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ABSTRACT
An adaptation of the classic register allocation algorithm to
the problem of array storage optimization in MATLAB is
presented. The method involves the decomposition of an
interference graph’s color classes using inferred type infor-
mation. A key trait is the use of symbolic types, along with
control flow, in performing the decomposition. On a bench-
mark suite spanning the published test suites of some recent
research MATLAB compilers, our implementation produces
savings in the average virtual memory size, with respect to
code generated by a commercial MATLAB compiler, of be-
tween 51% and 139% in 6 out of 11 programs, and savings
between 0.7% and 47% in the remaining. In absolute terms,
this ranged from 123KB to over 9MB. Substantial improve-
ments in other categories of memory, such as resident sets
and dynamic data (stack plus heap), were also observed and
are reported. Speedups in execution times of at least over an
order of magnitude in 4 programs, of over 100% in 4 of the
remaining, and 10% and over in the rest are also reported.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—very high-level languages; D.3.4 [Programming La-
nguages]: Processors—compilers and optimization

General Terms
Algorithms, Design, Languages, Performance

1. INTRODUCTION
The automatic optimization of program storage is a well-
known problem, one that has been extensively investigated
and efficiently tackled in the past. Because programs in
early computers were constrained by the sizes of their cores,
initial work centered on main memory allocation [19, 14, 15].
As large main memories became cheaply available, interest
in this area waned with the focus shifting to register allo-
cation [6, 8, 4, 3, 23]. This paper revisits the main mem-
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ory allocation problem in the context of a typeless array-
based programming language called MATLAB and shows
how the efficient management of array storage is crucial to
its successful static compilation. The fact that we have to
contend with arrays whose type characteristics are not ex-
pressly specified in a program is an important distinction
between our work and previous efforts at name reclamation
[11, 22] and storage reduction [24, 9]. The issue of storage
optimization is particularly relevant to MATLAB because
the language is increasingly being used in the prototyping
of applications that ultimately get deployed on limited mem-
ory platforms such as DSPs, FPGAs and embedded devices,
and because it espouses an array-centric programming id-
iom, one in which the elemental manipulation of data is
eschewed for whole array processing.
Closer to our work is Fabri’s approach [15] which viewed
main memory allocation as a weighted graph coloring prob-
lem. Nodes in the interference graph were weighted by the
sizes of the arrays in question and a coloring was sought
that minimized the total allocated storage. What compli-
cates the problem in MATLAB is that size information may
be absent since the language lacks an explicit declaration
of type. In fact, even when all array sizes are known, the
problem does not naturally map to graph coloring the way
the register allocation problem does. Factors such as partial
interference (see § 2.1) further ravel the picture.
Surprisingly, though the same problems existed in APL,
completely different techniques, like “drag-along” and “beat-
ing” [1], delayed evaluation [16], chaining [7] and demand
driven execution [5], were used to reduce storage overheads.
Research compilers that translate MATLAB statically [13]
and just-in-time [2] have emerged in recent years. However,
storage optimization has been an unaddressed area in MAT-
LAB. And although systems such as MaJIC [2] that com-
pile code during execution are better poised to efficiently
manage storage, we must keep in mind that such run-time
systems will themselves compete with the application for
platform storage space. Therefore, we believe that there ex-
ists a niche of applications that could greatly benefit from
the better static management of MATLAB’s array storage.

1.1 Algorithm Overview
The input to our algorithm is a control-flow graph (CFG)
that is in the Static Single-Assignment (SSA) [12] form. The
algorithm, referred to as GCTD (Graph Coloring with Type-
based Decomposition) consists of two phases. The first in-
volves the creation and coloring of an interference graph
to determine variables that can share common storage. Be-
cause the objective isn’t the ultimate assignment of variables



to a machine’s register set, we neither seek an n-coloring,
where n is the number of available machine registers, nor
deal with related issues such as register spilling, as is the
case in [6]. Instead, the goal of the first phase is to deter-
mine, at least conservatively, noninterfering classes of vari-
ables that can be safely assigned to the same area of memory
without changing the meaning of the program. To this end,
the aim is to find a coloring of the interference graph.1 The
treatment of interference in the first phase is similar to that
in [6] except that a new kind of conflict arising from opera-
tor semantics needs to be considered and resolved, perhaps
through the involvement of inferred type information (see
§ 2.3). The second phase decomposes the color classes on the
basis of expression types. Basically, the idea is to partition
each color class into groups so that all variables in a group
are laid out in memory starting from the same location as a
certain distinguished set of variables in the group. Members
of that distinguished set have the predominant storage re-
quirement in the group. The cornerstone of the second phase
is a partial order that relies on program variable types, and
in the symbolic case, on control-flow information too.

2. INTERFERENCE GRAPH (PHASE 1)
The interference graph G∗f = (Vf , Ef), constructed at the
level of a user-defined MATLAB function f , has a node set
Vf that represents the variables defined in the CFG and
an edge set Ef that represents the interference among the
variables. Two variables are considered to interfere if their
def-use chains (du-chains) overlap. In particular, we use the
Chaitin et al. [6] notion of interference by which two vari-
ables interfere if there exists an execution path in f and a
point therein at which: (1) the definitions of both variables
are visible; (2) both variables are not dead; and (3) the vari-
ables have different values. Because determining these cri-
teria is in general undecidable, we use an approximation of
interference by considering variables that are both available
and live at each assignment [6, 3]. A variable v is regarded
available at a statement s if there is a possible execution
path from a definition of v to s. A variable w is treated live
at s if there is a possible execution path from s to a use of w
along which w is not redefined. “Liveness” and “availabil-
ity” as defined here are conservative because they indicate a
potential, rather than a definitive, use and definition. Our
approach to detecting variables that satisfy these two con-
ditions is effectively that described in [3]. A basic block is
traversed backwards starting with the set of variables that
are live and available at its end. A definition encountered
during the traversal is interfered with members of the set.
Before moving to the next statement, the set is updated by
removing the variable (or variables) defined at that state-
ment and adding variables used at the same statement.

2.1 Partial Interference
The concept of interference described in [6] was intended
for scalars. When directly applied to variables that can also
be arrays, which is the case in MATLAB programs, it can
be more pessimistic than necessary. This will happen when
variables only partially interfere. As an example, the SSA
conforming intermediate representation (IR) shown below

1Currently, our implementation seeks a coloring that is as
close to the minimal coloring as possible. This, however,
may not yield the final optimal solution to the problem.

creates a pair of 2× 2 matrices in a and b,2 assigns to c the
first element in a,3 then computes the sum of b and c in
d, and finally displays d. Because the du-chain of a crosses
that of b, there clearly is an interference between a and b.

a ← rand(2, 2);
b ← rand(2, 2);
c ← subsref(a, 1);
d ← b+c;
disp(d);

However, by inspecting the index used in the access, we
see that this interference is only in the first element of a.
Although a and b are considered to fully interfere in our
current implementation, which causes them to be assigned
to disjoint areas in memory, note that their storage areas
could have been overlapped allowing for the use of a total of
five double precision memory locations to perform the above
computation in its entirety.

2.2 Handling Copies
A copy statement of the form X ← Y will by itself not
introduce an interference between X and Y . However, if the
coloring step ascribes different colors to X and Y , the final
code generation stage will have to emit code to copy Y to X.
Because variables in MATLAB can be arrays, it is even more
important, in relation to a situation that deals only with
scalars, to avoid copy operations whenever possible. In [6],
this was attacked by coalescing X and Y and then rebuilding
the interference graph since the action of coalescing can alter
the graph; the process was repeated up to a fixed number
of times until no further coalescences were possible. Our
strategy is different: we preprocess the CFG to free it of
copies by subjecting it to a copy propagation pass followed
by dead-code elimination.4 Obviously, all copies cannot be
eliminated this way; one such case is shown in the IR below.

s1 ← φ(s0, s2)
t1 ← φ(t0, t2)

...

t2 ← s1
s2 ← . . .

In the above, copy propagating s1 from t2 ← s1 to t1 ←
φ(t0, t2) will change the meaning of the IR. Of course, t2
and s1 in the interference graph will also not be coalescent
because they interfere due to overlapping du-chains.

2.2.1 SSA Inversion Copies
Since converting back from the SSA form will reintroduce
copies [12], it is imperative that the name defined at a join

2Assignments will be denoted using the ← symbol.
3subsref(a, i1, i2, . . . , im) returns the array ele-
ment a( i1, i2, . . . , im) .
4The translator has over 20 passes that perform a vari-
ety of transformations such as global common-subexpression
elimination, constant folding, constant propagation, type
determination, code selection and code generation.



node share storage with the names used at that node when-
ever possible. This will make the reintroduced copies iden-
tity assignments and therefore trivially removable. To achi-
eve this for the join node Z ← φ(X,Y ), the nodes in the
interference graph corresponding to Z and X (and then Z
and Y ) are examined for any interference. If they don’t in-
terfere, they are coalesced and the interference graph is ap-
propriately updated. This will force any coloring to assign
the same color to Z and X so that the copy Z ← X rein-
troduced during the SSA inversion step becomes a trivially
removable identity assignment. Of course, such coalescings
will affect the chromatic number of the graph and constrain
the coloring finally obtained. But we have found the folding
of copies to be indispensable to the generation of efficient
code, because even a few copies, involving large-sized arrays
and nested within loops, can significantly impact the gener-
ated code’s performance through excessive paging activity.

2.3 Interference due to Operator Semantics
Assignments in our IR have right-hand sides that consist
of at most a single MATLAB operation like * , or a pseudo
operation like the φ function. Assignments in MATLAB
can be cast into this Single Operator (SO) form through the
introduction of temporaries. The code generation pass then
directly maps each of the SO form IR assignments to C code.
Consider the IR assignment c ← a*b . If a and b are
scalars, storage for c and a, or c and b, can be shared, as-
suming that these pairs don’t otherwise interfere. We say
that c can be computed in-place in either operand in the C
mapping without violating the semantics of the operation.
However, * can operate on both scalars and nonscalars in
MATLAB. For instance, when a and b are nonscalar matri-
ces, * performs the elementary matrix multiplication oper-
ation. In that situation, computing c in-place in either a
or b will risk violating the semantics of the operation be-
cause elements in a or b could get overwritten before being
fully used. However, when either a or b is a scalar, and the
other operand is an arbitrary array, c is produced by the
elementwise multiplication of the scalar with the array. In
that case, c can be computed in-place in the array operand.
Thus, the storage coalescing pass inspects each IR assign-
ment of the form Y ← op(X1,X2, . . . ,Xm), and inserts ad-
ditional interferences between Y and an Xi (1 ≤ i ≤ m) on
the basis of what op is, and the type information inferred for
each Xi. Hence, for the case c ← a*b , an interference is
not added between c and a, and between c and b, if either
a or b can be determined to be scalars. Since c can then be
calculated in-place in the larger sized operand, we still have
to figure out which of the two operands can accommodate
c . This is done in the second phase of the GCTD pass.

2.3.1 Array Addition
An example of a different op is in the IR statement c

← a+b . In MATLAB, + is the array addition operation; it
always computes the elementwise sum of its operands. Since
c can be computed in-place in either a or b provided the
operand is sufficiently sized, no additional interferences have
to be inserted between c and either operand in this case.
Figure 1 displays exactly how the C code generated by the

translator performs this in-place computation. (Not
shown are preceding shape correctness and resizing checks.)

2.3.2 Right-Hand Side Array Indexing
In the IR statement c ← subsref(a, 1) seen in § 2.1,

op is subsref , which corresponds to the right-hand side
array indexing operation in MATLAB. We call this the R-
indexing operation for short. Note that in the case seen in
§ 2.1, c can be computed in-place in a. (There are only two
possibilities: subsref(a, 1) is either illegal, which will
happen if a is the empty array, or it is legal, in which case
it is a scalar.) However, if the statement were

c ← subsref(a, e)

where e was unknown, such an in-place computation may
not be possible. This is because MATLAB permits e to
itself be an array; this allows an arbitrary permutation of
the elements of a to be returned. For instance, if e were
the MATLAB colon expression 4:-1:1 , subsref(a, e)
would give the elements of the 2 × 2 matrix a in reverse.
Again, type information could be used to differentiate these
situations—in this case, whether the subscript e is a scalar.

2.3.3 Left-Hand Side Array Indexing
MATLAB also offers a left-hand side array indexing op-
eration. In source form, this operation, which we call L-
indexing for short, is specified by the construction

a( l1, l2, . . . , lm) ← r

This is represented in our IR as a ← subsasgn(a, r,
l1, l2, . . . , lm) . When cast to the SSA form, it becomes

b ← subsasgn(a, r, l1, l2, . . . , lm)

The meaning of this operation is as follows: b has the same
elements as a, except for elements located by the m sub-
scripts l1, l2 and so on until lm, which are set to elements
from r. The subsasgn operator therefore exhibits seman-
tics similar to that of the Update operation described in
[12] except for two important departures:

• Each subscript li (1 ≤ i ≤ m) can be an arbitrary
array. The locations in b that are set to elements in
r are obtained by taking the Cartesian product of the
elements in the subscripts. If pi is the number of ele-
ments in subscript li, r is required to have the shape
p1 × p2 × · · · × pm. (There are corner cases that need
to be handled. See [21] for details.)

• If the maximum elemental value in li exceeds the ex-
tent of a along the ith dimension, b has that maximum
value for its extent along the ith dimension. Locations
created in b due to such expansions are set to 0.

In fact, there is one more case that can arise due to an ad-
ditional “shrinkage” feature that MATLAB provides for the
L-indexing operation. For example, a(:, :, 2) ← []
deletes all elements on the second “page” [21] of an x×y×z
array, shrinking it to an x × y × (z − 1) array. This func-
tionality isn’t currently supported by the translator.

2.3.3.1 In-Place L-Indexing.
If the requisite amount of storage is available, can b be

computed in-place in a for all possible li without risking the



if ((___STC(_826s_4, 1) == 1 && ___STC(_826s_4, 2) == 1))
{ /* First operand is a scalar. */

for (__i = 0; __i < (___STC(_833s_4, 1)*___STC(_833s_4, 2)); __i++)
_811s_4[__i] = _811s_4[0]+_804s_4[__i];
}

else if ((___STC(_846s_4, 1) == 1 && ___STC(_846s_4, 2) == 1))
{ /* Second operand is a scalar. */

for (__i = 0; __i < (___STC(_833s_4, 1)*___STC(_833s_4, 2)); __i++)
_811s_4[__i] = _811s_4[__i]+_804s_4[0];
}

else
{ /* Both operands have identical shapes. */

for (__i = 0; __i < (___STC(_833s_4, 1)*___STC(_833s_4, 2)); __i++)
_811s_4[__i] = _811s_4[__i]+_804s_4[__i];
}

Figure 1: Partial C Code for the IR 811s 4 ← 811s 4+ 804s 4 from the capr Benchmark

violation of semantics? It turns out that in the absence of
the shrinkage feature, this can always be done by computing
the elements of b from the last to the first. This works
because there are only two cases that need consideration:

• The array b doesn’t expand and has the same shape
as a. Then, those elements of a that get carried over
to b will occupy the same positions in memory.

• The array b expands along one or more dimensions of
a. Then, those elements of a that get carried over to b
will occupy the same or higher positions in memory.5

Hence, forming b backwards will ensure that the elements
in a get carried over to b before they can get overwritten.

2.4 Coloring Heuristic
A simple O(Vf + Ef) greedy heuristic that attempts to
use as few colors as possible has been used in our current
implementation. The heuristic visits each node in turn, in
the lexical order of the corresponding variable definitions,
and assigns to it the smallest among the colors used so far
that is consistent with its neighbors. If no such color exists,
a new color is created and the node is assigned that color.

3. TYPE-BASED ALLOCATION (PHASE 2)
Let Vf (c) be a color class in the interference graph G

∗
f .

Let S(v) be the size of the storage allocated for a variable
v in Vf(c). Intuitively, if the storage sizes of all variables in
Vf (c) were known, they could all be overlaid starting from
the same location as the largest sized variable among them.
Unfortunately for the compiler writer, MATLAB features
both implicit typing (an expression’s type may not be ex-
plicit from program syntax) and dynamic typing (an expres-
sion’s type may depend on the control-flow path exercised
at run time). Consequently, not only may S(v) be stati-
cally indeterminable, but it may also vary during execution.
Our heuristic approach to getting around these problems
is to construct a storage-size partial order � that tries to
capture a containment relationship while promoting spatial
reuse. (The precise definition of this binary relation is given

5MATLAB organizes its arrays à la FORTRAN. But this
observation holds even if the layout was row major.

in § 3.2.) The construction is done using inferred type infor-
mation. Once � is formed, its maximal6 elements are found,
which are then used to decompose Vf (c) into groups. If there
are q maximal elements under �, Vf (c) is partitioned into a
collection of q groups, one for each maximal element, such
that the storage sizes of variables in a group are bounded
by the maximal element corresponding to that group.

3.1 The Type Inference Engine
The translator currently obtains the types of all vari-

ables defined in a program using an inference engine called
(MAthematica system for General-purpose Infer-

ring and Compile-time Analyses) [17]. Given a Mathematica
representation of a MATLAB program, infers the
value range υ(w), intrinsic type τ (w), shape tuple σ(w) and
rank (i.e., array dimensionality) ρ(w) of each variable w. If

cannot explicitly infer the extents or dimensionality
of some w, it will return symbolic expressions for σ(w) and
ρ(w) respectively. The unique aspect of these shape-tuple
and rank expressions is that inferences are reused when-
ever symbolic equivalence can be established [18]. That is,

will return the shape-tuple expression σ(v) for the
shape tuple of w if it can establish that σ(v) will definitely
be live (in the data-flow sense) at the definition of w and
that σ(v) and σ(w) will always be equivalent.

3.2 The Storage-Size Partial Order
The GCTD pass determines the storage size of a variable

u either by statically estimating it, or by symbolically calcu-
lating it to be |σ(u)||τ (u)| where |σ(u)| denotes the number
of elements in an array whose shape tuple is σ(u),7 and
where |τ (u)| denotes the storage size of a scalar having the
intrinsic type τ (u).8 The pass uses the following formulation

6An element x is maximal under a partial order � if there
exists no y such that x ≺ y.
7An instance of a shape tuple would be 〈1, 4, 5〉, which de-
notes the shape of an array having the extents 1, 4 and 5 in
the first, second and third dimensions respectively.
8Intrinsic types in can be any of BOOLEAN, BYTE,
INTEGER, REAL, COMPLEX, NONREAL and the abstract
“illegal” intrinsic type i that signifies intrinsic type errors.



to relate the storage sizes of two variables u and v:

S(u) � S(v) iff




S(u) and S(v) can be
statically estimated,
τ (u) = τ (v) and S(u) ≤ S(v),

S(u) and S(v) cannot be
statically estimated,
u is available at
the definition of v,
τ (u) = τ (v) and S(u) ≤ S(v).

(1)

Because “available at the definition” is both a reflexive and
transitive relationship (see § 2), it is easy to see from Re-
lation 1 that � is indeed a partial order. The motivation
behind the formulation is to identify two categories of ar-
rays: those whose layouts can be fixed at compile time and
those among the dynamically allocated arrays whose stor-
ages can be grown in a regular way. The two disjoint criteria
for � require identical intrinsic types; this was intentional
so as to avoid both the use of type castings in the generated
C code and the issue of alignment restriction in C.

3.2.1 Stack Allocation
Static estimation of storage size is done in two situations:

1. the inferred shape tuple σ(u) of a variable u is ex-
plicit—that is, of the form 〈p1, p2, . . . , pk〉 where each
extent pi (1 ≤ i ≤ k) is an integer; or

2. the variable u is defined at the join node u← φ(v,w)
and the sizes of both v and w are statically estimable.

The estimated size in the first case is |σ(u)||τ (u)|, while in
the second case it is max(S(v),S(w)). Arrays whose sizes
can be statically estimated get allocated on the stack in
the C translation. In particular, scalars in MATLAB can
be directly mapped to scalar automatics in C. Besides en-
abling procedures to be reentrant, a stack allocation disci-
pline automatically materializes and disappears objects as
procedure activation records get pushed and popped. Back-
end C compilers can also take advantage of the fact that the
relative displacements of each of the arrays within a stack
frame will be compile-time knowns; knowing this could be
helpful while gathering data dependency or aliasing infor-
mation. Furthermore, because all statically estimable sizes
of the same intrinsic type within a color class form a single
chain under the partial order �, the corresponding variables,
which will form a single group, could all be allocated within
a single array whose size is the maximal element in the chain.

3.2.2 Heap Allocation
Variables that satisfy neither condition in § 3.2.1 are deem-

ed as having statically inestimable sizes. These variables
get allocated on the heap. Their storage sizes are expressed
symbolically as |σ(u)||τ (u)|. The GCTD pass binds all vari-
ables within a group to a common storage area. Code gener-
ated by our implementation also attempts to alleviate heap
memory pressure by resizing storage on the fly to the spe-
cific needs of each variable in a group. This is in contrast to
the stack allocation case where the storage size of a group
remains fixed at the maximal during a procedure activation.
By incorporating the “available at the definition” clause, the

second criterion of Relation 1 tries to identify stretches in
the execution path along which arrays grow in one direction.
Specifically, if S(u) � S(v) by the second criterion, then u
must both be available at the definition of v and dead after
it. (Otherwise, u would have interfered with v in Phase 1.)
Thus, chained elements in � connected by the second cri-
terion would potentially correspond to definitions and uses
that get performed in sequence at run time and where the
definitions step through nondecreasingly sized arrays. (“Po-
tentially” because availability as defined in § 2 is conserva-
tive.) Moreover, the closer u is to v in the control-flow path,
the better would be the spatial reuse characteristics because
u would still be in the higher levels of a memory hierarchy
when it gets resized to v. In fact, the closest that u could
be to v is if it is used in the same statement that defines v.
Closeness may thus be fostered by ensuring that the chains
included in each group are as long as possible.
Example 1: Nonresized Arrays with Symbolic Types
When presented with the IR shown below on the left, the
intrinsic types of t1, t2 and t3 will be inferred by to
be COMPLEX, assuming that nothing is known about t0.

t1 ← t0-1.345;
t2 ← 2.788.ˆ t1;
t3 ← tan( t2);

=⇒
s� ← s-1.345;
s� ← 2.788.ˆ s;
s� ← tan( s);

will also return the symbolic expression σ(t0) for
the shape tuples of t1, t2 and t3 [18]. This reflects the fact
that under all executions of the IR, the shapes of t1, t2 and
t3, which are all results of elementwise operations in MAT-
LAB, will be identical to that of t0. Assuming that t0, t1
and t2 are dead on exit from the code fragment, we see that
no pair of variables interfere, either due to overlapping du-
chains or due to operator semantics. Therefore all nodes in
the fragment’s interference graph can be ascribed the same
color. Furthermore, because σ(t0) = σ(t1) = σ(t2) = σ(t3),
τ (t0) = τ (t1) = τ (t2) = τ (t3), and each ti is available at
the definition of ti+1 (0 ≤ i ≤ 2), we get S(t0) � S(t1) �
S(t2) � S(t3). Thus, all the variables in the fragment can
be bound to a common storage that will be reused dur-
ing the fragment’s execution. In fact, since |σ(t0)||τ (t0)| =
|σ(t1)||τ (t1)| = |σ(t2)||τ (t2)| = |σ(t3)||τ (t3)|, the storage
sizes for all four variables can be statically determined to
be the same. This means that at each of their definitions,
their associated storage needn’t be resized at run time. The
IR shown above on the right indicates this by using the �
superscript to denote a defined array that isn’t resized.
Example 2: Expandable Arrays with Symbolic Types
A more interesting example that may involve array expan-
sion is shown in the IR given below. Here, an x× y identity
matrix is created in a, which is then used to create a matrix
b through the subsasgn operator.

a ← eye( x, y);
b ← subsasgn(a, 1, i1, i2);

Assuming that a is dead at the end of the code fragment,
we see that the du-chains of a and b don’t overlap. And
because b can be formed in a provided the latter is large
enough (see § 2.3.3), we observe that a and b don’t inter-
fere. Hence, a minimal coloring of the interference graph
will put both a and b in the same color class. For the in-
trinsic types of a and b, will return BOOLEAN; it
will also return expressions for the shape tuples of a and b
that in the absence of further information on x, y, i1 and i2



will likely be symbolic. However, because of the semantics
described in § 2.3.3, we can be assured that |σ(a)| ≤ |σ(b)|
will always be true. Thus, because τ (a) = τ (b) is also true,
and a is available at the definition of b, S(a) � S(b) will
hold by Relation 1. Hence, a can share the same storage as
b. If the storage sizes of both a and b are statically ines-
timable, a resizing check would have to be inserted before
the code generated for each of the IR statements. If a and b
have statically estimable sizes, both will be stack allocated
within a maximal sized storage. These two situations are
shown in the IR below where the ± superscript indicates a
defined array that may need resizing and the + superscript
indicates a defined array that if resized, will be grown. The
superscripts are applicable only in the dynamic case.

s± ← eye( x, y);
s+ ← subsasgn( s, 1, i1, i2);

There exists one situation where a and b won’t share the
same storage even if they don’t interfere; this will happen if
the size of only one of them can be statically estimated.

3.3 Decomposing a Color Class into Groups
A directed graph G = (V,E) is used to represent the

storage-size partial order � on a color class V . A directed
edge u → v is introduced between a pair of distinct vari-
ables u and v in V if and only if S(u) � S(v). The algorithm
Decompose-color-class given below performs the decom-
position.
Decompose-color-class(G)

1 Find the component graph GSCC of G.

The component graph GSCC = (V SCC, ESCC) of a di-
rected graph G = (V,E) has a node for each strongly
connected component (SCC) in G, and a directed
edge x → y if there is a directed edge from a node
in the SCC in G corresponding to x to a node in the
SCC in G corresponding to y [10].

2 Decompose GSCC into a forest of trees by invoking
either depth-first search (DFS) or bread-first search
(BFS) on nodes with in-degrees of 0.

All variables in an SCC of G have the same storage size.
Thus, the root of each tree returned by Decompose-color-
class corresponds to an SCC in G whose variables have a
maximal storage size under �. This is because the roots
have in-degrees of 0 in GSCC. Note that in-degrees of 0
will exist because GSCC has the important property of being
acyclic [10]. Therefore, variables in all those SCCs in G that
correspond to a returned tree’s nodes have storage sizes that
are bounded by a maximal element in �. Hence, the collec-
tion of trees returned by Decompose-color-class forms a
decomposition of a color class into groups.

Lemma 1. If every node in a color class belongs to a
unique maximal chain9 under �, then Decompose-color-
class assigns all nodes in a maximal chain to the same
group.

Proof. Suppose there exists a maximal chain in which
nodes belong to different groups. Because both BFS and
DFS touch all nodes reachable from a root, this means that
there exists a u such that S(u) is bounded by at least two
distinct maximal elements, which is a contradiction.

9A chain is maximal if no other chain properly subsets it.

Hence, from Lemma 1, Decompose-color-class auto-
matically fosters the closeness property mentioned in § 3.2.2
except in one situation. That exceptional situation occurs if
a node is common to two or more maximal chains. The im-
plementation currently assigns nodes common to two maxi-
mal chains wholly to one of them.
In terms of complexity, the running time of Decompose-

color-class is O(V +E) since Step 1 can be done in O(V +
E) time [10], and because Step 2 can also be done in O(V +
E) time since V SCC = O(V ) and ESCC = O(E).

4. PERFORMANCE EVALUATION
The efficacy of the GCTD pass was evaluated by collecting
metrics relating to memory footprints and execution times
over a set of 11 MATLAB programs obtained from differ-
ent sources. These benchmarks are listed in Table 1 along
with brief descriptions, their origins, and their sizes in terms
of the number of files that constitute their source codes
(called M-files in MATLAB jargon) and the total number
of nonempty noncomment lines in them.

4.1 Benchmarks’ Organization
Programs in the set were organized along the lines of the
FALCON benchmark suite in which the main function in
a program is invoked from a driver routine. Typical tasks
performed by a driver are the preparation of arguments for
an invocation, the display of results from an invocation and
the timing of the entire execution. Though can handle
built-in functions like disp and fprintf that produce out-
puts to external files, no support currently exists for loading
data from external files. Some of the drivers in their original
form did read data from external files; these were modified
by the inclusion of the loaded data within the driver. This
wasn’t found to be a problem because the loaded data was
confined to only a few scalars. Nevertheless, the current in-
ability to handle MATLAB’s load built-in function is a lim-
itation of our implementation. Programs that produce data
by alternate means, such as by using the MATLAB random
number generator rand , can be handled by our system.

4.2 Platform Specifications
All measurements were done on a 440 MHz UltraSPARC-
IIi workstation running Solaris 7 and having 128MB of main
memory. The version of the MATLAB interpreter used was
6.1 (Release 12), while the version of mcc (The MathWorks’
MATLAB-to-C compiler) used was 2.2.10 Version 5.1 of the
Sun Workshop C compiler was used for back-end compila-
tion by both mcc and mat2c (the program). Recall
from § 3.1 that an external engine is used to infer the pro-
gram variable types; this is invoked transparently by mat2c
and was executed on version 4.1 of the Mathematica kernel.
The back-end C compiler in both cases was passed the

-xO4 and -xlibmil options that turn on a host of global
and local optimizations, and inline certain library routines
for faster execution. All optimizations offered by mcc were
turned on. To minimize memory usage, the MATLAB in-
terpreter was always run with the -nojvm option. This
suppresses the loading of a Java virtual machine that allows
a MATLAB session to draw on Java’s capabilities.

10In July of this year, latest versions of both—6.5 (Release
13) and 3.0—were announced.



Benchmark Synopsis Origin M-Files Lines

adpt Adaptive Quadrature by Simpson’s Rule ✝ FALCON 2 79
capr Transmission Line Capacitance Chalmers University of Technology, Sweden 5 68
clos Transitive Closure ✞ OTTER 2 30
crni Crank-Nicholson Heat Equation Solver FALCON 3 48
diff Young’s Two-Slit Diffraction Experiment The MathWorks’ Central File Exchange 2 40
dich Dirichlet Solution to Laplace’s Equation FALCON 2 49
edit Edit Distance The MathWorks’ Central File Exchange 2 34

❑ fdtd Finite Difference Time Domain (FDTD) Technique Chalmers University of Technology, Sweden 2 47
fiff Finite-Difference Solution to the Wave Equation FALCON 2 32
nb1d One-Dimensional N-Body Simulation OTTER 2 53

❑ nb3d Three-Dimensional N-Body Simulation Modified nb1d 2 46
❑ Benchmarks involve three-dimensional arrays.
✝ FALCON MATLAB Compiler Test Suite [13].

✞ OTTER Parallel MATLAB Compiler Test Suite [20].

Table 1: Benchmark Suite Description

Benchmark

Static/Dynamic Original Storage
Variable Variable Reduction
Reduction Count (KB)

adpt 127/74 271 0.96
capr 84/75 301 0.68
clos 24/0 46 1216.14
crni 73/0 113 4055.85
diff 48/1 93 12.77
dich 82/0 107 144.90
edit 25/21 108 0.21
fdtd 111/0 168 4374.61
fiff 51/0 77 12712.92
nb1d 66/63 235 0.55
nb3d 58/54 191 0.59

Table 2: Array Storage Coalescing Reductions

4.3 Storage Reductions
Table 2 shows reductions in variable count and corre-
sponding reductions in storage size due to the GCTD al-
gorithm. Entries in the “Static/Dynamic Variable Reduc-
tion” column are of the form s/d where s is the number
of variables whose array sizes are statically estimable and
that get subsumed in another array by the GCTD pass, and
where d is the number of variables whose sizes are statically
inestimable (thus requiring dynamic allocation) but which
can still be statically subsumed within another dynamically
allocated variable because of the storage-size partial order
�.
The “Original Variable Count” column indicates the total
number of variables in the CFG on entry to the GCTD pass.
This includes variables in the program source, as well as
temporaries introduced in preceding transformations like the
SSA and SO form (see § 2.3) conversions. Other kinds of
variables that also come under the coalescing regime of the
GCTD pass, such as those assigned in symbolic shape tuple
and rank expressions, are included in the above count.
Observe that for five benchmarks, d is 0. This is because

manages to explicitly infer all the shape tuples in
them, causing all of their storage to be stack allocated by
the GCTD algorithm. The corresponding reduction in bytes
due to the coalescing of stack allocated variables is displayed
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Figure 2: Average Stack, and Stack+Heap Levels

in the “Storage Reduction” column. This figure is thus con-
servative in the savings in storage that it reflects because
reductions due to the coalescing of heap allocated variables
aren’t included in it. Still, in 4 out of 11 programs, static re-
ductions are seen to be over a megabyte, and close to 13 MB
in fiff . This is on account of the large coalescent arrays
(≈ 451 × 451) that are operated upon by this benchmark.
This is also the reason why with coalescing turned on, code
generated by mat2c for fiff runs nearly two orders of mag-
nitude faster than code generated bymcc (see Figure 5), and
why without coalescing, code generated by mat2c is nearly
six orders of magnitude slower (see Figure 6)! The key con-
tributors to the relatively large reductions in variable count
are the temporaries introduced as part of the SO form con-
version process. Since these temporaries only serve to break
long expressions into smaller ones, they have considerable
potential for reuse both within and across expressions.

4.4 Howmcc Handles Arrays
The mcc compiler relies on run-time type determination
for its generated C code. In essence, the approach is to rep-
resent every array by a C struct called mxArray , which
besides embedding the contents of the array, has a number
of fields that contain meta information such as the array’s
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shape and intrinsic type. These fields are set up at run
time when arrays get created, and are examined and modi-
fied as conformance checks are performed and arrays evolve.
A consequence is that all arrays in the mcc-generated C
code are allocated on the heap. As a result, memory us-
age conservation also happens at run time where the library
versions of each of the MATLAB operators have the onus
of creating and deleting arrays. Array duplication due to
copies is also minimized dynamically through sharing and a
“copy-on-write” scheme. The way the automated memory
management works is that mxArray structures created and
returned within nested calls of library functions are deallo-
cated immediately after being used. Another consequence of
this run-time approach is that an mxArray structure, whose
size in version 2.2 of mcc is 88 bytes, will be allocated for
scalars that don’t get folded at compile time.
This “library-based” model of compilation isn’t unique
to MATLAB; it is also used in compilers for other similar
typeless array-based languages like APL.

4.5 Run-Time Memory Footprints
Figures 2 to 4 display the average memory levels in the
stand-alone C codes automatically generated by mat2c with
the GCTD pass turned on, and by mcc. Reductions in the
dynamic program data sizes (stack plus heap space) relative
to the mat2c C codes are shown as percentages above the
bars in Figure 2. Relative reductions in other categories of
memory are also shown as percentages in Figures 3 and 4.

4.5.1 Average Stack Trends
When a C program begins execution, there is already one
stack frame on its run-time stack that contains the initial
process environment such as the argc and argv parameters
and the array of strings representing the process’s environ-
ment variables. Thus, the stack segment, which grows in
units of pages, will initially be at least one page in size,
which is 8KB on the Solaris 7 UltraSPARC-IIi platform on
which we ran our experiments. Further procedure invoca-
tions from main can cause the stack segment to grow de-

pending on how local variables are allocated and referenced
in the invoked functions. Because the mcc C codes bank on
the heap for all array allocations and use function interfaces
only for the passing and allocation of handles to these ar-
rays, the high watermark of their run-time stacks shouldn’t
be expected to be large. Indeed, the mcc C codes for all
benchmarks were found to have a stack segment size that
grows to 16KB and stays at that. This is why the average
stack segment size of the mcc C codes in Figure 2 is 16KB.
Figure 2 also shows four prominent peaks for the aver-
age stack segment size of the mat2c C codes for the clos ,
crni , fdtd , and fiff benchmarks. This is because mat2c
allocates all arrays in these benchmarks on the stack. In
the other benchmarks, significant percentages of the array
shapes were symbolic; this led to their storage being primar-
ily allocated on the heap. The exception was dich in which
though 100% of the array shapes were statically inferred, the
overall average stack segment size was only about 17.5KB
because most of the arrays in this benchmark were small.

4.5.2 Average Heap Trends
Figure 2 also shows the average stack and heap space sums
across all benchmarks. All average memory sizes, be it stack
size, virtual memory level or resident set level, were calcu-
lated using a weighted time-averaged formula. Ifmi was the
observed memory size in some small duration ∆ti, then the
average memory size M was calculated by the expression

M =

∑
imi∆ti∑
i∆ti

. (2)

To ensure the interception of rapid fluctuations in memory
levels in Equation (2), ∆ti was made as small as possible.
In our measurements, ∆ti was between 250 to 350 microsec-
onds, which was usually about a thousandth to a hundredth
thousandth of a C code’s execution time.
In general, the average dynamic program data sizes of

mat2c C codes were smaller than that of mcc C codes;
the relative reductions were over 20% in 7 out of 11 cases,
being over 100% in over half of the cases. In the case of
capr , though the mcc C code fared better by a small mar-
gin, it still has a far higher kcore-min value as discussed in
§ 4.5.2.1 below. (For capr , the average dynamic program
data sizes for the mcc and mat2c C codes were 2428.02KB
and 2506.75KB.)

4.5.2.1 KCore-Min Reductions.
An important point that the average figures don’t uncover
is the duration of consumption of a memory resource. If pro-
cesses P1 and P2 both consume x kilobytes of memory, P1
for t seconds and P2 for 2t seconds, then both will have the
same time-averaged memory consumption level but clearly
P2 will be the bigger memory hog. To take into consider-
ation the effect of time, UNIX systems use a metric called
the kcore-min value of a process that is computed as

kcore-min = M × T

where M is the mean memory size in kilobytes and T is the
duration of memory usage in minutes.
Thus, even though the average dynamic program data size
of the mat2c C code was close to that of the mcc C code in
capr and nb3d , the mat2c versions have lower kcore-min
values because of their shorter execution times. The rela-
tive kcore-min reductions were 102.3% and 71.5% in these
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two cases and are shown using arrow markers in Figure 2.
Though not shown in Figure 2, the mat2c C codes for all
other benchmarks also exhibit kcore-min reductions because
besides having lower size averages, they also usually have
significantly lower execution times as shown in Figure 5.

4.5.3 Overall Memory Levels
To obtain the complete picture, the average virtual mem-
ory consumption levels of themat2c andmccC codes, which
includes all swapped-out pages, mapped files and devices, is
shown in Figure 3. The average resident set sizes (RSS) for
all benchmarks are also shown, in Figure 4, which describe
the amount of physical memory used by a process. The RSS
numbers are significant, especially in an embedded setting,
because non-resident pages don’t task a RAM. Note that
the sizes of the compiled images of the mat2c and mcc C
codes also affect both these levels. However, it should be
mentioned that the binary image size of a mat2c C code is
nearly always larger than that of an mccC code. The reason
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for this is that mat2c inlines out most of the language oper-
ations (this can be controlled by a pass-file option) whereas
mcc always translates them to calls into a library. Hence, at
the heart of the resource usage differences are the disparate
approaches to compilation used by mat2c and mcc.

4.6 Execution Time Improvements
Figure 5 compares execution times of the mat2c and mcc
C codes on a log scale. The figure also shows the times taken
by the MATLAB interpreter to execute the benchmarks. In-
dicated above the bars are the performance speedups of the
mat2c C codes over the mcc C codes. In only one case was
the speedup marginal—10% for the adpt benchmark. The
adpt benchmark has a parameter called tol that specifies
the error tolerance in the quadrature values produced. De-
creasing this value decreases the fractional overhead due to
type checking, making numerical computation the dominant
work in the benchmark. Measurements for adpt were taken
with tol set at 10−12, which is the setting in the FAL-
CON benchmark suite. Because increasing tol increases
the relative overhead due to type checking, the mat2c C
code performs much better than the mcc C code at higher
values of tol . In all other benchmarks, the speedups ranged
from 30% and 74% in two cases, to over 100% in the remain-
ing. In fact, in 4 out of 11 benchmarks, the speedups were
dramatic, being over an order of magnitude.

4.6.1 Impact of the GCTD Algorithm
Figure 6 exhibits the influence of the GCTD pass on the
execution times of the mat2c C codes. All other opti-
mizations offered by the system, like common subex-
pression elimination, constant folding, dead-code elimina-
tion and loop unrolling, were active in both cases. Numbers
shown above the bars indicate the relative speedups with
and without the GCTD pass. These relative speedups, in
the context of the timings displayed in Figure 5, show that
without it, the mat2c C codes would have performed poorly
with respect to the mcc C codes in 8 out of 11 cases. This
demonstrates the pivotal role that the GCTD pass plays in
improving performance through the better static manage-
ment of storage.



5. SUMMARY
This paper presented an algorithm for the efficient static
management of storage in MATLAB through the coalescing
of arrays. The algorithm consists of two phases the first of
which uses the classic notion of interference to form classes
of variables that don’t compete for storage and the second
of which decomposes those classes on the basis of program
variable types and control flow. Unique aspects of the phases
are the consideration of interference due to operator seman-
tics, its resolution using types, and the use of symbolic type
information in the decomposition of color classes. Rather
than clumping together all arrays having symbolic shapes
within a color class, which we have observed to be a poor
storage management policy, the second phase uses a partial
order to facilitate better spatial reuse characteristics. The
algorithm is also applicable to other typeless array-based
languages like IDL and APL that present similar issues.
The algorithm is also nonoptimal. The simplest example
is an interference graph that consists of three nodes A, B
and C representing variables with identical intrinsic types,
whose corresponding storage sizes, assuming all are stati-
cally estimable, are say 4, 2 and 3 units respectively. If the
only edge in the interference graph is between A and B,
its chromatic number is 2. However, the aggregate of the
coalesced storages will differ depending on which minimal
coloring is actually used—if B and C share the same color,
the aggregate will be 7 units, whereas if A and C share the
same color, the aggregate will be 6 units. Thus, arriving at
an optimal solution to the problem even in the simpler case
of all array shapes being compile-time knowns would require
an exploration of all possible colorings, a point that Fabri
had also noted [15]. However, our experiments show that
even with a conservative approach to the problem like ours,
considerable savings in storage space and improvements in
execution performance can be achieved.
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[14] A. P. Eršov. Reduction of the Problem of Memory
Allocation in Programming to the Problem of
Coloring the Vertices of Graphs. Doklady Akademii
Nauk SSSR, 142:785–787, Jan. 1962. English
translation in Soviet Mathematics, Vol., 3, No., 1, July
1962, pages 163–165.

[15] J. Fabri. Automatic Storage Optimization. In
Proceedings of the ACM SIGPLAN Symposium on
Compiler Construction, pages 83–91, Aug. 1979.

[16] L. J. Guibas and D. K. Wyatt. Compilation and
Delayed Evaluation in APL. In Proceedings of the
5th ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 1–8, Jan. 1978.

[17] P. G. Joisha and P. Banerjee. : A Software
Tool for Inferring Types in MATLAB. Technical
Report CPDC–TR–2002–10–004, Center for Parallel
and Distributed Computing, Department of Electrical
and Computer Engineering, Northwestern University,
Oct. 2002.

[18] P. G. Joisha and P. Banerjee. Implementing an Array
Shape Inference System for MATLAB Using
Mathematica. Technical Report
CPDC–TR–2002–10–003, Center for Parallel and
Distributed Computing, Department of Electrical and
Computer Engineering, Northwestern University, Oct.
2002.

[19] S. S. Lavrov. Store Economy in Closed Operator
Schemes. Zhurnal vychislitel’noi matematiki i
matematicheskoi fiziki, 1(4):687–701, 1961. English
translation in U.S.S.R. Computational Mathematics
and Mathematical Physics, Vol., 1, No., 3, 1962, pages
810–828.

[20] A. Malishevsky. Implementing a Run-Time Library for



a Parallel MATLAB Compiler. M.S. report, Oregon
State University, Apr. 1998.

[21] The MathWorks, Inc. MATLAB: The Language of
Technical Computing, Jan. 1997. Using MATLAB
(Version 5).

[22] P. Pineo and M. L. Soffa. A Practical Approach to the
Symbolic Debugging of Parallelized Code. In
Proceedings of the 5th International Conference on
Compiler Construction, pages 339–356, Apr. 1994.

[23] M. Poletto and V. Sarkar. Linear scan register
allocation. ACM Transactions on Programming
Languages and Systems, 21(5):895–913, Sept. 1999.

[24] Y. Zhang and R. Gupta. Data Compression
Transformations for Dynamically Allocated Data
Structures. In Proceedings of the 11th International
Conference on Compiler Construction, pages 14–28,
Apr. 2002.


