
can infer the types of whole MATLAB programs comprising an arbitrary number of
user-defined functions, each having an arbitrary number of statements. User-defined
functions can return multiple values, can consist of assignment statements, the for and
while loops, and the if conditional statement. (All these MATLAB constructs are
explained in [Mat97].) In addition, can handle close to 70 built-in functions
in MATLAB. These include important Type II operationsb like subsref , subsasgn
and colon that are used in array indexing and colon expressions. For the most part,
the full or nearly the full semantics of a built-in function, as specified in [Mat97], is
supported. For instance, subscripts in array indexing expressions can themselves be
arrays, and arrays can be complex-valued. Not all of MATLAB’s features are currently
handled; these include structures, cell arrays and recent additions like function handles.

aThe outputs in this report can be exactly reproduced by typing the code shown against each
In[n]:= prompt into a notebook interface to version 1.0 of , running on Mathematica 4.1.
bMATLAB’s built-in functions can be classified into one of three groups, based on how the shapes

of the outputs are dependent on the shapes of the inputs [JSB00]. Type I built-ins produce outputs
whose shapes are completely determined by the shapes of the arguments, if any. Type II built-ins
produce an output whose shape is also dependent on the elemental values of at least one input. All
remaining built-ins fall into the Type III group.
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2 Representing MATLAB in

symbolically represents constructs in MATLAB. An example of this is the
Mathematica expression plus[a, b] , which is ’s representation of the MAT-
LAB expression a+b . On line In[1] above, the Mathematica expression sqrt[2]
was used to denote the MATLAB expression sqrt(2) . The idea of functionally rep-
resenting a MATLAB expression can also be used to denote high-level constructs. For
instance, the MATLAB assignment statement l ← log(-1) , where l is a MATLAB
program variable, is represented in as shown on line In[2] below.

In[2]:= assignment[$$lhs � l, $$rhs � log[−1]]

Out[2]= assignment  �$$lhs � l, $$rhs � log  ��1��

The expression’s head is assignment and this is used to uniquely identify MATLAB
assignments. The tags $$lhs and $$rhs serve to identify the assignment’s left-hand
side and right-hand side. We call l and log[-1] as tag values. A tag value can be
any expression; this allows for the representation of arbitrary MATLAB assignments,
including the multiple-value assignment [Mat97].

2.1 The Tagging Scheme

In general, MATLAB statements are represented in as

h[x1 � y1, x2 � y2, . . . , xn � yn]

where the head h serves as a construct identifier, and where the delayed rules [Wol99]
xi � yi (1 ≤ i ≤ n) stand for tag-value pairs. places no significance on
the position of a tag-value pair; this point should be kept in mind when making new
definitions to extend the system. An example of the tagging scheme is

if[$$condition � c, $$then � st, $$else � se]

that represents the if conditional statement in MATLAB. Here, c is the if state-
ment’s test, and st and se are its then and else statement bodies. A fair amount of
documentation regarding data structure layouts has been coded into itself as
usage messages [Wol99]; this provides a convenient, on-line way of pulling up layout
information while interacting with .

In[3]:= ?if

if�$$condition :� c_, $$then :� t_, $$else :� e_��
is the functional equivalent of an if statement in MATLAB. Forms such as �
$$condition �� c�, �$$then �� t� and �$$else �� e� can also be used.

2.2 Extensibility

The decision to represent MATLAB’s high-level constructs around the tagging scheme
was motivated by extensibility. For instance, if there is a subsequent need to extend
the assignment data structure by the inclusion of a tag that carries, say, dependency
information, this can be easily done without affecting any of the existing code.
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2.3 A Type Inference on an Assignment Statement

Line In[4] below shows an application of the type object on the earlier assignment
statement.c When applied on a single assignment in which the left-hand side is t and
the right-hand side is e, type generates a list consisting of a single type expression
rewriting rule [Wol99] of the form t → {v, i, s}. The expressions v, i and s are the
value range, intrinsic type and array shape of e.

In[4]:= type[%2]

Out[4]= �l � �3.14159 �, $nonreal, ��1, 1 �, 2 ���

On Out[4] , � stands for the imaginary unit. The $nonreal intrinsic type designator
indicates that the elemental value 3.14159 � of log(-1) logically belongs to the set
C− R, where C and R are the sets of complex and real numbers respectively.
The type object may additionally produce side effects; in the above case, it also

records the computed v, i and s expressions as upvalues [Wol99] of t. This facilitates
later retrieval and reuse of previously computed type expressions. This is also the
mechanism by which propagates type information from one statement to an-
other. As displayed below, the rank,d shape tuple, intrinsic type and value range of t
are registered against ρ(t), σ(t), τ(t) and υ(t) respectively.

In[5]:= ??l

Global‘l

Ρ �l � ^� 2

Σ �l � ^� �1, 1 �

Τ �l � ^� $nonreal

Υ �l � ^� 3.14159 �

3 Fibonacci Numbers

uses the expression Sequence[ s1, s2, . . . , sn] to denote a sequence of
statements. Each si (1 ≤ i ≤ n) can be an assignment, an if conditional, a for loop,
a while loop, a break or a return . Anything else is taken to be an expression state-
ment.e On In[6] below, a sequence of statements that calculates the nth Fibonacci
number in fn is defined and assigned to the Mathematica symbol stmts .

cThe construction %n stands for the value computed on the nth output line in Mathematica [Wol99].
dIn our terminology, the rank of an array is its dimensionality.
eUnlike languages such as C, Java, APL and Mathematica itself, MATLAB doesn’t consider an

assignment as an expression. Hence, a phrase like (a ← 1)+1 is syntactically illegal in MATLAB.
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In[6]:= stmts := Sequence[t1 � sqrt[5], t2 � plus[1, t1], t3 � 
mrdivide[t2, 2], t4 � mpower[t3, n], t5 � mrdivide[t4, t1], 
fn � round[t5]]

Every statement in the above sequence is an assignment; the construction l ← r is a
shorthand for assignment[$$lhs � l, $$rhs � r] in .f

As an aside, defines a function object called show that displays
data structures in MATLAB syntax. This is useful for visualization.

In[7]:= ?show

show�s_, opts___�� displays a MATLAB structure �s�
as an appropriate MATLAB code fragment, under the control of options in �opts�.

�show��� displays the MATLAB structure assigned to �$mfile� in the current context.

�show� has the following options : �show$Stream�, �show$ASCII� and �
show$Notebook�. The last two are available only in a notebook � based front � end.

Below we see what the MATLAB progenitor of stmts would have looked like.

In[8]:= show[stmts]

%  MATLAB Code Fragment
t1 = sqrt(5); 
t2 = 1+t1; 
t3 = t2/2; 
t4 = t3^n; 
t5 = t4/t1; 
fn = round(t5); 

3.1 A Type Inference on Statement Sequences

The type object can be applied on a sequence of statements to produce a list
of rewriting rules; Out[9] shows what happens when type operates on stmts .

In[9]:= type[stmts]

Out[9]= �t1 � �2.23607, $real, ��1, 1 �, 2 ��,
t2 � �3.23607, $real, ��1, 1 �, 2 ��,
t3 � �1.61803, $real, ��1, 1 �, 2 ��,
t4 � ��1 
 �� ���, ��, $complex, �mpowerST�Σ �n�, �1, 1 ��, 2 ��,
t5 � ��1 
 �� ���, ��, $complex, �mpowerST�Σ �n�, �1, 1 ��, 2 ��,
fn � ��1 
 �� ���, ��, $complex, �mpowerST�Σ �n�, �1, 1 ��, 2 ���

In the above, we see that the golden ratio computed in t3 has the value 1.61803, the
$real intrinsic type, the 〈1, 1〉 shape tuple and the rank 2.g

fThe symbol ← can be directly entered into a notebook by typing the key sequence �<- �.
gThe inferred rank is redundant in this case; it becomes significant when the shape tuple is symbolic.
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3.1.1 Value Ranges in

’s value range inference subsystem is built on Mathematica’s interval arithmetic
[Wol99]. The value range that conservatively generates against a MATLAB
expression consists of value bounds that all elements of that expression honor. (Keep
in mind that a MATLAB expression can be a multi-element array.)

Complex Value Ranges can denote everything from a value point to a
complex value range. The latter are represented using interval arithmetic on real and
imaginary subranges. If a MATLAB expression e has the value range

�rl, rh�+ �il, ih� �,

it means that the elemental values of e have real and imaginary parts that lie between
the inclusive end points rl and rh, and il and ih, respectively.

h Thus Out[9] shows
that the value ranges of t4 , t5 and fn are all of the form

�−∞,∞�+ �−∞,∞� �.

Observe that for these program variables, this is also the best inferable value range.
This is because t4 , t5 and fn are all dependent on n, whose value range is unknown.

Value Range Operators provides a number of useful “primitives” in con-
nection with value ranges. These operators form the basis for ’s value range
inference code. For example, the nextN function object returns the IEEE 754 machine
normal number [Gol91] that comes after a given real number.i

In[10]:= Names["Type‘ValueRange‘*"]

Out[10]= �nextN, prevN, Υ, ΥAdd, ΥApproximation, ΥDivide, ΥExp,
ΥIntersection, ΥLimit, ΥLog, ΥMemberQ, ΥMultiply,
ΥPointQ, ΥPower, ΥRecombine, ΥUnion, Υ$interprocedural �

In their ability to handle and produce complex value ranges, value range operators
(the third to the second-last in the list on Out[10] ) go beyond Mathematica’s interval
arithmetic. This is illustrated below, where υExp exponentiates a complex value range.

In[11]:= ΥExp[ �1, Π�+��3.1, 4 �]

Out[11]= ��23.1407, �1.77679 � 
 � ��17.5129, 0.962205 �

If Mathematica’s Exp built-in object is used instead, the result remains unevaluated
because interval arithmetic in Mathematica is only set up for real value ranges.

In[12]:= Exp[ �1, Π�+��3.1, 4 �] //  N

Out[12]= 2.71828 �1.,3.14159 �
�0. 
1. �� �3.1,4. �

h slightly alters Mathematica’s syntax; the way the � and � symbols are used is an instance
of this. In Mathematica sans , these symbols are used in a syntactically different way [Wol99].

inextN and prevN are used in for producing correctly adjusted value range end points.
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3.1.2 Intrinsic Types in

An intrinsic type in denotes a logical set to which all elemental values of a
MATLAB expression belong. ’s intrinsic types are organized as a lattice T in
which the partial order is value subsumption.j This lattice was described in [JB01b]
and is reproduced below. represents the least and greatest elements of T

0

BOOLEAN

BYTE

INTEGER

REAL NONREAL i

COMPLEX

1

Fig 1. The Lattice T of Intrinsic Types in

by the symbols $0 and $1 . The symbols $boolean , $byte , $integer , $real ,
$complex , $nonreal and $illegal similarly denote BOOLEAN, BYTE, INTEGER,
REAL, COMPLEX, NONREAL and i respectively.

In[13]:= �

Out[13]= �$0, $boolean, $byte, $integer,
$real, $nonreal, $complex, $illegal, $1 �

In [JB01b], a BOOLEAN stood for a 0 or 1, and a BYTE for an 8-bit unsigned integer.
The same interpretations have been carried over to . As in [JB01b], INTEGER,
REAL, COMPLEX and NONREAL signify Z, R, C and C − R in (the sets of
integers, reals, complexes and strict complexes respectively). [JB01b] did not assume a
specific bit width for INTEGER; however promotes the intrinsic type of integral
values outside the range �−232+1, 232−1� to REAL, which represents a double-precision
number in . Lastly, the abstract “illegal” intrinsic type i signifies intrinsic type
error situations. Binary comparisons among the symbols work as expected.k

In[14]:= { $0 � $boolean, $byte � $nonreal, $nonreal � $byte }

Out[14]= �True, False, False �
jThe relation s ≤ t means that all values representable by s are also representable by t.
kThe two False values on Out[14] together mean that NONREAL and BYTE are not comparable.
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3.1.3 Array Shapes in

The “array shape” of a MATLAB expression e is the pair {σ(e), ρ(e)} where σ(e) and
ρ(e) are the shape tuple and rank of e. On Out[4] , we saw that the shape tuple and
rank of log(-1) were 〈1, 1〉 and 2. Out[9] shows that the shape tuple of t4 is

mpowerST(σ(n), 〈1, 1〉).

infers this by considering the right-hand side of t4 ← t3ˆn . Because t3 is
inferred to be a scalar from the preceding assignment in stmts , and because the shape
tuple of n is unknown, initially computes the shape tuple of t4 to be

mpowerST(〈1, 1〉, σ(n)).

The above expression fully describes the shape tuple of t4 because the matrix power
built-in function in MATLAB (invoked either as mpower(t3, n) or as t3ˆn ) is a
Type I operation [JSB00]. Type I operations are characterized by the fact that the
shapes of their outputs are fully describable by the shapes of their inputs. For these
operations, it is always possible to construct shape-tuple operators that map the shape
tuples of the inputs to the shape tuples of the outputs [JB01a]. The expression head
mpowerST above stands for the shape-tuple operator of the mpower built-in.

Shape Semantics of the Matrix Power Built-In Function Why is the shape
tuple of t4 symbolic? This is due to the shape semantics of mpower:

1. When both a and b are scalar, aˆb is the elementary power operation.

2. Otherwise, when b is a nonnegative integer, aˆb is computed by repeated squar-
ing [Mat97]. This means that a must be a square matrix for the operation to
be valid. The result then has the same shape as a. If b is a negative integer,
MATLAB inverts a before proceeding according to this case.

3. For other scalar values of b, MATLAB calculates aˆb using eigenvalues and
eigenvectors [Mat97]. Once again, the operation is valid only if a is a square
matrix, in which case the result has the same shape as a.

4. If b is a nonscalar square matrix, a has to be scalar for the operation to valid.
In this case, the shape of the result is the same as that of b.

5. Any other shape for a or b results in an error.

Therefore, because t3 is a scalar and n has an unknown shape, t3ˆn could either have
the same shape as n, or have an “illegal” shape depending on whether or not n is a
square matrix. To capture these possibilities, returns a symbolic shape tuple.

Canonicalization After arriving at mpowerST(〈1, 1〉, σ(n)), rearranges it
to mpowerST(σ(n), 〈1, 1〉). This happens because for any two shape tuples σ(s) and
σ(t), mpowerST(σ(s), σ(t)) and mpowerST(σ(t), σ(s)) are equivalent—that is, they
represent the same shape. This commutative property is coded against mpowerST in
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and causes expressions involving mpowerST to be automatically reduced to a
canonical form [Wol99]. Canonical forms enable to detect shape equivalence,
which in turn permits the reuse of shape-tuple expressions.

In[15]:= typeReuse[%9]

Out[15]= �t1 � �2.23607, $real, ��1, 1 �, 2 ��,
t2 � �3.23607, $real, ��1, 1 �, 2 ��,
t3 � �1.61803, $real, ��1, 1 �, 2 ��,
t4 � ��1 
 �� ���, ��, $complex, �mpowerST�Σ �n�, �1, 1 ��, 2 ��,
t5 � ��1 
 �� ���, ��, $complex, �Σ �t4 �, 2 ��,
fn � ��1 
 �� ���, ��, $complex, �Σ �t4 �, 2 ���

3.2 Replacing Matrix Power by Array Power

The previous MATLAB Fibonacci code will compute the nth Fibonacci number when-
ever n is a nonnegative scalar integer. When n is a square matrix, the code will still
execute though what is computed in fn will probably little resemble a traditional Fi-
bonacci number. And when n is a rectangular matrix or a higher dimensional array,
the code will fail due to reasons mentioned earlier.
If we replace the mpower built-in by the power built-in, we obtain a nice gen-

eralization of the code to arbitrary arrays. The power built-in, invoked either as
power(a, b) or as a.ˆb , performs an elementwise power operation [Mat97]:

1. When either a or b is a scalar, the other operand can be any array and the result
has the same shape as the other operand.

2. Otherwise, the operation is valid only if a and b have the same shape. The shape
of the result then is the common shape of a and b.

Substituting mpower by power allows us to compute an elementwise Fibonacci. The
shape of fn will then be exactly the shape of n, as displayed below.

In[16]:= type[t1 � sqrt[5], t2 � plus[1, t1], t3 � mrdivide[t2, 2], 
t4 � power[t3, n], t5 � mrdivide[t4, t1], fn � round[t5]]

Out[16]= �t1 � �2.23607, $real, ��1, 1 �, 2 ��,
t2 � �3.23607, $real, ��1, 1 �, 2 ��,
t3 � �1.61803, $real, ��1, 1 �, 2 ��,
t4 � ��1 
 �� ���, ��, $complex, �Σ �n�, Ρ �n���,
t5 � ��1 
 �� ���, ��, $complex, �Σ �n�, Ρ �n���,
fn � ��1 
 �� ���, ��, $complex, �Σ �n�, Ρ �n����

3.3 Implicit Intrinsic Type Coercion

How can we gracefully handle situations in which the elemental values of n aren’t
nonnegative and integral? One way of doing this is by adopting a conversion policy.
For instance, given an n, we could calculate the mth Fibonacci number where

m = �|R (n)|�,

and where R extracts the real part of n. The preceding ad hoc conversion will at least
ensure that for a nonnegative integral n, n and m are equal. When type is applied on
the modified Fibonacci code, a more refined type inference is obtained against fn .
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In[17]:= type[t1 � sqrt[5], t2 � plus[1, t1], t3 � mrdivide[t2, 2], 
n1 � real[n], m � floor[n1], t4 � power[t3, m], t5 � 
mrdivide[t4, t1], fn � round[t5]]

Out[17]= �t1 � �2.23607, $real, ��1, 1 �, 2 ��,
t2 � �3.23607, $real, ��1, 1 �, 2 ��,
t3 � �1.61803, $real, ��1, 1 �, 2 ��,
n1 � ����, ��, $real, �Σ �n�, Ρ �n���,
m� ����, ��, $real, �Σ �n�, Ρ �n���,
t4 � ��0, ��, $real, �Σ �n�, Ρ �n���,
t5 � ��0, ��, $real, �Σ �n�, Ρ �n���,
fn � ��0, ��, $real, �Σ �n�, Ρ �n����

Observe that determines the intrinsic type of fn to be $real rather than
$integer because the upper bound of the elemental values in fn exceeds 232 − 1.

4 Input Prerequisites

MATLAB programs fed to are required to satisfy two prerequisites:

• They have to be in the Static Single-Assignment (SSA) form [CFRW91].

• They have to be in the Single Operator (SO) form.

4.1 Static Single-Assignment Form

The SSA form basically means that program variables have at most a single reaching
definition in the representation passed to . To support the SSA form,
also handles binary φ functions. Loop-header φ functions are required to be represented
by the phi µ object. All other φ functions—namely, those that occur at the end of
conditionals and loops—are required to be represented by the phi ν object. Due to the
structured nature of control flow in the MATLAB language (conditionals, structured
loops, and no goto statements), φ functions in the SSA form will always have lexically
preceding definitions, except for loop-header φ functions for which one definition will
be lexically preceding and the other will be lexically succeeding. regards the
first operand of a phi µ expression as the one having the lexically preceding definition.
The introduction of φ functions into a Mathematica representation, and their sub-

sequent removal, is the responsibility of the front-end.

4.2 Single Operator Form

The SO form is an intermediate representation akin to three-address code; a MATLAB
expression will be said to be in this form if it is either atomic (that is, either a program
variable or a literal program constant), or if it is of the form

f(a1, a2, . . . , an)

where each of the ai (1 ≤ i ≤ n) are atomic and where f is a function, either user-
defined or built-in. The expression’s arity is denoted by n, and when n is 0, we have an
example of a niladic function invocation—that is, an invocation of a function without
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arguments.l For brevity, a MATLAB expression in the SO form will be called a SOF
MATLAB expression. If e is a SOF MATLAB expression, then the MATLAB assign-
ment c ← e will also be said to be in the SO form. All expressions and assignments
in MATLAB can be cast into the SO form through the introduction of temporaries.
Observe that all of the previous MATLAB code fragments on which type was

applied were both in the SSA and SO forms.

5 The Hilbert Matrix

The Hilbert matrix HM is an M ×M matrix in which the (i, j)th element Hi,j is

1

i+ j − 1 .

A loopy style MATLAB code that computes H100 is shown below.

In[18]:= stmts := Sequence[M � 100, H � zeros[M, M], t1 � colon[1, 
M], for[$$variable � i, $$iterations � t1, $$body � 
Sequence[H1 � phi Μ[H, H4], for[$$variable � j, $$iterations 
� t1, $$body � Sequence[H2 � phi Μ[H1, H3], t2 � plus[i, j], 
t3 � minus[t2, 1], t4 � mrdivide[1, t3], H3 � subsasgn[H2, 
t4, i, j]]], H4 � phi Ν[H1, H3]]], H5 � phi Ν[H, H4], 
disp[H5]]

In[19]:= show[stmts]

%  MATLAB Code Fragment
M = 100; 
H = zeros(M, M); 
t1 = 1:M; 
for i = t1,
    H1 = phi Μ(H, H4); 
    for j = t1,
        H2 = phi Μ(H1, H3); 
        t2 = i+j; 
        t3 = t2−1; 
        t4 = 1/t3; 
        H3 = subsasgn(H2, t4, i, j); 
    end;
    H4 = phi Ν(H1, H3); 
end;
H5 = phi Ν(H, H4); 
disp(H5)

There are four points to note regarding the code fragment:

1. The general form of a MATLAB for loop is

for i = e, ... end

where i is the loop variable and e is the for loop expression. The loop is executed
as many times as the number of columns in e. In general, if e has the shape
p1 × p2 × · · · × pk where k ≥ 2, this equals p2 × · · · × pk. The iteration count

lThis terminology is borrowed from APL [PP75].
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is determined initially and isn’t affected by subsequent modifications of either e
(if it is a variable) or i within the body of the loop. With every iteration of the
loop, i is set to the vectors that form the successive columns of e.

2. phi µ and phi ν expressions are used to bring the code to the SSA form.

3. Temporaries like t2 and t3 are used to bring the code to the SO form.

4. The subsasgn object is used to represent the left-hand side array indexing
operation in MATLAB. regards the expression

subsasgn (O,R, i1, i2, . . . , in)

as denoting an array A that has the same elements as O except for elements
located by the n subscripts (i1, i2 and so on till in), which are set to elements from
R. The subsasgn object shares similar semantics with the Update operation
described in [CFRW91] except for two important departures:

• Each subscript ik (1 ≤ k ≤ n) can be an arbitrary array. The locations in A
that are set to elements in R are obtained by taking the Cartesian product
of the elemental values in the subscripts. If pk is the number of elemental
values in subscript ik, R is required to have the shape p1 × p2 × · · · × pn.
(There are corner cases that need to be handled. See [Mat97] for details.)

• If the maximum elemental value in ik exceeds the extent of O along the
kth dimension, A has that maximum value for its extent along the kth
dimension. New locations created in A due to such expansions are set to 0.

Thus, the effect of the assignment statement

H3 ← subsasgn(H2, t4, i, j)

is to set elements in H3 to corresponding elements in H2, except for the element at
row i and column j in H3, which is set to t4 . Because i and j range between 1 and
M, the possibility of an expansion doesn’t exist here. Line Out[20] below shows the
inferences arrived at when type is applied on stmts .

In[20]:= type[stmts]

Out[20]= �M� �100., $byte, ��1, 1 �, 2 ��,
H � �0, $boolean, ��100, 100 �, 2 ��,
t1 � ��1, 100 �, $byte, ��1, 100 �, 2 ��,
i � ��1, 100 �, $byte, ��1, 1 �, 2 ��,
H1 � ��0, 1. �, $real, ��100, 100 �, 2 ��,
j � ��1, 100 �, $byte, ��1, 1 �, 2 ��,
H2 � ��0, 1. �, $real, ��100, 100 �, 2 ��,
t2 � ��2, 200 �, $byte, ��1, 1 �, 2 ��,
t3 � ��1, 199 �, $byte, ��1, 1 �, 2 ��,
t4 � ��0.00502513, 1. �, $real, ��1, 1 �, 2 ��,
H3 � ��0, 1. �, $real, ��100, 100 �, 2 ��,
H4 � ��0, 1. �, $real, ��100, 100 �, 2 ��,
H5 � ��0, 1. �, $real, ��100, 100 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ���

The last inference on Out[20] represents the type of disp ’s outcome; the shown type
attributes reflect the fact that disp doesn’t return anything.
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5.1 An Unknown M for HM

The reason manages to explicitly infer all the array shapes on Out[20] is
because it has initial information about M. If Mwere unspecified, will only be
able to arrive at symbolic expressions for most of the shape tuples.

In[21]:= Clear[M]

In[22]:= typeReuse[type[H � zeros[M, M], t1 � colon[1, M], 
for[$$variable � i, $$iterations � t1, $$body � Sequence[H1 
� phi Μ[H, H4], for[$$variable � j, $$iterations � t1, 
$$body � Sequence[H2 � phi Μ[H1, H3], t2 � plus[i, j], t3 � 
minus[t2, 1], t4 � mrdivide[1, t3], H3 � subsasgn[H2, t4, 
i, j]]], H4 � phi Ν[H1, H3]]], H5 � phi Ν[H, H4], disp[H5]]]

Out[22]= 	H � 	0, $boolean, 	
floor  

� 1
����
2
�abs  �real  �subsref  �M, 1��� 
 real  �subsref  �M, 1����,

floor  � 1
����
2
�abs  �real  �subsref  �M, 1��� 


real  �subsref  �M, 1����
, 2 ��,

t1 � ��1., ��, $real, �colonST  �1, 1, M �, 2 ��,
i �
��1., ��, $real, �forST �Σ �t1 ��, 2 ��,

H1 � ��0, 1. �, $real, �phi ΜST�Σ �H�, Σ �H4��, 2 ��,
j � ��1., ��, $real, �Σ �i �, 2 ��,
H2 � ��0, 1. �, $real, �phi ΜST�Σ �H1�, Σ �H3��, 2 ��,
t2 � ��2., ��, $real, ��1, 1 �, 2 ��,
t3 � ��1., ��, $real, ��1, 1 �, 2 ��,
t4 � ��0, 1. �, $real, ��1, 1 �, 2 ��,
H3 � ��0, 1. �, $real, �subsasgnST �Σ �H2�, �1, 1 �, i, j �, 2 ��,
H4 � ��0, 1. �, $real, �phi ΝST�Σ �H1�, Σ �H3��, 2 ��,
H5 � ��0, 1. �, $real, �phi ΝST�Σ �H�, Σ �H4��, 2 ���

Observe that the shape tuple of H on line Out[22] is

〈� |R (m)|+ R (m)
2

�, � |R (m)|+ R (m)
2

�〉

The term m is the first elemental value in M, and is expressed as subsref(M, 1)
on Out[22] . This inferred shape tuple follows from MATLAB’s treatment of extent
arguments in array creation functions such as zeros , ones and eye : For an arbitrary
M, zeros(M, M) is a �(|R (m)|+ R (m))/2� × �(|R (m)|+ R (m))/2� matrix of zeros.
Note that still infers t2 , t3 and t4 to be scalars. It deduces this from

one key piece of information: The shape tuples of the for loop expressions for both i
and j are of the form colonST[1, 1, M] . This means that within the body of the
innermost loop, both i and j will be scalars.m

5.2 Another Way of Computing HM

Due to the interpretive overhead associated with executing loops in MATLAB, loopy
style code usually performs poorly. An efficient loop-free way of computing HM that

mThe colonST[1, 1, M] shape tuple expression will be equivalent to either the illegal shape
tuple, the 〈1, 0〉 empty shape tuple or to the 〈1, w〉 shape tuple where w is some positive integer. In
the former two cases, both the i and j loops will not be executed. In the third case, the two loops
will be executed and i and j will be set to scalar integers in the body of the loop.
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relies on the language’s right-hand side array indexing operation is shown below.

In[23]:= stmts := Sequence[t1 � colon[1, M], t2 � transpose[t1], t3 
� ones[1, M], i � subsref[t2, colon[], t3], j � subsref[t1, 
t3, colon[]], t4 � plus[i, j], t5 � minus[t4, 1], H5 � 
rdivide[1, t5], disp[H5]]

In[24]:= show[stmts]

%  MATLAB Code Fragment
t1 = 1:M; 
t2 = t1.’; 
t3 = ones(1, M); 
i = t2(:, t3); 
j = t1(t3, :); 
t4 = i+j; 
t5 = t4−1; 
H5 = 1./t5; 
disp(H5)

Two new things can be see from the above code fragment:

1. The right-hand side array indexing operation is used to arrive at i and j .

2. The use of the potentially nonscalar array t3 as a subscript. In fact, t3 will be
nonscalar for allM > 1. Additionally, observe the use of the “colon” subscript in
t2(:, t3) and t1(t3, :) , which selects an entire array dimension [Mat97].

The types that are inferred from the new code fragment are shown below.

In[25]:= typeReuse[type[stmts]]

Out[25]= 	t1 � ��1., ��, $real, �colonST  �1, 1, M �, 2 ��,
t2 � ��1., ��, $real, �transposeST �Σ �t1 ��, 2 ��,

t3 � 	1, $boolean, 	
1, floor  � 1
����
2
�abs  �real  �subsref  �M, 1��� 


real  �subsref  �M, 1����
, 2 ��,

i � ��1., ��, $real, �subsrefST �Σ �t2 �, colon  ��, t3 �, 2 ��,
j � ��1., ��, $real, �subsrefST �Σ �t1 �, t3, colon  ���, 2 ��,
t4 � ��2., ��, $real, �plusST �Σ �i �, Σ �j ��, 2 ��,
t5 � ��1., ��, $real, �Σ �t4 �, 2 ��,
H5 � ��0, 1. �, $real, �Σ �t4 �, 2 ���

And as before, if Mwere initially assigned, all shape tuples will be explicitly inferred.

In[26]:= type[M � 100, t1 � colon[1, M], t2 � transpose[t1], t3 � 
ones[1, M], i � subsref[t2, colon[], t3], j � subsref[t1, 
t3, colon[]], t4 � plus[i, j], t5 � minus[t4, 1], H5 � 
rdivide[1, t5], disp[H5]]

Out[26]= �M� �100., $byte, ��1, 1 �, 2 ��,
t1 � ��1, 100 �, $byte, ��1, 100 �, 2 ��,
t2 � ��1, 100 �, $byte, ��100, 1 �, 2 ��,
t3 � �1, $boolean, ��1, 100 �, 2 ��,
i � ��1, 100 �, $byte, ��100, 100 �, 2 ��,
j � ��1, 100 �, $byte, ��100, 100 �, 2 ��,
t4 � ��2, 200 �, $byte, ��100, 100 �, 2 ��,
t5 � ��1, 199 �, $byte, ��100, 100 �, 2 ��,
H5 � ��0.00502513, 1. �, $real, ��100, 100 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ���
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5.3 Yet Another Way of Computing HM

In addition to loops, array indexing operations can also be avoided in the computation
of HM . The following code fragment shows how.

In[27]:= stmts := Sequence[M � 100, t1 � colon[1, M], t2 � 
transpose[t1], t3 � ones[1, M], t4 � ones[M, 1], i � 
mtimes[t2, t3], j � mtimes[t4, t1], t5 � plus[i, j], t6 � 
minus[t5, 1], H5 � rdivide[1, t6], disp[H5]]

In[28]:= show[stmts]

%  MATLAB Code Fragment
M = 100; 
t1 = 1:M; 
t2 = t1.’; 
t3 = ones(1, M); 
t4 = ones(M, 1); 
i = t2*t3; 
j = t4*t1; 
t5 = i+j; 
t6 = t5−1; 
H5 = 1./t6; 
disp(H5)

Type inferences, with and without an initial assignment to M, are shown below.

In[29]:= type[stmts]

Out[29]= �M� �100., $byte, ��1, 1 �, 2 ��,
t1 � ��1, 100 �, $byte, ��1, 100 �, 2 ��,
t2 � ��1, 100 �, $byte, ��100, 1 �, 2 ��,
t3 � �1, $boolean, ��1, 100 �, 2 ��,
t4 � �1, $boolean, ��100, 1 �, 2 ��,
i � ��1, 100 �, $byte, ��100, 100 �, 2 ��,
j � ��1, 100 �, $byte, ��100, 100 �, 2 ��,
t5 � ��2, 200 �, $byte, ��100, 100 �, 2 ��,
t6 � ��1, 199 �, $byte, ��100, 100 �, 2 ��,
H5 � ��0.00502513, 1. �, $real, ��100, 100 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ���

In[30]:= Clear[M]

In[31]:= typeReuse[type[t1 � colon[1, M], t2 � transpose[t1], t3 � 
ones[1, M], t4 � ones[M, 1], i � mtimes[t2, t3], j � 
mtimes[t4, t1], t5 � plus[i, j], t6 � minus[t5, 1], H5 � 
rdivide[1, t6], disp[H5]]]

Out[31]= 	t1 � ��1., ��, $real, �colonST  �1, 1, M �, 2 ��,
t2 � ��1., ��, $real, �transposeST �Σ �t1 ��, 2 ��,

t3 � 	1, $boolean, 	
1, floor  

� 1
����
2
�abs  �real  �subsref  �M, 1��� 
 real  �subsref  �M, 1����
,

2��, t4 � 	1, $boolean, 	
floor  

� 1
����
2
�abs  �real  �subsref  �M, 1��� 
 real  �subsref  �M, 1����,

1
, 2 ��, i � ��0, ��, $real, �mtimesST �Σ �t2 �, Σ �t3 ��, 2 ��,

j � ��0, ��, $real, �mtimesST �Σ �t4 �, Σ �t1 ��, 2 ��,
t5 � ��0, ��, $real, �plusST �Σ �i �, Σ �j ��, 2 ��,
t6 � ���1., ��, $real, �Σ �t5 �, 2 ��,
H5 � ����, ��, $real, �Σ �t5 �, 2 ���
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6 Bayes Signal Probabilities

In their latest release of MATLAB, announced in July of this year [Matb], The Math-
Works incorporated for the first time a capability to analyze MATLAB program types,
albeit at run time. The code processed in this section is directly from a brochure from
The MathWorks that advertises this “JIT-Accelerator technology” [Mata].

In[32]:= inputArgs[bayes] ^= { Seq, Matrix, priorProbability } ;

In[33]:= outputArgs[bayes] ^= { score3 } ;

In[34]:= statements[bayes] ^ := Sequence[Seq � $init$arg[1], Matrix � 
$init$arg[2], priorProbability � $init$arg[3], Pb � 
mrdivide[1, 4], s1 � length[Seq], score � zeros[1, s1], lm 
� length[Matrix], ls � minus[s1, lm], s2 � colon[1, ls], 
for[$$variable � m, $$iterations � s2, $$body � 
Sequence[score1 � phi Μ[score, score2], Pa � 
priorProbability, k � minus[m, 1], s3 � colon[1, lm], 
for[$$variable � n, $$iterations � s3, $$body � 
Sequence[Pa1 � phi Μ[Pa, Pa3], s4 � plus[k, n], nt � 
subsref[Seq, s4], t1 � gt[nt, 0], t2 � lt[nt, 5], t3 � 
and[t1, t2], if[$$condition � t3, $$then � Sequence[PbGa � 
subsref[Matrix, nt, n], s5 � mtimes[Pa1, PbGa], s6 � 
minus[1, Pa1], s7 � mtimes[s6, 0.25], Pb1 � plus[s5, s7], 
s8 � mtimes[PbGa, Pa1], Pa2 � mrdivide[s8, Pb1]]], Pa3 � 
phi Ν[Pa1, Pa2]]], Pa4 � phi Ν[Pa, Pa3], score2 � 
subsasgn[score1, Pa4, m]]], score3 � phi Ν[score, score2]]

In[35]:= show[statements[bayes]]

%  MATLAB Code Fragment
Seq = _init_arg(1); 
Matrix = _init_arg(2); 
priorProbability = _init_arg(3); 
Pb = 1/4; 
s1 = length(Seq); 
score = zeros(1, s1); 
lm = length(Matrix); 
ls = s1−lm; 
s2 = 1:ls; 
for m = s2,
    score1 = phi Μ(score, score2); 
    Pa = priorProbability; 
    k = m−1; 
    s3 = 1:lm; 
    for n = s3,
        Pa1 = phi Μ(Pa, Pa3); 
        s4 = k+n; 
        nt = Seq(s4); 
        t1 = nt>0; 
        t2 = nt<5; 
        t3 = t1&t2; 
        if  t3,
            PbGa = Matrix(nt, n); 
            s5 = Pa1*PbGa; 
            s6 = 1−Pa1; 
            s7 = s6*0.25; 
            Pb1 = s5+s7; 
            s8 = PbGa*Pa1; 
            Pa2 = s8/Pb1; 
        end;
        Pa3 = phi Ν(Pa1, Pa2); 
    end;
    Pa4 = phi Ν(Pa, Pa3); 
    score2 = subsasgn(score1, Pa4, m); 
end;
score3 = phi Ν(score, score2); 
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6.1 User-Defined MATLAB Functions in

User-defined functions in MATLAB are characterized by four essential parts: a name,
an input argument list, an output argument list and a function body. These are
specified in by means of a symbol (transliterated into the Mathematica name
space if necessary), and three upvalue expressions. If the symbol f signifies a user-
defined function in MATLAB, the expressions inputArgs[ f ] , outputArgs[ f ] and
statements[ f ] , recorded as upvalues against f , are used to specify that function’s
input arguments, output arguments and function body respectively. Lines In[32] to
In[34] above show how this is done for the bayes function given in [Mata]. The only
significant differences between the code shown above and that given in [Mata] are:

1. It has additional assignments due to the SSA and SO transformations.

2. It includes a set of dummy assignments against each of the formal parameters at
the beginning. The introduction and use of such assignments are a consequence
of ’s design: uses them to associate the actual parameters at a
call site of a user-defined function with the formal parameters of that function.
The need for establishing such associations arises when propagates type
information across user-defined function interfaces.

3. It doesn’t use the scalar short-circuit AND (&&) and OR (|| ) logical operators
that are new in the latest release of MATLAB. Instead, it uses the older array
AND (&) and OR (| ) logical operators because the current version of
only recognizes them. However, in this particular case, the substitution doesn’t
alter the semantics of the bayes function.

6.1.1 An Aside on Function Type Signatures and Procedure Cloning

The type signature of a function at a call site is a tuple of the type signatures of the
actual arguments at that call site. An actual argument’s type signature, in turn, is
a triplet of its value range, intrinsic type and shape. currently expects the
type signatures of an M-file function at all its call sites to be identical. This maybe an
inconvenience but is not a limitation. If two call sites of an M-file function f differ in
their type signatures, they must be replaced by invocations to f1 and f2 where f1 and
f2 are cloned versions of f . In the current version of , the front-end has the
onus of performing such a duplication. The issue of procedure cloning doesn’t apply to
the example MATLAB code of this section because it invokes only one M-file, namely
bayes , at exactly one point in a driver script (see below).

6.2 A Type Inference on a User-Defined Function

Timings were reported in [Mata] on a call of bayes with a 4 × 20 matrix of doubles
for Matrix , a 1× 912211 matrix of 8-bit integers for Seq, and a prior probability of
0.0001 for priorProbability . Line In[36] below denotes a statement sequence
that invokes bayes using “randomly” generated inputs that have these shapes. (The
manner in which the inputs were created was not mentioned in [Mata]. As we shall
see, knowledge of this can impact the inferences that makes.)
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In[36]:= stmts := Sequence[r1 � rand[1, 912211], r2 � mtimes[r1, 3], 
r3 � plus[r2, 1], Seq0 � fix[r3], Matrix0 � rand[4, 20], 
priorProbability0 � 0.0001, score0 � bayes[Seq0, Matrix0, 
priorProbability0]]

In[37]:= show[stmts]

%  MATLAB Code Fragment
r1 = rand(1, 912211); 
r2 = r1*3; 
r3 = r2+1; 
Seq0 = fix(r3); 
Matrix0 = rand(4, 20); 
priorProbability0 = 0.0001; 
score0 = bayes(Seq0, Matrix0, priorProbability0); 

A Not So Random Seq When it encounters a user-defined function, prop-
agates type information into the function using type information gathered at the call
site. In the above, the actual parameters againstMatrix and Seq have been randomly
generated, although those generated against Seq have been purposefully constructed
to lie between 0 and 5.n Because of this, , which uses symbolic execution to
infer types through control structures, figures out that the single conditional in bayes
will always be executed. This allows all array shapes in bayes to be explicitly inferred.
This is how score0 , the output of bayes , is also inferred to be a 1× 912211 matrix.

In[38]:= type[stmts]

Out[38]= �r1 � ��0, 1 �, $real, ��1, 912211 �, 2 ��,
r2 � ��0, 3. �, $real, ��1, 912211 �, 2 ��,
r3 � ��1., 4. �, $real, ��1, 912211 �, 2 ��,
Seq0 � ��1, 4 �, $byte, ��1, 912211 �, 2 ��,
Matrix0 � ��0, 1 �, $real, ��4, 20 �, 2 ��,
priorProbability0 � �0.0001, $real, ��1, 1 �, 2 ��,
score0 � ����, ��, $real, ��1, 912211 �, 2 ���

The fact that manages to infer the shapes of all variables in bayes can be
verified by calculating the fraction of inferred shapes in it that are explicit.

In[39]:= variables[bayes] ^= Cases[ { statements[bayes] } , l_ � 
r | ($$variable � l ) � l, 
]

Out[39]= �Seq, Matrix, priorProbability, Pb, s1, score, lm, ls,
s2, m, score1, Pa, k, s3, n, Pa1, s4, nt, t1, t2, t3,
PbGa, s5, s6, s7, Pb1, s8, Pa2, Pa3, Pa4, score2, score3 �

In[40]:= N[Length[Cases[ Σ / @ #, 
HoldPattern[st[ Integer]]]]/Length[#]]&[variables[bayes]]

Out[40]= 1.

Observe that Out[39] shows that there are 32 program variables defined in bayes —
this count includes the three formal parameters and the two loop variables.

nVersion 1.0 of assumes that rand generates random numbers in the [0, 1] closed inter-
val. This results in inferences that are more conservative than necessary because in actuality, rand
generates random numbers in the (0, 1) open interval.
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In[41]:= stmts := Sequence[r1 � rand[1, 912211], r2 � mtimes[r1, 
255], Seq0 � fix[r2], Matrix0 � rand[4, 20], 
priorProbability0 � 0.0001, score0 � bayes[Seq0, Matrix0, 
priorProbability0]]

In[42]:= show[stmts]

%  MATLAB Code Fragment
r1 = rand(1, 912211); 
r2 = r1*255; 
Seq0 = fix(r2); 
Matrix0 = rand(4, 20); 
priorProbability0 = 0.0001; 
score0 = bayes(Seq0, Matrix0, priorProbability0); 

In[43]:= type[stmts]

Out[43]= �r1 � ��0, 1 �, $real, ��1, 912211 �, 2 ��,
r2 � ��0, 255. �, $real, ��1, 912211 �, 2 ��,
Seq0 � ��0, 255 �, $byte, ��1, 912211 �, 2 ��,
Matrix0 � ��0, 1 �, $real, ��4, 20 �, 2 ��,
priorProbability0 � �0.0001, $real, ��1, 1 �, 2 ��,
score0 � ����, ��, $real, �Σ �score3 �, 2 ���

A Random Seq If we however construct Seq so that its elements span all possible
8-bit values, will only explicitly infer some of the shapes in bayes . The
others will all be symbolic expressions. Still, as shown on Out[44] below, will
explicitly infer close to 60% of the shapes in bayes .

In[44]:= N[Length[Cases[ Σ / @ #, 
HoldPattern[st[ Integer]]]]/Length[#]]&[variables[bayes]]

Out[44]= 0.59375

7 Adaptive Quadrature by Simpson’s Rule

The program processed in this section is a benchmark from the FALCON compiler test
suite [FAL]. The benchmark is organized as two input files, one a driver script and
the other containing the adapt function that does the actual quadrature calculation.
The total number of lines across the two input files at the source level is about 79
(excluding comments and empty lines). The source code is shown in the appendix.
Input files that constitute a MATLAB program are called M-files in MATLAB

parlance. currently relies on a custom front-end called to parse M-
files to an intermediate form, and to transform that representation to the SSA and
SO forms. ( , not described in this report, is a MATLAB-to-C translator that
ultimately compiles MATLAB programs to optimized C versions; it relies on
to obtain the necessary type information.) Using Mathematica’s information hiding
context mechanism [Wol99], also provides functionality by which complete M-
file representations, referred to asM-file contexts, can be saved and later retrieved. This
functionality is used below to load the M-file contexts of the quadrature program. These
M-file contexts were automatically created by in an early session of .
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In[45]:= ?load

load�x_String�� loads the M � file context associated with �
x�. �x� can also be a string pattern that specifies a set of M �

file contexts that need to be loaded.

If �x� is a previously loaded M � file context, �
load� switches the current M � file context to �x�. If not,
and if �x� exists on disk, the saved image is loaded. If �x�
is not a previously loaded M � file context and if no image of �x�
exists on disk, a new M � file context corresponding to �x� is created.

The result of a �load�
is either the name of the last loaded M � file context or �Null� if one doesn’�t exist.

�load� has the following options : �load$Purge� and �load$Disk.

In[46]:= Scan[load[#, load$Disk � True]&, { "drv$adapt‘", "adapt‘" } ]

By putting them into separate Mathematica contexts, load allows multiple M-file
representations, spanning different MATLAB programs, to coexist simultaneously in a
single session of . Users can switch between M-file contexts by invoking load .

7.1 Metrics Reflecting Size

Line Out[47] below gives an idea of the size of the adapt function: 165 statements
with 160 defined variables. The defined variables include the 4 input and 3 output
arguments accounted on Out[48] . Note that the increase in the overall number of
statements and variables is due to the SSA and SO transformations.

In[47]:= { Length[Cases[ { statements[adapt] } , 
_assignment|_if|_for|_while|_break|_disp, 
]], 
Length[variables[adapt]] }

Out[47]= �165, 160 �
In[48]:= { Length[inputArgs[adapt]], Length[outputArgs[adapt]] }

Out[48]= �4, 3 �

Including the counts shown for the driver script below, the total size of the quadrature
program at the stage seen by is about 188 statements and 180 variables.o

In[49]:= load["drv$adapt‘"]

Out[49]= adapt‘

In[50]:= { Length[Cases[ { statements[drv$adapt] } , 
_assignment|_if|_for|_while|_break|_disp, 
]], 
Length[variables[drv$adapt]] }

Out[50]= �23, 20 �
oThe driver script statement count considers the invocation of adapt , which returns 3 output

values, as three assignments. This is a result of the way handles multiple output functions.
If these three assignments are treated as one, the statement count reduces to 21.
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7.2 A Type Inference on a Program

The Mathematica expression e // Timing returns {t′, e′} where t′ is the time taken
by the Mathematica kernel to evaluate e to e′. Line Out[51] below shows that the
time taken to infer all the types in the quadrature program is 33.66 seconds.

In[51]:= type[statements[drv$adapt]] //  Timing

Out[51]= �33.66 Second, �_�47 �t11 � ��0, ��, $real, ��1, 6 �, 2 ��,
_�57 �a1 � ��1, $integer, ��1, 1 �, 2 ��,
_�59 �b1 � �6., $byte, ��1, 1 �, 2 ��,
_�51 �sz_guess1 � �1., $boolean, ��1, 1 �, 2 ��,
_�55 �tol1 � �1. � 10�12 , $real, ��1, 1 �, 2 ��,
_�43 �SRmat1 � ����, ��, $real, �Σ�_�366 �SRmat15�, 2 ��,
_�53 �quad1 � ����, ��, $real, �Σ�_�380 �quad1 �, 2 ��,
_�61 �err1 � ��0, ��, $real, �Σ�_�416 �err7 �, 2 ��,
_�49 �t21 � ��0, ��, $real, ��1, 6 �, 2 ��, _�650 �s � ����, ��,

$real, �subsrefST �Σ�_�366 �SRmat15�, colon  ���, 2 ��,
_�651 �s � ����, ��, $real,
�sumST�subsrefST �Σ�_�366 �SRmat15�, colon  ����, 2 ��,

�Indeterminate, $illegal, ���1, 1 �, 2 ��, _�652 �s �
����, ��, $real, �subsrefST �Σ�_�380 �quad1 �, colon  ���, 2 ��,

_�653 �s � ����, ��, $real,
�sumST�subsrefST �Σ�_�380 �quad1 �, colon  ����, 2 ��,

�Indeterminate, $illegal, ���1, 1 �, 2 ��, _�654 �s �
��0, ��, $real, �subsrefST �Σ�_�416 �err7 �, colon  ���, 2 ��,

_�655 �s � ����, ��, $real,
�sumST�subsrefST �Σ�_�416 �err7 �, colon  ����, 2 ��,

�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�656 �s � ����, ��, $real, ��1, 6 �, 2 ��,
_�657 �s � ��0, 86400 �, $integer, ��1, 6 �, 2 ��,
_�659 �s � ��0, 86400 �, $integer, ��6, 1 �, 2 ��,
_�660 �s � ����, ��, $real, ��1, 1 �, 2 ��,
_�45 �_�1�t1 � ��0, ��, $real, ��1, 1 �, 2 ����

This measurement, obtained on a 440 MHz UltraSPARC-IIi running Solaris 7 and
having 128MB of main memory, is only the time taken for kernel evaluation and does
not include the time for the MathLink exchange [Wol99] or other front-end processing.
Line Out[53] below shows the fraction of shapes in adapt that were explicitly

inferred. Among the remaining shapes, which are all symbolic, the fraction that are
detected to be equivalent is shown on Out[55] .

In[52]:= load["adapt‘"]

Out[52]= drv$adapt‘

In[53]:= N[Length[Cases[ Σ / @ #, 
HoldPattern[st[ Integer]]]]/Length[#]]&[variables[adapt]]

Out[53]= 0.4

In[54]:= Length[Cases[(# � Σ[#])& / @ variables[adapt], HoldPattern[_ 
� st[ Symbol]]]]/(Length[variables[adapt]]*(1−%))

Out[54]= 0

In[55]:= Length[Cases[ ΣReuse[(# � Σ[#])& / @ variables[adapt]], 
HoldPattern[_ � st[_Symbol]]]]/(Length[variables[adapt]]*(1−
%%))

Out[55]= 0.59375

The σReuse object on In[55] takes a list of rewriting rules of the form t → σ(t),
where σ(t) is the shape-tuple expression of the variable t, and reuses lexically preceding
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shape-tuple computations that are symbolically equivalent to lexically succeeding ones.
It returns a list of rewriting rules indicating the reuse. Lines Out[54] and Out[55]
above show the difference it can make.

8 The Finite Difference Time Domain Technique

The Finite Difference Time Domain (FDTD) method plays an important role in tran-
sient electromagnetic analysis. The example in this section was obtained from a com-
putational electromagnetics course at Chalmers University of Technology [FDT]. The
code was chosen because it manipulates three-dimensional arrays and exhibits a lot of
array indexing. There are three versions of the FDTD method available at [FDT]—one
written using the diff built-in function, another using for loops, and the third with
the diff operation expanded out. It is the third version that is processed in this sec-
tion. The only two important differences between the monolithic code given at [FDT]
and that used in this report is the inclusion of timing and output commands, and its
reorganization into two M-files. The two M-files are shown in § B.

In[56]:= Scan[load[#, load$Disk � True]&, { "fdtd‘", "drv$fdtd‘" } ]

In[57]:= { Length[Cases[Join[ { statements[drv$fdtd] } , 
{statements[fdtd‘fdtd]}], 
_assignment|_if|_for|_while|_break|_disp, 
]], 
Length[Join[variables[drv$fdtd], variables[fdtd‘fdtd]]] }

Out[57]= �183, 176 �

In terms of the total number of statements and variables, line Out[57] above shows
that the program is about as large as the quadrature program of § 7.p

pThe fdtd function returns seven outputs. If the seven assignments that are generated against the
invocation of fdtd are counted as one, the total statement count reduces to 181.
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In[58]:= type[statements[drv$fdtd]] //  Timing

Out[58]= �5.55 Second, �_�77 �t11 � ��0, ��, $real, ��1, 6 �, 2 ��,
_�95 �Lx1 � �0.05, $real, ��1, 1 �, 2 ��,
_�97 �Ly1 � �0.04, $real, ��1, 1 �, 2 ��,
_�99 �Lz1 � �0.03, $real, ��1, 1 �, 2 ��,
_�103 �Nx1 � �25., $byte, ��1, 1 �, 2 ��,
_�105 �Ny1 � �20., $byte, ��1, 1 �, 2 ��,
_�107 �Nz1 � �15., $byte, ��1, 1 �, 2 ��,
_�109 �nrm1 � �866.025, $real, ��1, 1 �, 2 ��,
_�101 �Nt1 � �128., $byte, ��1, 1 �, 2 ��,
_�81 �Ex1 � ����, ��, $real, ��25, 21, 16 �, 3 ��,
_�83 �Ey1 � ����, ��, $real, ��26, 20, 16 �, 3 ��,
_�85 �Ez1 � ����, ��, $real, ��26, 21, 15 �, 3 ��,
_�87 �Hx1 � ����, ��, $real, ��26, 20, 15 �, 3 ��,
_�89 �Hy1 � ����, ��, $real, ��25, 21, 15 �, 3 ��,
_�91 �Hz1 � ����, ��, $real, ��25, 20, 16 �, 3 ��,
_�93 �Ets1 � ����, ��, $real, ��128, 3 �, 2 ��,
_�79 �t21 � ��0, ��, $real, ��1, 6 �, 2 ��,
_�649 �s � ����, ��, $real, ��8400, 1 �, 2 ��,
_�650 �s � ����, ��, $real, ��1, 1 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�651 �s � ����, ��, $real, ��8320, 1 �, 2 ��,
_�652 �s � ����, ��, $real, ��1, 1 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�653 �s � ����, ��, $real, ��8190, 1 �, 2 ��,
_�654 �s � ����, ��, $real, ��1, 1 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�655 �s � ����, ��, $real, ��7800, 1 �, 2 ��,
_�656 �s � ����, ��, $real, ��1, 1 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�657 �s � ����, ��, $real, ��7875, 1 �, 2 ��,
_�658 �s � ����, ��, $real, ��1, 1 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�659 �s � ����, ��, $real, ��8000, 1 �, 2 ��,
_�660 �s � ����, ��, $real, ��1, 1 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�661 �s � ����, ��, $real, ��384, 1 �, 2 ��,
_�662 �s � ����, ��, $real, ��1, 1 �, 2 ��,
�Indeterminate, $illegal, ���1, 1 �, 2 ��,
_�663 �s � ����, ��, $real, ��1, 6 �, 2 ��,
_�664 �s � ��0, 86400 �, $integer, ��1, 6 �, 2 ��,
_�666 �s � ��0, 86400 �, $integer, ��6, 1 �, 2 ��,
_�667 �s � ����, ��, $real, ��1, 1 �, 2 ��,
_�75 �_�1�t1 � ��0, ��, $real, ��1, 1 �, 2 ����

However, the time taken by the kernel to arrive at the type inferences is much lesser
because all of the shapes in this program were explicitly inferred. (The processing of
symbolic shape-tuple expressions generally contributes to an increase in kernel times.)

In[59]:= N[Length[Cases[ Σ / @ #, 
HoldPattern[st[__Integer]]]]/Length[#]]&[Join[variables[drv$f
dtd‘drv$fdtd], variables[fdtd‘fdtd]]]

Out[59]= 1.

9 Availability

is currently available for public download from The Home Page at

http://www.ece.northwestern.edu/cpdc/pjoisha/MAGICA .
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9.1 Requirements

To install , the following is needed:

• Mathematica version 4.1 or higher,

• A C++ compiler.

A C++ compiler is required because relies on external C++ code to real-
ize some of its functionality. (As an example, it uses the C math library function
nextafter to obtain information on machine normal numbers.)

9.2 Installation

has been successfully installed and tested on Solaris 7 and 8, using version
2.95.3 of the gcc compiler and version 4.1 of Mathematica. The following are the
sequence of installation steps under tcsh , the enhanced version of the UNIX C shell.

1. Unzip and untar the downloaded distribution.

eagle:˜ % gunzip magica.tar.gz
eagle:˜ % tar -xvf magica.tar

2. Set the MATHEMATICAenvironment variable to the full path of the top direc-
tory of the local Mathematica installation. (In Mathematica, this is the string
assigned to the $TopDirectory system object.) The shell command shown
below assumes the existence of Mathematica on the execution path.

eagle:˜ % setenv MATHEMATICA \
? ‘math -noinit -run ’Print[$TopDirectory]’ \\
? -run ’Quit[]’ | sed -n ’$ p’‘

3. Set the MAGICAenvironment variable to the full path of the top directory of the
installation.

eagle:˜ % cd MAGICA
eagle:˜/MAGICA % setenv MAGICA ‘pwd‘

4. Set the CCenvironment variable to the full path of the C++ compiler. If not set,
the install script (see Step 5 below) will check to see if the gcc compiler is
present on the execution path and set CCto that.

5. Invoke the install shell script provided under the .Mathematica directory.

eagle:˜/MAGICA % .Mathematica/install
Using gcc (version 2.95.3) as the C++ compiler ...

Building syntax-extension ...
Building wall-clock-time ...
Building from-file-name ...
Building normal-numbers ...
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6. is now ready for use. It can be used from a notebook front-end by
starting Mathematica with the -preferencesDirectory option set. Under

’s preferences directory is an init.m file and a POSIX shell script that
together “bootstrap” . The shell command shown below sets up a short-
hand to perform this invocation from anywhere in the directory hierarchy.

eagle:˜/MAGICA % alias magica "mathematica " \
? "-preferencesDirectory " \
? "$MAGICA/.Mathematica/4.1/ \!*"

The math script in .Mathematica/4.1 allows to be used from a text
front-end. This script can be executed from anywhere in the directory tree.

eagle:˜/MAGICA % alias magica \
? "$MAGICA/.Mathematica/4.1/math \!*"

10 Summary

This report described a software tool called that forms a type inference system
for the MATLAB programming language. Written in Mathematica, infers the
value range, intrinsic type and array shape of a MATLAB expression. This report
showed the workings of by walking through a series of examples of increasing
complexity, ranging from single expressions to full programs. Though has
been shown in an interactive mode, it is possible to use it in batch mode from a custom
front-end via the MathLink protocol. Currently, is being used this way by

, a MATLAB-to-C translator that converts MATLAB sources to optimized C.
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A Adaptive Quadrature by Simpson’s Rule

A.1 The drv adapt MATLAB Function

function drv_adapt

%%
%% Driver for adaptive quadrature using Simpson’s rule.
%%

t1 = clock;

a = -1;
b = 6;
sz_guess = 1;
tol = 1e-12;

[SRmat, quad, err] = adapt(a, b, sz_guess, tol);

t2 = clock;

% Display result.
% disp(SRmat), disp(quad), disp(err);
disp(mean(SRmat(:))), disp(mean(quad(:))), disp(mean(err(:)));

% Display timings.
fprintf(1, ’ADAPT: total = %f\n’, (t2-t1)*[0 0 86400 3600 60 1]’);

A.2 The adapt MATLAB Function

function [SRmat, quad, err] = adapt(a, b, sz_guess, tol)

SRmat = zeros(sz_guess, 6);
iterating = 0;
done = 1;

h = (b-a)/2; % The step size.
c = (a+b)/2; % The midpoint in the interval.

%% The integrand is f(x) = 13.*(x-x.ˆ2).*exp(-3.*x./2).

Fa = 13.*(a-a.ˆ2).*exp(-3.*a./2);
Fc = 13.*(c-c.ˆ2).*exp(-3.*c./2);
Fb = 13.*(b-b.ˆ2).*exp(-3.*b./2);

S = h*(Fa+4*Fc+Fb)/3; % Simpson’s rule.
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SRvec = [a b S S tol tol];

SRmat(1, 1:6) = SRvec;
m = 1;
state = iterating;
while (state == iterating),

n = m;
for l = n:-1:1,

p = l;
SR0vec = SRmat(p, :);
err = SR0vec(5);
tol = SR0vec(6);

if (tol <= err),
state = done;
SR1vec = SR0vec;
SR2vec = SR0vec;

a = SR0vec(1); % Left endpoint.
b = SR0vec(2); % Right endpoint.
c = (a+b)/2; % Midpoint.

err = SR0vec(5);
tol = SR0vec(6);
tol2 = tol/2;

a0 = a;
b0 = c;
tol0 = tol2;
h = (b0-a0)/2;
c0 = (a0+b0)/2;

%% The integrand is f(x) = 13.*(x-x.ˆ2).*exp(-3.*x./2).

Fa = 13.*(a0-a0.ˆ2).*exp(-3.*a0./2);
Fc = 13.*(c0-c0.ˆ2).*exp(-3.*c0./2);
Fb = 13.*(b0-b0.ˆ2).*exp(-3.*b0./2);

S = h*(Fa+4*Fc+Fb)/3; % Simpson’s rule.

SR1vec = [a0 b0 S S tol0 tol0];

a0 = c;
b0 = b;
tol0 = tol2;
h = (b0-a0)/2;
c0 = (a0+b0)/2;

%% The integrand is f(x) = 13.*(x-x.ˆ2).*exp(-3.*x./2).



B The Finite Difference Time Domain Technique 28

Fa = 13.*(a0-a0.ˆ2).*exp(-3.*a0./2);
Fc = 13.*(c0-c0.ˆ2).*exp(-3.*c0./2);
Fb = 13.*(b0-b0.ˆ2).*exp(-3.*b0./2);

S = h*(Fa+4*Fc+Fb)/3; % Simpson’s rule.

SR2vec = [a0 b0 S S tol0 tol0];

err = abs(SR0vec(3)-SR1vec(3)-SR2vec(3))/10;

if (err < tol),
SRmat(p, :) = SR0vec;
SRmat(p, 4) = SR1vec(3)+SR2vec(3);
SRmat(p, 5) = err;

else
SRmat(p+1:m+1, :) = SRmat(p:m, :);
m = m+1;
SRmat(p, :) = SR1vec;
SRmat(p+1, :) = SR2vec;
state = iterating;

end;
end;

end;
end;

quad = sum(SRmat(:, 4));

err = sum(abs(SRmat(:, 5)));

SRmat = SRmat(1:m, 1:6);

B The Finite Difference Time Domain Technique

B.1 The drv fdtd MATLAB Function

function drv_fdtd

%%
%% Driver for 3D FDTD of a hexahedral cavity with conducting walls.
%%

t1 = clock;

% Parameter initialization.
Lx = .05; Ly = .04; Lz = .03; % Cavity dimensions in meters.
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Nx = 25; Ny = 20; Nz = 15; % Number of cells in each direction.

nrm = norm([Nx/Lx Ny/Ly Nz/Lz]);

Nt = 1024; % Number of time steps.

[Ex, Ey, Ez, Hx, Hy, Hz, Ets] = ...
fdtd(Lx, Ly, Lz, Nx, Ny, Nz, nrm, Nt);

t2 = clock;

% Display result.
% disp(Ex), disp(Ey), disp(Ez);
% disp(Hx), disp(Hy), disp(Hz);
% disp(Ets);
disp(mean(Ex(:))), disp(mean(Ey(:))), disp(mean(Ez(:)));
disp(mean(Hx(:))), disp(mean(Hy(:))), disp(mean(Hz(:)));
disp(mean(Ets(:)));

% Display timings.
fprintf(1, ’FDTD: total = %f\n’, (t2-t1)*[0 0 86400 3600 60 1]’);

B.2 The fdtd MATLAB Function

function [Ex, Ey, Ez, Hx, Hy, Hz, Ets] = fdtd(Lx, Ly, Lz, ...
Nx, Ny, Nz, nrm, Nt)

% Physical constants.
eps0 = 8.8541878e-12; % Permittivity of vacuum.
mu0 = 4e-7*pi; % Permeability of vacuum.
c0 = 299792458; % Speed of light in vacuum.

Cx = Nx/Lx; Cy = Ny/Ly; Cz = Nz/Lz; % Inverse cell dimensions.

Dt = 1/(c0*nrm); % Time step.

% Allocate field arrays.
Ex = zeros(Nx, Ny+1, Nz+1);
Ey = zeros(Nx+1, Ny, Nz+1);
Ez = zeros(Nx+1, Ny+1, Nz);
Hx = zeros(Nx+1, Ny, Nz);
Hy = zeros(Nx, Ny+1, Nz);
Hz = zeros(Nx, Ny, Nz+1);

% Allocate time signals.
Ets = zeros(Nt, 3);
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% Initialize fields (near but not on the boundary).
Ex(1, 2, 2) = 1;
Ey(2, 1, 2) = 2;
Ez(2, 2, 1) = 3;

% Time stepping.
for n = 1:Nt,

% Update H everywhere.
Hx = Hx+(Dt/mu0)*((Ey(:, :, 2:Nz+1)-Ey(:, :, 1:Nz))*Cz ...
-(Ez(:, 2:Ny+1, :)-Ez(:, 1:Ny, :))*Cy);
Hy = Hy+(Dt/mu0)*((Ez(2:Nx+1, :, :)-Ez(1:Nx, :, :))*Cx ...
-(Ex(:, :, 2:Nz+1)-Ex(:, :, 1:Nz))*Cz);
Hz = Hz+(Dt/mu0)*((Ex(:, 2:Ny+1, :)-Ex(:, 1:Ny, :))*Cy ...
-(Ey(2:Nx+1, :, :)-Ey(1:Nx, :, :))*Cx);

% Update E everywhere except on boundary.
Ex(:, 2:Ny, 2:Nz) = Ex(:, 2:Ny, 2:Nz)+(Dt/eps0)* ...
((Hz(:, 2:Ny, 2:Nz)-Hz(:, 1:Ny-1, 2:Nz))*Cy ...
-(Hy(:, 2:Ny, 2:Nz)-Hy(:, 2:Ny, 1:Nz-1))*Cz);
Ey(2:Nx, :, 2:Nz) = Ey(2:Nx, :, 2:Nz)+(Dt/eps0)* ...
((Hx(2:Nx, :, 2:Nz)-Hx(2:Nx, :, 1:Nz-1))*Cz ...
-(Hz(2:Nx, :, 2:Nz)-Hz(1:Nx-1, :, 2:Nz))*Cx);
Ez(2:Nx, 2:Ny, :) = Ez(2:Nx, 2:Ny, :)+(Dt/eps0)* ...
((Hy(2:Nx, 2:Ny, :)-Hy(1:Nx-1, 2:Ny, :))*Cx ...
-(Hx(2:Nx, 2:Ny, :)-Hx(2:Nx, 1:Ny-1, :))*Cy);

% Sample the electric field at chosen points.
Ets(n, :) = [Ex(4, 4, 4) Ey(4, 4, 4) Ez(4, 4, 4)];

end;


