MAGICA

A Software Tool for Inferring Types in MATLAB ${ }^{\circ}$

Contents

1 Introduction 1
1.1 A Type Inference Using MAGICA 1
1.2 Feature Support 1
2 Representing MATLAB in MAGICA 2
2.1 The Tagging Scheme 2
2.2 Extensibility 2
2.3 A Type Inference on an Assignment Statement 3
3 Fibonacci Numbers 3
3.1 A Type Inference on Statement Sequences 4
3.1.1 Value Ranges in MAGICA 5
3.1.2 Intrinsic Types in MAGICA 6
3.1.3 Array Shapes in MAGICA 7
3.2 Replacing Matrix Power by Array Power 8
3.3 Implicit Intrinsic Type Coercion 8
4 Input Prerequisites 9
4.1 Static Single-Assignment Form 9
4.2 Single Operator Form 9
5 The Hilbert Matrix 10
5.1 An Unknown M for H_{M} 12
5.2 Another Way of Computing H_{M} 12
5.3 Yet Another Way of Computing H_{M} 14
6 Bayes Signal Probabilities 15
6.1 User-Defined MATLAB Functions in MAGICA 16
6.1.1 An Aside on Function Type Signatures and Procedure Cloning 16
6.2 A Type Inference on a User-Defined Function 16
7 Adaptive Quadrature by Simpson's Rule 18
7.1 Metrics Reflecting Size 19
7.2 A Type Inference on a Program 20
8 The Finite Difference Time Domain Technique 21
9 Availability 22
9.1 Requirements 23
9.2 Installation 23
10 Summary 24
A Adaptive Quadrature by Simpson's Rule 26
A. 1 The drv_adapt MATLAB Function 26
A. 2 The adapt MATLAB Function 26
B The Finite Difference Time Domain Technique 28
B. 1 The drv_fdtd MATLAB Function 28
B. 2 The fdtd MATLAB Function 29

1 Introduction

MAGICA (MAthematica system for General-purpose Inferring and Compile-time Analyses) is an extensible inference engine that can determine the types (value range, intrinsic type and array shape) of expressions in a MATLAB program. Written as a Mathematica application, it is designed as an add-on module that any MATLAB compiler infrastructure can use to obtain high-quality type inferences.

About This Document This report only describes MAGICA's capabilities; it doesn't describe the methods, techniques or coding used to achieve them. The intent is to show what the system is capable of, and to demonstrate its usage.

1.1 A Type Inference Using MAGICA

Lines In [1] and Out [1] below demonstrate a simple interaction with MAGICA through a notebook interface. ${ }^{\text {a }}$ On line $\operatorname{In}[1]$, the MAGICA type function object is applied on a representation of the MATLAB expression sqrt (2). MAGICA's response, shown on Out [1], is the inferred type of sqrt (2). In this case, "type" is the expression $\{v, i, s\}$ where v, i and s are the value range, intrinsic type and array shape of sqrt (2). Thus Out [1] indicates that the value range of sqrt (2) is the point 1.41421 , its intrinsic type is the real number designator \$real, and that its array shape is two-dimensional with unit extents along both dimensions-that is, a scalar shape.

```
In[1]:= type[sqrt[2]]
Out[1]= {1.41421, $real, {\langle1, 1\rangle, 2}}
```


1.2 Feature Support

The above is an example of a type inference on a single MATLAB expression. MAGICA can infer the types of whole MATLAB programs comprising an arbitrary number of user-defined functions, each having an arbitrary number of statements. User-defined functions can return multiple values, can consist of assignment statements, the for and while loops, and the if conditional statement. (All these MATLAB constructs are explained in [Mat97].) In addition, MAGICA can handle close to 70 built-in functions in MATLAB. These include important Type II operations ${ }^{\text {b }}$ like subsref, subsasgn and colon that are used in array indexing and colon expressions. For the most part, the full or nearly the full semantics of a built-in function, as specified in [Mat97], is supported. For instance, subscripts in array indexing expressions can themselves be arrays, and arrays can be complex-valued. Not all of MATLAB's features are currently handled; these include structures, cell arrays and recent additions like function handles.

[^0]
2 Representing MATLAB in MAGICA

MAGICA symbolically represents constructs in MATLAB. An example of this is the Mathematica expression plus [a , b], which is MAGICA's representation of the MATLAB expression $a+b$. On line In [1] above, the Mathematica expression sqre [2] was used to denote the MATLAB expression sqrt (2). The idea of functionally representing a MATLAB expression can also be used to denote high-level constructs. For instance, the MATLAB assignment statement $1 \leftarrow \log (-1)$, where 1 is a MATLAB program variable, is represented in MAGICA as shown on line In [2] below.

```
In[2]:= assignment[$$lhs :-> 1, $$rhs :-> log[-1]]
Out[2]= assignment ($$lhs:-> l, $$rhs:-> log (-1))
```

The expression's head is assignment and this is used to uniquely identify MATLAB assignments. The tags $\$ \$ 1 \mathrm{hs}$ and $\$ \$$ rhs serve to identify the assignment's left-hand side and right-hand side. We call 1 and $\log [-1]$ as tag values. A tag value can be any expression; this allows for the representation of arbitrary MATLAB assignments, including the multiple-value assignment [Mat97].

2.1 The Tagging Scheme

In general, MATLAB statements are represented in MAGICA as

$$
h\left[x_{1}: \rightarrow y_{1}, x_{2}: \rightarrow y_{2}, \ldots, x_{n}: \rightarrow y_{n}\right]
$$

where the head h serves as a construct identifier, and where the delayed rules [Wol99] $x_{i}: \rightarrow y_{i}(1 \leq i \leq n)$ stand for tag-value pairs. MAGICA places no significance on the position of a tag-value pair; this point should be kept in mind when making new definitions to extend the MAGICA system. An example of the tagging scheme is

```
if[$$condition : }
```

that represents the if conditional statement in MATLAB. Here, c is the if statement's test, and s_{t} and s_{e} are its then and else statement bodies. A fair amount of documentation regarding data structure layouts has been coded into MAGICA itself as usage messages [Wol99]; this provides a convenient, on-line way of pulling up layout information while interacting with MAGICA.

In[3]:= ?if

```
if[$$condition :> c_, $$then :> t_, $$else :> e_]
    is the functional equivalent of an if statement in MATLAB. Forms such as
    $$condition -> c, $$then -> t and $$else -> e can also be used.
```


2.2 Extensibility

The decision to represent MATLAB's high-level constructs around the tagging scheme was motivated by extensibility. For instance, if there is a subsequent need to extend the assignment data structure by the inclusion of a tag that carries, say, dependency information, this can be easily done without affecting any of the existing MAGICA code.

2.3 A Type Inference on an Assignment Statement

Line In [4] below shows an application of the type object on the earlier assignment statement. ${ }^{\text {c }}$ When applied on a single assignment in which the left-hand side is t and the right-hand side is e, type generates a list consisting of a single type expression rewriting rule [Wol99] of the form $t \rightarrow\{v, i, s\}$. The expressions v, i and s are the value range, intrinsic type and array shape of e.

```
In[4]:= type[%2]
Out[4]= {1->{3.14159 i, $nonreal, {\langle1, 1\rangle, 2}}}
```

On Out [4], i stands for the imaginary unit. The \$nonreal intrinsic type designator indicates that the elemental value 3.14159 i of $\log (-1)$ logically belongs to the set $\mathbb{C}-\mathbb{R}$, where \mathbb{C} and \mathbb{R} are the sets of complex and real numbers respectively.

The type object may additionally produce side effects; in the above case, it also records the computed v, i and s expressions as upvalues [Wol99] of t. This facilitates later retrieval and reuse of previously computed type expressions. This is also the mechanism by which MAGICA propagates type information from one statement to another. As displayed below, the rank, ${ }^{\text {d }}$ shape tuple, intrinsic type and value range of t are registered against $\rho(t), \sigma(t), \tau(t)$ and $v(t)$ respectively.

In[5]:= ? ? 1

Global‘1

```
\rho(1)^=2
\sigma(1) ^=\langle1, 1\rangle
\tau (l) ^= $nonreal
v(l)^= 3.14159 i
```


3 Fibonacci Numbers

MAGICA uses the expression Sequence $\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ to denote a sequence of statements. Each $s_{i}(1 \leq i \leq n)$ can be an assignment, an if conditional, a for loop, a while loop, a break or a return. Anything else is taken to be an expression statement. ${ }^{\mathrm{e}}$ On In [6] below, a sequence of statements that calculates the nth Fibonacci number in fn is defined and assigned to the Mathematica symbol stmts.

[^1]```
In[6]:= stmts := Sequence[t1 \leftarrow sqrt[5], t2 \leftarrow plus[1, t1], t3 \leftarrow
 mrdivide[t2, 2], t4 \leftarrow mpower[t3, n], t5 \leftarrow mrdivide[t4, t1],
 fn }\leftarrow\mathrm{ round[t5]]
```

Every statement in the above sequence is an assignment; the construction $l \leftarrow r$ is a shorthand for assignment [\$\$lhs $: \rightarrow l$, $\$ \$ \mathrm{rhs}: \rightarrow r$ ] in MAGICA. ${ }^{\mathrm{f}}$

As an aside, MAGICA defines a function object called show that displays MAGICA data structures in MATLAB syntax. This is useful for visualization.

## In [7]:= ?show

```
show[s_, opts___] displays a MATLAB structure s
 as an appropriate MATLAB code fragment,under the control of options in opts .
 show[] displays the MATLAB structure assigned to $mfile in the current context.
 show has the following options: show$Stream, show$ASCII and
 show$Notebook. The last two are available only in a notebook - based front - end.
```

Below we see what the MATLAB progenitor of stmts would have looked like.

## In [8]:= show[stmts]

```
% MATLAB Code Fragment
t1 = sqrt(5);
t2 = 1+t1;
t3 = t2/2;
t4 = t3^n;
t5 = t4/t1;
fn = round(t5);
```


### 3.1 A Type Inference on Statement Sequences

The MAGICA type object can be applied on a sequence of statements to produce a list of rewriting rules; Out [9] shows what happens when type operates on stmts.

```
In[9]:= type[stmts]
Out[9]= {t1 }->{2.23607,$real, {\langle1, 1\rangle, 2}}
 t2 ->{3.23607, $real, {\langle1, 1\rangle, 2}},'
 t3 }->{1.61803,$real, {\langle1, 1\rangle, 2}}
 t4
 t5 ->{(1 + i्i) [-\infty, \infty\rrbracket, $complex, {mpowerST(\sigma (n),\langle1, 1\rangle), 2}},
 fn }->{(1+\mathbb{i})\llbracket-\infty,\infty\rrbracket, $complex, {mpowerST(\sigma(n),\langle1, 1\rangle), 2}}
```

In the above, we see that the golden ratio computed in $t 3$ has the value 1.61803 , the \$real intrinsic type, the $\langle 1,1\rangle$ shape tuple and the rank $2 .{ }^{g}$

[^2]
### 3.1.1 Value Ranges in MAGICA

MAGICA's value range inference subsystem is built on Mathematica's interval arithmetic [Wol99]. The value range that MAGICA conservatively generates against a MATLAB expression consists of value bounds that all elements of that expression honor. (Keep in mind that a MATLAB expression can be a multi-element array.)

Complex Value Ranges MAGICA can denote everything from a value point to a complex value range. The latter are represented using interval arithmetic on real and imaginary subranges. If a MATLAB expression $e$ has the value range

$$
\llbracket r_{l}, r_{h} \rrbracket+\llbracket i_{l}, i_{h} \rrbracket \dot{\mathbf{i}},
$$

it means that the elemental values of $e$ have real and imaginary parts that lie between the inclusive end points $r_{l}$ and $r_{h}$, and $i_{l}$ and $i_{h}$, respectively. ${ }^{\text {h }}$ Thus Out [9] shows that the value ranges of $t 4, \mathrm{t} 5$ and fn are all of the form

$$
\llbracket-\infty, \infty \rrbracket+\llbracket-\infty, \infty \rrbracket \dot{\mathrm{i}} .
$$

Observe that for these program variables, this is also the best inferable value range. This is because $t 4, \mathrm{t} 5$ and fn are all dependent on $n$, whose value range is unknown.

Value Range Operators MAGICA provides a number of useful "primitives" in connection with value ranges. These operators form the basis for MAGICA's value range inference code. For example, the nextN function object returns the IEEE 754 machine normal number [Gol91] that comes after a given real number. ${ }^{\text {i }}$

```
In[10]:= Names["Type 'ValueRange`*"]
Out[10]= {nextN, prevN, v, UAdd, UApproximation, UDivide, UExp,
 UIntersection, ULimit, ULOg, UMemberQ, UMultiply,
 uPointQ, UPower, URecombine, uUnion, v$interprocedural}
```

In their ability to handle and produce complex value ranges, value range operators (the third to the second-last in the list on Out [10] ) go beyond Mathematica's interval arithmetic. This is illustrated below, where $v$ Exp exponentiates a complex value range.

```
In[11]:= UExp[\llbracket1, \pi\rrbracket+i\[3.1, 4\rrbracket]
Out[11]= \llbracket-23.1407, -1.77679\rrbracket+ i}\llbracket-17.5129, 0.962205\rrbracket
```

If Mathematica's Exp built-in object is used instead, the result remains unevaluated because interval arithmetic in Mathematica is only set up for real value ranges.

$$
\begin{aligned}
& \text { In [12]: }=\operatorname{Exp}[\llbracket \mathbf{1}, \quad \pi \rrbracket+\mathbf{i} \llbracket 3 . \mathbf{1}, \quad 4 \rrbracket] / / \mathbf{N} \\
& \text { Out [12] }=2.71828^{\llbracket 1 ., 3.14159 \rrbracket+(0 .+1 . \text { i) }) \llbracket 3.1,4 . \rrbracket}
\end{aligned}
$$

[^3]
### 3.1.2 Intrinsic Types in MAGICA

An intrinsic type in MAGICA denotes a logical set to which all elemental values of a MATLAB expression belong. MAGICA's intrinsic types are organized as a lattice $\mathbb{T}$ in which the partial order is value subsumption. ${ }^{j}$ This lattice was described in [JB01b] and is reproduced below. MAGICA represents the least and greatest elements of $\mathbb{T}$


Fig 1. The Lattice $\mathbb{T}$ of Intrinsic Types in MAGICA
by the symbols $\$ 0$ and $\$ 1$. The symbols \$boolean, \$byte, \$integer, \$real, \$complex, \$nonreal and \$illegal similarly denote BOOLEAN, BYTE, INTEGER, REAL, COMPLEX, NONREAL and $\mathfrak{i}$ respectively.

```
\(\operatorname{In}[13]:=\mathbb{T}\)
Out [13]= \{\$0, \$boolean, \$byte, \$integer,
 \$real, \$nonreal, \$complex, \$illegal, \$1\}
```

In [JB01b], a BOOLEAN stood for a 0 or 1 , and a BYTE for an 8-bit unsigned integer. The same interpretations have been carried over to MAGICA. As in [JB01b], INTEGER, REAL, COMPLEX and NONREAL signify $\mathbb{Z}, \mathbb{R}, \mathbb{C}$ and $\mathbb{C}-\mathbb{R}$ in MAGICA (the sets of integers, reals, complexes and strict complexes respectively). [JB01b] did not assume a specific bit width for INTEGER; MAGICA however promotes the intrinsic type of integral values outside the range $\llbracket-2^{32}+1,2^{32}-1 \rrbracket$ to REAL, which represents a double-precision number in MAGICA. Lastly, the abstract "illegal" intrinsic type $\mathfrak{i}$ signifies intrinsic type error situations. Binary comparisons among the symbols work as expected. ${ }^{\mathrm{k}}$

```
In[14]:= {$0 \leq $boolean, $byte \leq $nonreal, $nonreal \leq $byte}
Out[14]= {True, False, False}
```

[^4]
### 3.1.3 Array Shapes in MAGICA

The "array shape" of a MATLAB expression $e$ is the pair $\{\sigma(e), \rho(e)\}$ where $\sigma(e)$ and $\rho(e)$ are the shape tuple and rank of $e$. On Out [4], we saw that the shape tuple and rank of $\log (-1)$ were $\langle 1,1\rangle$ and 2 . Out [9] shows that the shape tuple of $t 4$ is

$$
\operatorname{mpowerST}(\sigma(\mathrm{n}),\langle 1,1\rangle) .
$$

MAGICA infers this by considering the right-hand side of $t 4 \leftarrow t 3^{\wedge} n$. Because $t 3$ is inferred to be a scalar from the preceding assignment in stmts, and because the shape tuple of $n$ is unknown, MAGICA initially computes the shape tuple of $t 4$ to be

$$
\text { mpowerst }(\langle 1,1\rangle, \sigma(\mathrm{n})) \text {. }
$$

The above expression fully describes the shape tuple of $t 4$ because the matrix power built-in function in MATLAB (invoked either as mpower ( $t 3, \mathrm{n}$ ) or as $t 3^{\wedge} \mathrm{n}$ ) is a Type I operation [JSB00]. Type I operations are characterized by the fact that the shapes of their outputs are fully describable by the shapes of their inputs. For these operations, it is always possible to construct shape-tuple operators that map the shape tuples of the inputs to the shape tuples of the outputs [JB01a]. The expression head mpowerST above stands for the shape-tuple operator of the mpower built-in.

Shape Semantics of the Matrix Power Built-In Function Why is the shape tuple of $t 4$ symbolic? This is due to the shape semantics of mpower:

1. When both $a$ and $b$ are scalar, $a^{\wedge} b$ is the elementary power operation.
2. Otherwise, when $b$ is a nonnegative integer, $\mathrm{a}^{\wedge} \mathrm{b}$ is computed by repeated squaring [Mat97]. This means that a must be a square matrix for the operation to be valid. The result then has the same shape as $a$. If $b$ is a negative integer, MATLAB inverts a before proceeding according to this case.
3. For other scalar values of $b$, MATLAB calculates $a^{\wedge} b$ using eigenvalues and eigenvectors [Mat97]. Once again, the operation is valid only if a is a square matrix, in which case the result has the same shape as a.
4. If $b$ is a nonscalar square matrix, $a$ has to be scalar for the operation to valid. In this case, the shape of the result is the same as that of $b$.
5. Any other shape for a or b results in an error.

Therefore, because $t 3$ is a scalar and $n$ has an unknown shape, $t 3^{\wedge} n$ could either have the same shape as $n$, or have an "illegal" shape depending on whether or not $n$ is a square matrix. To capture these possibilities, MAGICA returns a symbolic shape tuple.

Canonicalization After arriving at mpowerST $(\langle 1,1\rangle, \sigma(\mathrm{n}))$, MAGICA rearranges it to mpowerst $(\sigma(\mathrm{n}),\langle 1,1\rangle)$. This happens because for any two shape tuples $\sigma(s)$ and $\sigma(t)$, mpowersT $(\sigma(s), \sigma(t))$ and mpowersT $(\sigma(t), \sigma(s))$ are equivalent-that is, they represent the same shape. This commutative property is coded against mpowerST in

MAGICA and causes expressions involving mpowerST to be automatically reduced to a canonical form [Wol99]. Canonical forms enable MAGICA to detect shape equivalence, which in turn permits the reuse of shape-tuple expressions.

```
In[15]:= typeReuse[%9]
Out[15]= {t1 }->{2.23607, $real, {\langle1, 1\rangle, 2}}
 t2 }->{3.23607,'$real', {\langle1,, 1\rangle, 2}}','
 t3 }->{1.61803, $real, {\langle1, 1\rangle, 2}}
 t4
 t5 }->{(1+i) \llbracket-\infty,\infty\rrbracket,$complex, {\sigma(t4), 2}}
 fn }->{(1+\dot{\mathbb{i}})\llbracket-\infty,\infty\rrbracket,$complex,{\sigma(t4),2}}
```


### 3.2 Replacing Matrix Power by Array Power

The previous MATLAB Fibonacci code will compute the $n$th Fibonacci number whenever $n$ is a nonnegative scalar integer. When $n$ is a square matrix, the code will still execute though what is computed in fn will probably little resemble a traditional Fi bonacci number. And when $n$ is a rectangular matrix or a higher dimensional array, the code will fail due to reasons mentioned earlier.

If we replace the mpower built-in by the power built-in, we obtain a nice generalization of the code to arbitrary arrays. The power built-in, invoked either as power (a, b) or as a. ^b, performs an elementwise power operation [Mat97]:

1. When either a or b is a scalar, the other operand can be any array and the result has the same shape as the other operand.
2. Otherwise, the operation is valid only if $a$ and $b$ have the same shape. The shape of the result then is the common shape of $a$ and $b$.

Substituting mpower by power allows us to compute an elementwise Fibonacci. The shape of fn will then be exactly the shape of $n$, as displayed below.

```
In[16]:= type[t1 \leftarrow sqrt[5], t2 & ¢ plus[1, t1], t3 \leftarrow ¢ mrdivide[t2, 2],
Out[16]={t1 }->{2.23607,$real, {\langle1, 1\rangle, 2}}
 t2 ->{3.23607, $real, {\langle1, 1\rangle, 2}},
 t3 }->{1.61803,$real, {\langle1, 1\rangle, 2}},
 t4 }->{(1+\mathbb{i})\llbracket-\infty,\infty\rrbracket,$complex,{\sigma(n),\rho(n)}}
 t5
 fn }->{(1+\mathbb{1})\llbracket-\infty,\infty\rrbracket,$complex,{\sigma(n),\rho(n)}}
```


### 3.3 Implicit Intrinsic Type Coercion

How can we gracefully handle situations in which the elemental values of $n$ aren't nonnegative and integral? One way of doing this is by adopting a conversion policy. For instance, given an $n$, we could calculate the $m$ th Fibonacci number where

$$
m=\lfloor|R(n)|\rfloor,
$$

and where $R$ extracts the real part of $n$. The preceding ad hoc conversion will at least ensure that for a nonnegative integral $n, n$ and $m$ are equal. When type is applied on the modified Fibonacci code, a more refined type inference is obtained against fn .

```
In[17]:= type[t1 \leftarrow sqrt[5], t2 \leftarrow~plus[1, t1], t3 \leftarrow m mrdivide[t2, 2],
```



```
 mrdivide[t4, t1], fn \leftarrow round[t5]]
Out[17]= {t1 }->{2.23607,$real, {\langle1, 1\rangle, 2}}
 t2 }->{3.23607,'$real, {\langle1, 1\rangle, 2}}','
 t3 }->{1.61803,$real, {\langle1, 1\rangle, 2}}
 n1 }->{\llbracket-\infty,\infty\rrbracket,$real, {\sigma(n),\rho(n)}}
 m ->{\llbracket-\infty, \infty\rrbracket, $real, {\sigma (n), \rho(n)}},
 t4->{\llbracket0, \infty], $real, {\sigma(n), \rho(n)}},
 t5 }->{{0,\infty\rrbracket,$real,{\sigma(n),\rho(n)}}
```

Observe that MAGICA determines the intrinsic type of fn to be \$real rather than \$integer because the upper bound of the elemental values in fn exceeds $2^{32}-1$.

## 4 Input Prerequisites

MATLAB programs fed to MAGICA are required to satisfy two prerequisites:

- They have to be in the Static Single-Assignment (SSA) form [CFRW91].
- They have to be in the Single Operator (SO) form.


### 4.1 Static Single-Assignment Form

The SSA form basically means that program variables have at most a single reaching definition in the representation passed to MAGICA. To support the SSA form, MAGICA also handles binary $\phi$ functions. Loop-header $\phi$ functions are required to be represented by the phi $\mu$ object. All other $\phi$ functions-namely, those that occur at the end of conditionals and loops-are required to be represented by the phi $\nu$ object. Due to the structured nature of control flow in the MATLAB language (conditionals, structured loops, and no goto statements), $\phi$ functions in the SSA form will always have lexically preceding definitions, except for loop-header $\phi$ functions for which one definition will be lexically preceding and the other will be lexically succeeding. MAGICA regards the first operand of a phi $\mu$ expression as the one having the lexically preceding definition.

The introduction of $\phi$ functions into a Mathematica representation, and their subsequent removal, is the responsibility of the front-end.

### 4.2 Single Operator Form

The SO form is an intermediate representation akin to three-address code; a MATLAB expression will be said to be in this form if it is either atomic (that is, either a program variable or a literal program constant), or if it is of the form

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

where each of the $a_{i}(1 \leq i \leq n)$ are atomic and where $f$ is a function, either userdefined or built-in. The expression's arity is denoted by $n$, and when $n$ is 0 , we have an example of a niladic function invocation - that is, an invocation of a function without
arguments. ${ }^{1}$ For brevity, a MATLAB expression in the SO form will be called a SOF MATLAB expression. If $e$ is a SOF MATLAB expression, then the MATLAB assignment $\mathrm{c} \leftarrow e$ will also be said to be in the SO form. All expressions and assignments in MATLAB can be cast into the SO form through the introduction of temporaries.

Observe that all of the previous MATLAB code fragments on which type was applied were both in the SSA and SO forms.

## 5 The Hilbert Matrix

The Hilbert matrix $H_{M}$ is an $M \times M$ matrix in which the $(i, j)$ th element $H_{i, j}$ is

$$
\frac{1}{i+j-1}
$$

A loopy style MATLAB code that computes $H_{100}$ is shown below.

```
In[18]:= stmts := Sequence[M}\leftarrow100, H \leftarrow zeros[M, M], t1 \leftarrow colon[1,
 M], for[$$variable : }->\mathrm{ i, $$iterations : }->\mathrm{ t1, $$body }
 Sequence[H1 \leftarrow phi\mu[H, H4], for[$$variable :-> j, $$iterations
 :A t1, $$body }->\mathrm{ Sequence[H2 }\leftarrow\mathrm{ phi }\mu[H1, H3], t2 \leftarrow plus[i, j],
 t3 \leftarrow minus[t2, 1], t4 \leftarrow mrdivide[1, t3], H3 \leftarrow subsasgn[H2,
 t4, i, j]]], H4 \leftarrow'phiv[H1, H3]]], H5 \leftarrow phiv[H, H4],
 disp[H5]]
In[19]:= show[stmts]
% MATLAB Code Fragment
M = 100;
H = zeros (M, M);
t1 = 1:M;
for i = t1,
 H1 = phi\mu(H, H4);
 for j = t1,
 H2 = phi\mu(H1, H3);
 t2 = i+j;
 t3 = t2-1;
 t4 = 1/t3;
 H3 = subsasgn(H2, t4, i, j);
 end;
 H4 = phiv(H1, H3);
end;
H5 = phiv(H, H4);
disp(H5)
```

There are four points to note regarding the code fragment:

1. The general form of a MATLAB for loop is
```
for i = e, ... end
```

where $i$ is the loop variable and $e$ is the for loop expression. The loop is executed as many times as the number of columns in $e$. In general, if $e$ has the shape $p_{1} \times p_{2} \times \cdots \times p_{k}$ where $k \geq 2$, this equals $p_{2} \times \cdots \times p_{k}$. The iteration count

[^5]is determined initially and isn't affected by subsequent modifications of either $e$ (if it is a variable) or $i$ within the body of the loop. With every iteration of the loop, $i$ is set to the vectors that form the successive columns of $e$.
2. phi $\mu$ and phi $\nu$ expressions are used to bring the code to the SSA form.
3. Temporaries like t2 and t3 are used to bring the code to the SO form.
4. The subsasgn object is used to represent the left-hand side array indexing operation in MATLAB. MAGICA regards the expression
$$
\operatorname{subsasgn}\left(O, R, i_{1}, i_{2}, \ldots, i_{n}\right)
$$
as denoting an array $A$ that has the same elements as $O$ except for elements located by the $n$ subscripts ( $i_{1}, i_{2}$ and so on till $i_{n}$ ), which are set to elements from $R$. The subsasgn object shares similar semantics with the Update operation described in [CFRW91] except for two important departures:

- Each subscript $i_{k}(1 \leq k \leq n)$ can be an arbitrary array. The locations in $A$ that are set to elements in $R$ are obtained by taking the Cartesian product of the elemental values in the subscripts. If $p_{k}$ is the number of elemental values in subscript $i_{k}, R$ is required to have the shape $p_{1} \times p_{2} \times \cdots \times p_{n}$. (There are corner cases that need to be handled. See [Mat97] for details.)
- If the maximum elemental value in $i_{k}$ exceeds the extent of $O$ along the $k$ th dimension, $A$ has that maximum value for its extent along the $k$ th dimension. New locations created in $A$ due to such expansions are set to 0 .

Thus, the effect of the assignment statement

$$
\text { H3 } \leftarrow \text { subsasgn (H2, t4, i, j) }
$$

is to set elements in H3 to corresponding elements in H2, except for the element at row $i$ and column $j$ in $H 3$, which is set to $t 4$. Because $i$ and $j$ range between 1 and M, the possibility of an expansion doesn't exist here. Line Out [20] below shows the inferences arrived at when type is applied on stmts.

```
In[20]:= type[stmts]
Out[20]= {M }->{100., $byte, {\langle1, 1\rangle, 2}}
 H}->{0,$boolean, {\langle100, 100\rangle, 2}}
 t1 }->{{1,100\rrbracket, $byte, {\langle1, 100\rangle, 2}}
 i }->{\llbracket1,100\rrbracket, $byte, {\langle1, 1\rangle, 2}}
 H1 }->{[0,1.\rrbracket, $real, {\langle100, 100\rangle, 2}}
 j }{{\llbracket1,100\rrbracket, $byte, {\langle1, 1\rangle, 2}}
 H2 }->{\llbracket0,1.\rrbracket, $real, {\langle100, 100\rangle, 2}}
 t2 }->{\llbracket2,200\rrbracket,$byte, {\langle1, 1\rangle, 2}}
 t3 }->{{1, 199\rrbracket, $byte, {\langle1, 1\rangle, 2}},'
 t4 }->{[0.00502513, 1.\rrbracket, $real, {\langle1, 1\rangle, 2}}
 H3 }->{\llbracket0,1.\rrbracket,$real, {\langle100, 100\rangle, 2}}
 H4->{[0, 1.\rrbracket, $real, {<100, 100\rangle, 2}},
 H5 }->{\llbracket0,1.\rrbracket, $real, {\langle100, 100\rangle, 2}}
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}}}
```

The last inference on Out [20] represents the type of disp's outcome; the shown type attributes reflect the fact that disp doesn't return anything.

### 5.1 An Unknown $M$ for $H_{M}$

The reason MAGICA manages to explicitly infer all the array shapes on Out [20] is because it has initial information about M. If M were unspecified, MAGICA will only be able to arrive at symbolic expressions for most of the shape tuples.

```
In[21]:= Clear[M]
In[22]:= typeReuse[type[H \leftarrow zeros[M, M], t1 \leftarrowccolon[1, M],
 for[$$variable : }->\mathrm{ i, $$iterations : }->\mathrm{ t1, $$body }->\mathrm{ Sequence[H1
 \leftarrow \mathrm { phi } \mu [H , ~ H 4] , ~ f o r [\$ \$ v a r i a b l e ~ : ~ > ~ j , ~ \$ \$ i t e r a t i o n s ~ : \rightarrow ~ t 1 , ,
 $$body }->\mathrm{ Sequence[H2 }\leftarrow\mathrm{ phi }\mu[H1, H3], t2 \leftarrow plus[i, j], t3 \leftarrow
 minus[t2, 1], t4 \leftarrow mrdivide[1, t3], H3 \leftarrow & subsasgn[H2, t4,
Out[22]={H}->{0,$boolean,{\langlefloor
 (\frac{1}{2}}(\operatorname{abs}(\operatorname{real}(\operatorname{subsref}(M,1)))+real (\operatorname{subsref (M, 1)))),
 floor (\frac{1}{2}}\mathrm{ (abs (real (subsref (M, 1))) +
 real (\operatorname{subsref (M, 1))))}, 2}},}
 t1 ->{\llbracket1., \infty\rrbracket, $real, {colonST (1, 1, M), 2}},
 i}
 i {\llbracket1., \infty\rrbracket, $real, {forST(\sigma(t1)), 2}},
 H1 }->{\llbracket0,1.\rrbracket,$real, {phi\muST(\sigma(H),\sigma(H4)), 2}}
 j ->{\llbracket1., \infty\rrbracket, $real, {\sigma (i), 2}},
 H2 -> {\llbracket0, 1.\rrbracket, $real, {phi\muST(\sigma(H1),\sigma(H3)), 2}},
 t2 }->{\llbracket2.,\infty\rrbracket,${real, {\langle<1, 1\rangle, 2}}
 t3->{\llbracket1., \infty\rrbracket, $real, {<1, 1\rangle, 2}},
 t4 ->{\llbracket0, 1.], $real, {\langle1, 1\rangle, 2}},
 H3 }->{[0,1.\rrbracket,$real,{subsasgnST(\sigma(H2),\langle1, 1\rangle, i, j), 2}}
 H4->{\llbracket0,1.\rrbracket, $real, {phivST(\sigma(H1),\sigma(H3)), 2}},
 H5 ->{\llbracket0, 1.\rrbracket, $real, {phivST(\sigma(H),\sigma(H4)), 2}}}
```

Observe that the shape tuple of H on line Out [22] is

$$
\left\langle\left\lfloor\frac{|R(m)|+R(m)}{2}\right\rfloor,\left\lfloor\frac{|R(m)|+R(m)}{2}\right\rfloor\right\rangle
$$

The term $m$ is the first elemental value in $M$, and is expressed as subsref ( $M, 1$ ) on Out [22]. This inferred shape tuple follows from MATLAB's treatment of extent arguments in array creation functions such as zeros, ones and eye: For an arbitrary M , zeros (M, M) is a $\lfloor(|R(m)|+R(m)) / 2\rfloor \times\lfloor(|R(m)|+R(m)) / 2\rfloor$ matrix of zeros.

Note that MAGICA still infers t2, t3 and t4 to be scalars. It deduces this from one key piece of information: The shape tuples of the for loop expressions for both i and $j$ are of the form colonST [1, 1, M]. This means that within the body of the innermost loop, both $i$ and $j$ will be scalars. ${ }^{\text {m }}$

### 5.2 Another Way of Computing $H_{M}$

Due to the interpretive overhead associated with executing loops in MATLAB, loopy style code usually performs poorly. An efficient loop-free way of computing $H_{M}$ that

[^6]relies on the language's right-hand side array indexing operation is shown below.

```
In[23]:= stmts := Sequence[t1 \leftarrowcolon[1, M], t2 \leftarrow transpose[t1], t3
 \leftarrowones[1, M], i \leftarrow subsref[t2, colon[], t3], j \leftarrow subsref[t1,
 t3, colon[]], t4 \leftarrow plus[i, j], t5 \leftarrow minus[t4, 1], H5 \leftarrow
 rdivide[1, t5], disp[H5]]
In[24]:= show[stmts]
```

```
% MATLAB Code Fragment
t1 = 1:M;
t2 = t1.';
t3 = ones(1, M);
i = t2(:, t3);
j = t1(t3, :);
t4 = i+j;
t5 = t4-1;
H5 = 1./t5;
disp(H5)
```

Two new things can be see from the above code fragment:

1. The right-hand side array indexing operation is used to arrive at $i$ and $j$.
2. The use of the potentially nonscalar array $t 3$ as a subscript. In fact, $t 3$ will be nonscalar for all $M>1$. Additionally, observe the use of the "colon" subscript in $t 2(:, t 3)$ and $t 1(t 3,:)$, which selects an entire array dimension [Mat97].

The types that are inferred from the new code fragment are shown below.

```
In[25]:= typeReuse[type[stmts]]
Out[25]={t1 }->{\llbracket1.,\infty\rrbracket,$real, {\operatorname{colonST (1, 1, M), 2}},
 t2 ->{\llbracket1., \infty\rrbracket, $real, {transposeST(\sigma (t1)), 2}},
 t3->{1, $boolean, {\langle1, floor (\frac{1}{2}}(\operatorname{abs}(\mathrm{ real (subsref (M, 1))) +
 real (subsref (M, 1))))}, 2}},
 i }->{\llbracket1.,\infty\rrbracket, $real, {subsrefST(\sigma(t2), colon(), t3), 2}}
 j ->{\llbracket1., \infty\rrbracket, $real, {subsrefST(\sigma(t1), t3, colon ()), 2}},
 t4 ->{\llbracket2., \infty\rrbracket, $real, {plusST(\sigma(i), \sigma(j)), 2}},
 t5 ->{\llbracket1., \infty\rrbracket, $real, {\sigma(t4), 2}},
 H5 ->{\llbracket0, 1.\rrbracket,$real, {\sigma(t4), 2} }}
```

And as before, if $M$ were initially assigned, all shape tuples will be explicitly inferred.

```
In[26]:= type[M \leftarrow 100, t1 \leftarrow colon[1, M], t2 \leftarrow transpose[t1], t3}
 ones[1, M], i \leftarrow subsref[t2, colon[], t3], j \leftarrow subsref[t1,
 t3, colon[]], t4 \leftarrow plus[i, j], t5 \leftarrow minus[t4, 1], H5 \leftarrow
 rdivide[1, t5], disp[H5]]
Out[26]= {M->{100., $byte, {\langle1, 1\rangle, 2}},
 t1 }->{\llbracket1,100\rrbracket, $byte, {\langle1, 100\rangle, 2}}
 t2 }->{\llbracket1,100\rrbracket, $byte, {\langle100, 1\rangle, 2}}
 t3 }->{1,$boolean, {\langle1, 100\rangle, 2}}
 i}->{\llbracket1,100\rrbracket,$\mathrm{ $yyte, {<100, 100}, 2}},
 j ->{\llbracket1, 100\rrbracket, $byte, {\langle100, 100\rangle, 2}},
 t4->{\llbracket2, 200\rrbracket, $byte, {\langle100, 100\rangle, 2}},
 t5 }->{\llbracket1, 199\rrbracket, $byte, {\langle100, 100\rangle, 2}}
 H5 ->{\llbracket0.00502513, 1.\rrbracket, $real, {\langle100, 100\rangle, 2}},
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}}}
```


### 5.3 Yet Another Way of Computing $H_{M}$

In addition to loops, array indexing operations can also be avoided in the computation of $H_{M}$. The following code fragment shows how.

```
In[27]:= stmts := Sequence[M \leftarrow 100, t1 \leftarrow colon[1, M], t2 \leftarrow
 transpose[t1], t3 \leftarrow ones[1, M], t4 \leftarrow ones[M, 1], i \leftarrow
 mtimes[t2, t3], j \leftarrow mtimes[t4, t1], t5 \leftarrow plus[i, j], t6 \leftarrow
 minus[t5,'1], H5 \leftarrow rdivide[1, t6],' disp[H5]]
In[28]:= show[stmts]
```

```
% MATLAB Code Fragment
M = 100;
t1 = 1:M;
t2 = t1.';
t3 = ones (1, M);
t4 = ones(M, 1);
i = t2*t3;
j = t4*t1;
t5 = i+j;
t6 = t5-1;
H5 = 1./t6;
disp(H5)
```

Type inferences, with and without an initial assignment to M , are shown below.

```
In [29]:= type[stmts]
Out[29]={M }->{100.,$\mathrm{ $byte, {<1, 1>, 2}},
 t1 }->{\llbracket1,100\rrbracket,$\mathrm{ $yye, {<1, 100 , 2}},
 t2 ->{\llbracket1, 100\rrbracket, $byte, {\langle100, 1\rangle, 2}},
 t3 }->{1,$boolean, {\langle1, 100\rangle, 2}}
 t4->{1, $boolean, {\langle100, 1\rangle, 2}},
 i }->{\llbracket1,100\rrbracket,$$byte, {\langle100, 100\rangle, 2}}
 j ->{\llbracket1, 100\rrbracket, $byte, {<100, 100\rangle, 2}},
 t5 ->{\llbracket2, 200\rrbracket, $byte, {<100, 100\rangle, 2}},
 t6 }->{\llbracket1, 199\rrbracket, $byte, {\langle100, 100\rangle, 2}}
 H5 ->{\llbracket0.00502513,1.\rrbracket, $real, {\langle100, 100\rangle, 2}},
 {Indeterminate, $illegal, {<-1, 1\rangle, 2}}}
In[30]:= Clear[M]
In[31]:= typeReuse[type[t1 \leftarrowcolon[1, M], t2 \leftarrow transpose[t1], t3}
 ones[1, M], t4 \leftarrow ones[M, 1], i }\leftarrow\mathrm{ mtimes[t2, t3], j }
 mtimes[t4, t1], t5 \leftarrow plus[i, j], t6 \leftarrow minus[t5, 1], H5 \leftarrow
 rdivide[1, t6], disp[H5]]]
Out[31]={t1->{\llbracket1., \infty\rrbracket, $real, {colonST (1, 1, M), 2}},
 t2 }->{\llbracket1.,\infty\rrbracket,$real, {transposeST(\sigma(t1)), 2}}
 t3 }->{1,$\mathrm{ $oolean, { \ 1, floor
 (\frac{1}{2}}(\operatorname{abs}(\operatorname{real}(\operatorname{subsref}(M,1)))+\operatorname{real}(\operatorname{subsref}(M,1)))))
 2}}, t4
 (\frac{1}{2}}(\operatorname{abs}(\operatorname{real}(\operatorname{subsref (M, 1))) + real (\operatorname{subsref (M, 1)))),}
 1),2}}, i }->{\llbracket0,\infty\rrbracket,$real, {mtimesST(\sigma(t2),\sigma(t3)), 2}}
 j ->{\llbracket0, \infty\rrbracket, $real, {mtimesST(\sigma(t4), \sigma(t1)), 2}},
 t5 ->{\llbracket0, \infty\rrbracket, $real, {plusST(\sigma(i), \sigma(j)), 2}},
 t 6 ->{\llbracket-1., \infty\rrbracket, $real, {\sigma (t5), 2}},
 H5 }{{\llbracket-\infty,\infty\rrbracket,$real, {\sigma(t5), 2}}
```


## 6 Bayes Signal Probabilities

In their latest release of MATLAB, announced in July of this year [Matb], The MathWorks incorporated for the first time a capability to analyze MATLAB program types, albeit at run time. The code processed in this section is directly from a brochure from The MathWorks that advertises this "JIT-Accelerator technology" [Mata].

```
In[32]:= inputArgs[bayes] ^= {Seq, Matrix, priorProbability};
In[33]:= outputArgs[bayes] ^= {score3};
In[34]:= statements[bayes] ^:= Sequence[Seq \leftarrow $init$arg[1], Matrix \leftarrow
 $init$arg[2], priorProbability \leftarrow $init$arg[3], Pb }
 mrdivide[1, 4], s1 \leftarrow length[Seq], score }\leftarrow\mathrm{ zeros[1, s1], lm
 & length[Matrix], ls }\leftarrow\mathrm{ minus[s1, lm], s2 }\leftarrow\mathrm{ colon[1, ls],
 for[$$variable }->\textrm{m},$$iterations -> s2, $$body ->
 Sequence[score1 \leftarrow phi\mu[score, score2], Pa }
 priorProbability, k }
 for[$$variable }->\textrm{n}, $$iterations -> s3, $$body ->
 Sequence[Pa1 }\leftarrow\mathrm{ phi }\mu[Pa, Pa3], s4 \leftarrow plus[k, n], nt
 subsref[Seq, s4], t1 \leftarrow gt[nt, 0], t2 \leftarrow lt[nt, 5], t3}
 and[t1, t2], if[$$condition }->\mathrm{ t3, $$then }->\mathrm{ Sequence [PbGa }
 subsref[Matrix, nt, n], s5 \leftarrow mtimes[Pa1, PbGa], s6 \leftarrow
 minus[1, Pal], s7 \leftarrowmtimes[s6, 0.25], Pb1 \leftarrow plus[s5, s7],
 s8 \leftarrowmtimes[PbGa, Pa1], Pa2 \leftarrowmrdivide[s8, Pb1]]], Pa3 }
 phiv[Pa1, Pa2]]], Pa4 \leftarrow phiv[Pa, Pa3], score2 }
 subsasgn[score1, Pa4, m]]], score3 \leftarrow phiv[score, score2]]
In [35]:= show[statements[bayes]]
```

```
% MATLAB Code Fragment
Seq = _init_arg(1);
Matrix = _init_arg(2);
priorProbability = _init_arg(3);
Pb}=1/4
s1 = length(Seq);
score = zeros(1, s1);
lm = length(Matrix);
ls = s1-lm;
s2 = 1:ls;
for m = s2
 score1 = phi\mu(score, score2);
 Pa = priorProbability;
 k = m-1;
 s3 = 1:lm
 for n = s3,
 Pa1 = phi\mu(Pa, Pa3);
 s4 = k+n;
 nt = Seq(s4);
 t1 = nt>0;
 t2 = nt<5;
 t3= t1&t2;
 if t3,
 PbGa = Matrix(nt, n);
 s5 = Pa1*PbGa;
 s6 = 1-Pa1;
 s7 = s6*0.25;
 Pb1 = s5+s7;
 s8 = PbGa*Pa1;
 Pa2 = s8/Pb1;
 end;
 Pa3 = phiv(Pa1, Pa2);
 end;
 Pa4= phiv(Pa, Pa3);
 score2 = subsasgn(score1, Pa4, m);
end;
score3 = phiv(score, score2);
```


### 6.1 User-Defined MATLAB Functions in MAGICA

User-defined functions in MATLAB are characterized by four essential parts: a name, an input argument list, an output argument list and a function body. These are specified in MAGICA by means of a symbol (transliterated into the Mathematica name space if necessary), and three upvalue expressions. If the symbol $f$ signifies a userdefined function in MATLAB, the expressions inputArgs $[f]$, outputArgs $[f]$ and statements $[f]$, recorded as upvalues against $f$, are used to specify that function's input arguments, output arguments and function body respectively. Lines In [32] to In [34] above show how this is done for the bayes function given in [Mata]. The only significant differences between the code shown above and that given in [Mata] are:

1. It has additional assignments due to the SSA and SO transformations.
2. It includes a set of dummy assignments against each of the formal parameters at the beginning. The introduction and use of such assignments are a consequence of MAGICA's design: MAGICA uses them to associate the actual parameters at a call site of a user-defined function with the formal parameters of that function. The need for establishing such associations arises when MAGICA propagates type information across user-defined function interfaces.
3. It doesn't use the scalar short-circuit AND ( $\& \&)$ and $\operatorname{OR}(|\mid)$ logical operators that are new in the latest release of MATLAB. Instead, it uses the older array AND ( $\&$ ) and OR ( $\mid$ ) logical operators because the current version of MAGICA only recognizes them. However, in this particular case, the substitution doesn't alter the semantics of the bayes function.

### 6.1.1 An Aside on Function Type Signatures and Procedure Cloning

The type signature of a function at a call site is a tuple of the type signatures of the actual arguments at that call site. An actual argument's type signature, in turn, is a triplet of its value range, intrinsic type and shape. MAGICA currently expects the type signatures of an $M$-file function at all its call sites to be identical. This maybe an inconvenience but is not a limitation. If two call sites of an M-file function $f$ differ in their type signatures, they must be replaced by invocations to $f_{1}$ and $f_{2}$ where $f_{1}$ and $f_{2}$ are cloned versions of $f$. In the current version of MAGICA, the front-end has the onus of performing such a duplication. The issue of procedure cloning doesn't apply to the example MATLAB code of this section because it invokes only one M-file, namely bayes, at exactly one point in a driver script (see below).

### 6.2 A Type Inference on a User-Defined Function

Timings were reported in [Mata] on a call of bayes with a $4 \times 20$ matrix of doubles for Matrix, a $1 \times 912211$ matrix of 8 -bit integers for Seq, and a prior probability of 0.0001 for priorProbability. Line In [36] below denotes a statement sequence that invokes bayes using "randomly" generated inputs that have these shapes. (The manner in which the inputs were created was not mentioned in [Mata]. As we shall see, knowledge of this can impact the inferences that MAGICA makes.)

```
In[36]:= stmts := Sequence[r1 \leftarrow rand[1, 912211], r2 \leftarrow mtimes[r1, 3],
 r3 \leftarrow plus[r2, 1], Seq0 \leftarrow fix[r3], Matrix0 \leftarrow rand[4, 20],
 priorProbabilítyó \leftarrow 0.0001, score0 \leftarrow bayes[Seq0, Matrix0,
 priorProbability0]]
In[37]:= show[stmts]
% MATLAB Code Fragment
r1 = rand(1, 912211);
r2 = r1*3;
r3 = r2+1;
Seq0 = fix(r3);
Matrix0 = rand(4, 20);
priorProbability0 = 0.0001;
score0 = bayes(Seq0, Matrix0, priorProbability0);
```

A Not So Random Seq When it encounters a user-defined function, MAGICA propagates type information into the function using type information gathered at the call site. In the above, the actual parameters against Matrix and Seq have been randomly generated, although those generated against Seq have been purposefully constructed to lie between 0 and 5 . $^{\text {n }}$ Because of this, MAGICA, which uses symbolic execution to infer types through control structures, figures out that the single conditional in bayes will always be executed. This allows all array shapes in bayes to be explicitly inferred. This is how score0, the output of bayes, is also inferred to be a $1 \times 912211$ matrix.

```
In[38]:= type[stmts]
Out[38]={r1->{\llbracket0, 1\rrbracket, $real, {<1, 912211\rangle, 2}},
 r2 ->{\llbracket0, 3.\rrbracket, $real, {\langle1, 912211\rangle, 2}},
 r3 ->{\llbracket1., 4.], $real, {<1, 912211\rangle, 2}},
 Seq0->{\llbracket1, 4\rrbracket, $byte, {<1, 912211\rangle, 2}},
 Matrix0 ->{\llbracket0, 1\rrbracket, $real, {\langle4, 20\rangle, 2}},
 priorProbability0
 score0 }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle1, 912211\rangle, 2}}
```

The fact that MAGICA manages to infer the shapes of all variables in bayes can be verified by calculating the fraction of inferred shapes in it that are explicit.

```
In[39]:= variables[bayes] ^= Cases[{statements[bayes]}, l_ \leftarrow
 r |($$variable }->1)->1,\infty
Out[39]= {Seq, Matrix, priorProbability, Pb, s1, score, lm, ls,
 s2,m, score1, Pa,k, s3, n, Pa1, s4, nt, t1, t2, t3,
 PbGa, s5, s6, s7, Pb1, s8, Pa2, Pa3, Pa4, score2, score3}
In[40]:= N[Length[Cases[\sigma /@ #,
 HoldPattern[st[Integer]]]]/Length[#]]&[variables[bayes]]
Out[40]= 1.
```

Observe that Out [39] shows that there are 32 program variables defined in bayesthis count includes the three formal parameters and the two loop variables.

[^7]```
In[41]:= stmts := Sequence[r1 \leftarrow rand[1, 912211], r2 }\leftarrow\mathrm{ mtimes[r1,
    255], Seq0 \leftarrow fix[r2], Matrix0 \leftarrowrand[4, 20],
    priorProbability0 \leftarrow0.0001, score0 \leftarrow bayes[Seq0, Matrix0,
    priorProbability0]]
In[42]:= show[stmts]
```

\% MATLAB Code Fragment
r1 = rand(1, 912211);
$r 2=r 1 * 255$;
Seq0 $=$ fix (r2);
Matrix0 $=$ rand $^{(4, ~ 20) ; ~}$
priorProbability0 $=0.0001$;
score0 $=$ bayes (Seq0, Matrix0, priorProbability0);
In [43]:= type [stmts]
Out [43] $=\{r 1 \rightarrow\{\llbracket 0,1 \rrbracket, \$ r e a l,\{\langle 1,912211\rangle, 2\}\}$,
$r 2 \rightarrow\{\llbracket 0,255 . \rrbracket, \$ r e a l,\{\langle 1,912211\rangle, 2\}\}$,
Seq $0 \rightarrow\{\llbracket 0,255 \rrbracket, \$$ byte, $\{\langle 1,912211\rangle, 2\}\}$,
Matrix0 $\rightarrow\{\llbracket 0,1 \rrbracket, \$$ real, $\{\langle 4,20\rangle, 2\}\}$,
priorProbability $0 \rightarrow\{0.0001, \$ r e a l,\{\langle 1,1\rangle, 2\}\}$,
score $0 \rightarrow\{\llbracket-\infty, \infty \rrbracket$, \$real, $\{\sigma($ score 3$), 2\}\}\}$

A Random Seq If we however construct Seq so that its elements span all possible 8 -bit values, MAGICA will only explicitly infer some of the shapes in bayes. The others will all be symbolic expressions. Still, as shown on Out [44] below, MAGICA will explicitly infer close to 60% of the shapes in bayes.

```
In[44]:= N[Length[Cases[\sigma /@ #,
    HoldPattern[st[ Integer]]]]/Length[#]]&[variables[bayes]]
Out[44]= 0.59375
```


7 Adaptive Quadrature by Simpson's Rule

The program processed in this section is a benchmark from the FALCON compiler test suite [FAL]. The benchmark is organized as two input files, one a driver script and the other containing the adapt function that does the actual quadrature calculation. The total number of lines across the two input files at the source level is about 79 (excluding comments and empty lines). The source code is shown in the appendix.

Input files that constitute a MATLAB program are called M-files in MATLAB parlance. MAGICA currently relies on a custom front-end called $M^{A B C}$ to parse Mfiles to an intermediate form, and to transform that representation to the SSA and SO forms. ($\mathrm{M}^{4 \mathrm{C}}$ C, not described in this report, is a MATLAB-to-C translator that ultimately compiles MATLAB programs to optimized C versions; it relies on MAGICA to obtain the necessary type information.) Using Mathematica's information hiding context mechanism [Wol99], MAGICA also provides functionality by which complete Mfile representations, referred to as M-file contexts, can be saved and later retrieved. This functionality is used below to load the M-file contexts of the quadrature program. These M-file contexts were automatically created by $M^{A T C}$ in an early session of MAGICA.

In [45]:= ?load

load[x_String] loads the M - file context associated with x. x can also be a string pattern that specifies a set of $M-$ file contexts that need to be loaded.

If x is a previously loaded M - file context, load switches the current M - file context to x. If not, and if x exists on disk, the saved image is loaded. If x is not a previously loaded M - file context and if no image of x exists on disk, a new M - file context corresponding to x is created.

The result of a load
is either the name of the last loaded M - file context or Null if one doesn' t exist.
load has the following options : load\$Purge and load\$Disk.

In[46]:= Scan[load[\#, load\$Disk \rightarrow True]\&, \{"drv\$adapt`", "adapt`"\}]
By putting them into separate Mathematica contexts, load allows multiple M-file representations, spanning different MATLAB programs, to coexist simultaneously in a single session of MAGICA. Users can switch between M-file contexts by invoking load.

7.1 Metrics Reflecting Size

Line Out [47] below gives an idea of the size of the adapt function: 165 statements with 160 defined variables. The defined variables include the 4 input and 3 output arguments accounted on Out [48]. Note that the increase in the overall number of statements and variables is due to the SSA and SO transformations.

```
In[47]:= {Length[Cases[{statements[adapt]},
    _assignment|_if|_for|_while|_break|_disp, \infty]],
    Length[variables[adapt]]}
Out[47]= {165, 160}
In[48]:= {Length[inputArgs[adapt]], Length[outputArgs[adapt]]}
Out[48]= {4, 3}
```

Including the counts shown for the driver script below, the total size of the quadrature program at the stage seen by MAGICA is about 188 statements and 180 variables. ${ }^{\circ}$

```
In[49]:= load["drv$adapt`"]
Out[49]= adapt`
In[50]:= {Length[Cases[{statements[drv$adapt]},
    _assignment|_if|_for|_while|_break|_disp, \infty]],
    Length[variables[drv$adapt]]}
Out[50]= {23, 20}
```

[^8]
7.2 A Type Inference on a Program

The Mathematica expression e // Timing returns $\left\{t^{\prime}, e^{\prime}\right\}$ where t^{\prime} is the time taken by the Mathematica kernel to evaluate e to e^{\prime}. Line Out[51] below shows that the time taken to infer all the types in the quadrature program is 33.66 seconds.

```
In[51]:= type[statements[drv$adapt]] // Timing
Out[51]= {33.66 Second, {_47t11->{\llbracket0, \infty\rrbracket, $real, {\langle1, 6\rangle, 2}},
    -57a1->{-1, $integer, {\langle1, 1\rangle, 2}},
    _ 59 b1 }->{6., $byte, {\langle1, 1\rangle, 2}}
    _ 51 sz_guess1 }->{1.,$boolean, {\langle1, 1\rangle, 2}}
    _ 55 tol1 }->{1.\times1\mp@subsup{0}{}{-12},$real, {\langle1, 1\rangle, 2}}
    _43 SRmat1 }->{\llbracket-\infty,\infty\rrbracket,$real, {\sigma(_366 SRmat15), 2}}
    _ 53 quad1 }->{\llbracket-\infty,\infty\rrbracket,$real, {\sigma(-380 quad1), 2}}
    _ 61 err1 -> {\llbracket0, \infty\rrbracket, $real, {\sigma(_416 err7), 2}},
    -49t21->{\llbracket0, \infty\rrbracket, $real, {\langle1, 6\rangle, 2}}, - 650s -> {\llbracket-\infty, \infty\rrbracket,
        $real, {subsrefST(\sigma(-366 SRmat15), colon ()), 2}},
    _ 651 s -> {\llbracket-\infty, \infty\rrbracket, $real,
        {sumST(subsrefST(\sigma(_366 SRmat15), colon())), 2}},
    {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}}, _ 652s ->
        {\llbracket-\infty, \infty\rrbracket, $real, {subsrefST(\sigma(_380 quad1), colon()), 2}},
    _ 653 s ->{ {\llbracket-\infty, \infty\rrbracket, $real,
        {sumST(subsrefST(\sigma(_ 380 quad1), colon ())), 2}},
    {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}}, - 654s ->
        {\llbracket0, \infty\rrbracket, $real, {subsrefST(\sigma(-416'err7), colon()), 2}},
    _ 655 s -> {\llbracket-\infty, \infty\rrbracket, $real,
        {sumST(subsrefST(\sigma(_416 err7), colon())), 2}},
    {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}},
    _ 656s }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle1, 6\rangle, 2}}
    -657s}s->{\llbracket0,86400\rrbracket, $integer, {\langle1, 6\rangle, 2}}
    _ 659s }->{{\llbracket0, 86400\rrbracket, $integer, {\langle6' 1\rangle, 2}}'
    _ 660s }->{\llbracket-\infty,\infty\rrbracket,$real, {\langle1, 1\rangle, 2}}
    -45_1 t1 }->{\llbracket0,\infty\rrbracket,$real,{\langle1, 1\rangle, 2}}}
```

This measurement, obtained on a 440 MHz UltraSPARC-IIi running Solaris 7 and having 128 MB of main memory, is only the time taken for kernel evaluation and does not include the time for the MathLink exchange [Wol99] or other front-end processing.

Line Out [53] below shows the fraction of shapes in adapt that were explicitly inferred. Among the remaining shapes, which are all symbolic, the fraction that are detected to be equivalent is shown on Out [55].

```
In[52]:= load["adapt '"]
Out[52]= drv$adapt'
In[53]:= N[Length[Cases[\sigma/@ #,
    HoldPattern[st[ Integer]]]]/Length[#]]&[variables[adapt]]
Out[53]= 0.4
In[54]:= Length[Cases[(# -> \sigma[#])& /@ variables[adapt], HoldPattern[_
        ->st[ Symbol]]]]/(Length[variables[adapt]]*(1-%))
Out[54]= 0
In[55]:= Length[Cases[\sigmaReuse[(# -> \sigma[#])& /@ variables[adapt]],
        HoldPattern[_ 隹[_Symbol]]]]/(Length[variables[adapt]] *(1-
        %%))
Out[55]= 0.59375
```

The σ Reuse object on In [55] takes a list of rewriting rules of the form $t \rightarrow \sigma(t)$, where $\sigma(t)$ is the shape-tuple expression of the variable t, and reuses lexically preceding
shape-tuple computations that are symbolically equivalent to lexically succeeding ones. It returns a list of rewriting rules indicating the reuse. Lines Out [54] and Out [55] above show the difference it can make.

8 The Finite Difference Time Domain Technique

The Finite Difference Time Domain (FDTD) method plays an important role in transient electromagnetic analysis. The example in this section was obtained from a computational electromagnetics course at Chalmers University of Technology [FDT]. The code was chosen because it manipulates three-dimensional arrays and exhibits a lot of array indexing. There are three versions of the FDTD method available at [FDT] one written using the diff built-in function, another using for loops, and the third with the diff operation expanded out. It is the third version that is processed in this section. The only two important differences between the monolithic code given at [FDT] and that used in this report is the inclusion of timing and output commands, and its reorganization into two M-files. The two M-files are shown in § B.

```
In[56]:= Scan[load[#, load$Disk -> True]&, {"fdtd`", "drv$fdtd`"}]
In[57]:= {Length[Cases[Join[{statements[drv$fdtd]},
    {statements[fdtd'fdtd]}],
    _assignment [_if|_for|_while|_break|_disp, \infty]],
    Length[Join [variables[drv$fdtd], variables[fdtd`fdtd]]]}
Out[57]= {183, 176}
```

In terms of the total number of statements and variables, line Out [57] above shows that the program is about as large as the quadrature program of $\S 7 .{ }^{\mathrm{p}}$

[^9]```
In[58]:= type[statements[drv$fdtd]] // Timing
Out[58]={5.55 Second, {-77t11->{\llbracket0, \infty\rrbracket, $real, {\langle1, 6\rangle, 2}},
 _ 95 Lx1 }->{0.05, $real, {\langle1, 1\rangle, 2}}
 _97 Ly1 }->{0.04, $real, {\langle1, 1\rangle, 2}},
 -99 Lz1 }->{0.03, $real, {\langle1, 1\rangle, 2}}
 _ 103 Nx1 -> {25., $byte, {\langle1, 1\rangle, 2}},
 -105 Ny1 }->{20., $byte,{\langle1, 1\rangle, 2}}
 -107 Nz1 -> {15., $byte, {\langle1, 1\rangle, 2}},
 _ 109 nrm1 -> {866.025, $real, {<1, 1\rangle, 2}},
 -101 Nt1 }->{128.,$byte, {\langle1, 1\rangle, 2}}
 _ 81 Ex1 }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle25, 21, 16\rangle, 3}},
 _ 83 Ey1 }->{[-\infty,\infty], $real, {\langle26, 20, 16\rangle, 3}}
 -85 Ez1 }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle26, 21, 15\rangle, 3}}
 -87 Hx1 ->{\llbracket-\infty, \infty\rrbracket, $real, {<26, 20, 15\rangle, 3}},
 _ 89 Hy1 }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle25, 21, 15\rangle, 3}}
 -91 Hz1 }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle25, 20, 16\rangle, 3}}
 _ 93 Ets1 }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle128, 3\rangle, 2}}
 -79t21->{\llbracket0, \infty\rrbracket, $real, {\langle1, 6\rangle, 2}},
 _ 649s }->{\llbracket-\infty,\infty\rrbracket,$real, {\langle8400, 1\rangle, 2}}
 _650s ->{\llbracket-\infty, \infty\rrbracket, $real, {<1, 1\rangle, 2}},
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}},
 _651 s ->{\llbracket-\infty, \infty\rrbracket, $real,'{\langle8320, 1\rangle, 2}},
 _652s s { {\llbracket-\infty, \infty\rrbracket, $real, {< 1, 1\rangle, 2}},
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}},
 _ 653s ->{\llbracket-\infty, \infty\rrbracket, $real, {\langle8190, 1\rangle, 2}},
 654s}->{\llbracket-\infty,\infty\rrbracket, $real, {\langle1, 1\rangle, 2}}
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}},
 _ 655s s { {\llbracket-\infty, \infty\rrbracket, $real, {\langle7800, 1\rangle, 2}},
 _656s}->{{\llbracket-\infty,\infty\rrbracket,$real, {\langle1, 1\rangle, 2}}
 {Indeterminate, $illegal, {\langle<-1, 1\rangle, 2}},
 _ 657s }->{\llbracket-\infty,\infty\rrbracket,$real, {\langle7875, 1\rangle, 2}}
 -658s }->{{-\infty,\infty\rrbracket,$real, {\langle1, 1\rangle, 2}}
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}},
 -659s }->{\llbracket-\infty,\infty\rrbracket,$real, {\langle8000, 1\rangle, 2}}
 -660s }->{{[-\infty,\infty\rrbracket,${real, {\langle1, 1\rangle, 2}}
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}},
 -661 s }->{{-\infty,\infty\rrbracket,$real, {\langle384, 1\rangle, 2}}
 _ 662s s ->{\llbracket-\infty, \infty\rrbracket, $real, {\langle1, 1\rangle, 2}},
 {Indeterminate, $illegal, {\langle-1, 1\rangle, 2}},
 -663s }->{\llbracket-\infty,\infty\rrbracket, $real, {\langle1, 6\rangle, 2}}
 _ 664s }->{{\llbracket0,86400\rrbracket, $integer, {\langle1, 6\rangle, 2}}
 _ 666s s { {0, 86400], $integer, {\langle6, 1\rangle, 2}},
 _ 667 s }->{{-\infty,\infty\rrbracket, $real, {\langle1, 1\rangle, 2}}
 _ 75_1t1 -> {\llbracket0, \infty\rrbracket, $real, {\langle1, 1\rangle, 2}}}}
```

However, the time taken by the kernel to arrive at the type inferences is much lesser because all of the shapes in this program were explicitly inferred. (The processing of symbolic shape-tuple expressions generally contributes to an increase in kernel times.)

```
In[59]:= N[Length[Cases[\sigma /@ #,
 HoldPattern[st [__Integer]]]]/Length[#]]&[Join[variables[drv$f
 dtd'drv$fdtd], variables[fdtd`fdtd]]]
Out [59]= 1.
```


## 9 Availability

MAGICA is currently available for public download from The MAGICA Home Page at
http://www.ece.northwestern.edu/cpdc/pjoisha/MAGICA.

### 9.1 Requirements

To install MAGICA, the following is needed:

- Mathematica version 4.1 or higher,
- A C++ compiler.

A C++ compiler is required because MAGICA relies on external $\mathrm{C}++$ code to realize some of its functionality. (As an example, it uses the C math library function nextafter to obtain information on machine normal numbers.)

### 9.2 Installation

MAGICA has been successfully installed and tested on Solaris 7 and 8, using version 2.95 .3 of the gcc compiler and version 4.1 of Mathematica. The following are the sequence of installation steps under tcsh, the enhanced version of the UNIX C shell.

1. Unzip and untar the downloaded distribution.
```
eagle:~ % gunzip magica.tar.gz
eagle:~ % tar -xvf magica.tar
```

2. Set the MATHEMATICA environment variable to the full path of the top directory of the local Mathematica installation. (In Mathematica, this is the string assigned to the $\$$ TopDirectory system object.) The shell command shown below assumes the existence of Mathematica on the execution path.
```
eagle:~ % setenv MATHEMATICA \
? 'math -noinit -run 'Print[$TopDirectory]' \\
? -run 'Quit[]' | sed -n '$ p''
```

3. Set the MAGICA environment variable to the full path of the top directory of the MAGICA installation.
```
eagle:~ % cd MAGICA
eagle:~/MAGICA % setenv MAGICA `pwd`
```

4. Set the CC environment variable to the full path of the $\mathrm{C}++$ compiler. If not set, the install script (see Step 5 below) will check to see if the gcc compiler is present on the execution path and set CC to that.
5. Invoke the install shell script provided under the .Mathematica directory.
```
eagle:~/MAGICA % .Mathematica/install
Using gcc (version 2.95.3) as the C++ compiler ...
 Building syntax-extension ...
 Building wall-clock-time ...
 Building from-file-name ...
 Building normal-numbers ...
```

6. MAGICA is now ready for use. It can be used from a notebook front-end by starting Mathematica with the -preferencesDirectory option set. Under MAGICA's preferences directory is an init.m file and a POSIX shell script that together "bootstrap" MAGICA. The shell command shown below sets up a shorthand to perform this invocation from anywhere in the directory hierarchy.
```
eagle:~/MAGICA % alias magica "mathematica " \
? "-preferencesDirectory " \
? "$MAGICA/.Mathematica/4.1/ \!*"
```

The math script in . Mathematica/4.1 allows MAGICA to be used from a text front-end. This script can be executed from anywhere in the directory tree.

```
eagle:~/MAGICA % alias magica \
? "$MAGICA/.Mathematica/4.1/math \!*"
```


## 10 Summary

This report described a software tool called MAGICA that forms a type inference system for the MATLAB programming language. Written in Mathematica, MAGICA infers the value range, intrinsic type and array shape of a MATLAB expression. This report showed the workings of MAGICA by walking through a series of examples of increasing complexity, ranging from single expressions to full programs. Though MAGICA has been shown in an interactive mode, it is possible to use it in batch mode from a custom front-end via the MathLink protocol. Currently, MAGICA is being used this way by $\mathrm{M}^{\text {AK }} \mathrm{C}$, a MATLAB-to-C translator that converts MATLAB sources to optimized C.

## References

[CFRW91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, and Mark N. Wegman. "Efficiently Computing Static Single Assignment Form and the Control Dependence Graph". ACM Transactions on Programming Languages and Systems, 13(4):451-490, October 1991.
[FAL] The FALCON Project Home Page at http://www.csrd.uiuc.edu/falcon/ falcon.html.
[FDT] Computational Electromagnetics EEK 170 at http://www.elmagn.chalmers .se/courses/CEM/.
[Gol91] David Goldberg. "What Every Computer Scientist Should Know About FloatingPoint Arithmetic". ACM Computing Surveys, 23(1):5-48, March 1991.
[JB01a] Pramod G. Joisha and Prithviraj Banerjee. "Computing Array Shapes in MATLAB". In Proceedings of the 14th International Workshop on Languages and Compilers for Parallel Computing, volume 2624 of Lecture Notes in Computer Science. Springer-Verlag, August 2001.
[JB01b] Pramod G. Joisha and Prithviraj Banerjee. "Correctly Detecting Intrinsic Type Errors in Typeless Languages such as MATLAB". In Proceedings of the ACM SIGAPL Conference on Array Processing Languages, pages 6-21, June 2001.
[JSB00] Pramod G. Joisha, U. Nagaraj Shenoy, and Prithviraj Banerjee. "An Approach to Array Shape Determination in MATLAB". Technical Report CPDC-TR-2000-10-010, Center for Parallel and Distributed Computing, Department of Electrical and Computer Engineering, Northwestern University, October 2000.
[Mata] Accelerating MATLAB: The MATLAB JIT-Accelerator at http://www.math works.com/mld_accel.
[Matb] The MathWorks Announces Release 13 with Major New Versions of MATLAB and Simulink at http://www.mathworks.com/company/pressroom/ index.shtml/article/332.
[Mat97] The MathWorks, Inc. MATLAB: The Language of Technical Computing, January 1997. Using MATLAB (Version 5).
[PP75] Raymond P. Polivka and Sandra Pakin. APL: The Language and Its Usage. Automatic Computation Series. Prentice-Hall, Inc., Englewood Cliffs, NJ 07458, USA, 1975. ISBN 0-13-038885-8.
[Wol99] Stephen Wolfram. The Mathematica Book. Wolfram Media, Inc., Fourth Edition, 1999. ISBN 0-521-64314-7.

## A Adaptive Quadrature by Simpson's Rule

## A. 1 The drv_adapt MATLAB Function

```
function drv_adapt
%%
%% Driver for adaptive quadrature using Simpson's rule.
%%
t1 = clock;
a = -1;
b = 6;
sz_guess = 1;
tol = 1e-12;
[SRmat, quad, err] = adapt(a, b, sz_guess, tol);
t2 = clock;
% Display result.
% disp(SRmat), disp(quad), disp(err);
disp(mean(SRmat(:))), disp(mean(quad(:))), disp(mean(err(:)));
% Display timings.
fprintf(1, 'ADAPT: total = %f\n', (t2-t1)*[0 0 86400 3600 60 1]');
```


## A. 2 The adapt MATLAB Function

```
function [SRmat, quad, err] = adapt(a, b, sz_guess, tol)
SRmat = zeros(sz_guess, 6);
iterating = 0;
done = 1;
h = (b-a)/2; % The step size.
c = (a+b)/2; % The midpoint in the interval.
%% The integrand is f(x) = 13.*(x-x.^2).*exp(-3.*x./2).
Fa = 13.* (a-a.^ 2).*exp (-3.*a./2);
Fc = 13.* (c-c.^2).* *exp (-3.**./2);
Fb}=13.*(b-b.^2).* exp (-3.*b./2)
S = h* (Fa+4*Fc+Fb)/3; % Simpson's rule.
```

```
SRvec = [a b S S tol tol];
SRmat(1, 1:6) = SRvec;
m = 1;
state = iterating;
while (state == iterating),
 n = m;
 for l = n:-1:1,
 p = 1;
 SROvec = SRmat(p, :);
 err = SR0vec(5);
 tol = SROvec(6);
 if (tol <= err),
 state = done;
 SR1vec = SROvec;
 SR2vec = SROvec;
 a = SROvec(1); % Left endpoint.
 b = SROvec(2); % Right endpoint.
 c = (a+b)/2; % Midpoint.
 err = SR0vec(5);
 tol = SR0vec(6);
 tol2 = tol/2;
 a0 = a;
 b0 = c;
 tol0 = tol2;
 h = (b0-a0)/2;
 c0 = (a0+b0)/2;
 %% The integrand is f(x) = 13.*(x-x.^2).*exp(-3.*x./2).
 Fa = 13.*(a0-a0.^2).*exp(-3.*a0./2);
 Fc = 13.*(c0-c0.^2).*exp(-3.*c0./2);
 Fb = 13.* (b0-b0.^2).* exp (-3.*b0./2);
 S = h*(Fa+4*FC+Fb)/3; % Simpson's rule.
 SR1vec = [a0 b0 S S tol0 tol0];
 a0 = c;
 b0 = b;
 tol0 = tol2;
 h = (b0-a0)/2;
 c0 = (a0+b0)/2;
 %% The integrand is f(x) = 13.*(x-x.^2).* *exp(-3.*x./2).
```

```
 Fa = 13.* (a0-a0.^2).* *exp (-3.*a0./2);
 Fc = 13.* (c0-c0.^2).* exp (-3.*c0./2);
 Fb = 13.* (b0-b0. ^2) .* exp (-3.*b0./2);
 S = h* (Fa+4*Fc+Fb)/3; % Simpson's rule.
 SR2vec = [a0 b0 S S tol0 tol0];
 err = abs(SR0vec(3)-SR1vec(3)-SR2vec(3))/10;
 if (err < tol)
 SRmat(p, :) = SROvec;
 SRmat (p, 4) = SR1vec(3)+SR2vec(3);
 SRmat(p, 5) = err;
 else
 SRmat(p+1:m+1, :) = SRmat(p:m, :);
 m = m+1;
 SRmat(p, :) = SR1vec;
 SRmat(p+1, :) = SR2vec;
 state = iterating;
 end;
 end;
 end;
end;
quad = sum(SRmat(:, 4));
err = sum(abs(SRmat(:, 5)));
SRmat = SRmat(1:m, 1:6);
```


## B The Finite Difference Time Domain Technique

## B. 1 The drv_fdtd MATLAB Function

```
function drv_fdtd
%%
%% Driver for 3D FDTD of a hexahedral cavity with conducting walls.
%%
t1 = clock;
% Parameter initialization.
Lx = .05; Ly = .04; Lz = .03; % Cavity dimensions in meters.
```

```
Nx = 25; NY = 20; Nz = 15; % Number of cells in each direction.
nrm = norm([Nx/Lx Ny/Ly Nz/Lz]);
Nt = 1024; % Number of time steps.
[Ex, Ey, Ez, Hx, Hy, Hz, Ets] = ...
fdtd(Lx, Ly, Lz, Nx, Ny, Nz, nrm, Nt);
t2 = clock;
% Display result.
% disp(Ex), disp(Ey), disp(Ez);
% disp(Hx), disp(Hy), disp(Hz);
% disp(Ets);
disp(mean(Ex(:))), disp(mean(Ey(:))), disp(mean(Ez(:)));
disp(mean(Hx(:))), disp(mean(Hy(:))), disp(mean(Hz(:)));
disp(mean(Ets(:)));
% Display timings.
fprintf(1, 'FDTD: total = %f\n', (t2-t1)*[0 0 86400 3600 60 1]');
```


## B. 2 The fdtd MATLAB Function

```
function [Ex, Ey, Ez, Hx, Hy, Hz, Ets] = fdtd(Lx, Ly, Lz, ...
 Nx, Ny, Nz, nrm, Nt)
% Physical constants.
eps0 = 8.8541878e-12; % Permittivity of vacuum.
mu0 = 4e-7*pi; % Permeability of vacuum.
c0 = 299792458; % Speed of light in vacuum.
Cx = Nx/Lx; Cy = Ny/Ly; Cz = Nz/Lz; % Inverse cell dimensions.
Dt = 1/(c0*nrm); % Time step.
% Allocate field arrays.
Ex = zeros(Nx, Ny+1, Nz+1);
Ey = zeros(Nx+1, Ny, Nz+1);
Ez = zeros(Nx+1, Ny+1, Nz);
Hx = zeros(Nx+1, Ny, Nz);
Hy = zeros(Nx, Ny+1, Nz);
Hz = zeros(Nx, Ny, Nz+1);
% Allocate time signals.
Ets = zeros(Nt, 3);
```

```
% Initialize fields (near but not on the boundary).
Ex(1, 2, 2) = 1;
Ey(2, 1, 2) = 2;
Ez(2, 2, 1) = 3;
% Time stepping.
for n = 1:Nt,
 % Update H everywhere.
 Hx = Hx+(Dt/mu0)*((Ey(:, :, 2:Nz+1)-Ey(:, :, 1:Nz))*Cz ...
 -(Ez(:, 2:Ny+1, :)-Ez(:, 1:Ny, :))*Cy);
 Hy = Hy+(Dt/mu0)*((Ez(2:Nx+1, :, :) -Ez(1:Nx, :, :))*Cx ...
 -(Ex(:, :, 2:Nz+1)-Ex(:, :, 1:Nz))*Cz);
 Hz = Hz+(Dt/mu0)*((Ex(:, 2:Ny+1, :)-Ex(:, 1:Ny, :))*Cy ...
 -(Ey(2:Nx+1, :, :)-Ey(1:Nx, :, :))*Cx);
 % Update E everywhere except on boundary.
 Ex(:, 2:Ny, 2:Nz) = Ex(:, 2:Ny, 2:Nz)+(Dt/eps0)* ...
 ((Hz(:, 2:Ny, 2:Nz)-Hz(:, 1:Ny-1, 2:Nz))*Cy ...
 -(Hy(:, 2:Ny, 2:Nz)-Hy(:, 2:Ny, 1:Nz-1))*Cz);
 Ey(2:Nx, :, 2:Nz) = Ey(2:Nx, :, 2:Nz)+(Dt/eps0)* ...
 ((Hx(2:Nx, :, 2:Nz)-Hx(2:Nx, :, 1:Nz-1))*Cz ...
 -(Hz(2:Nx, :, 2:Nz)-Hz(1:Nx-1, :, 2:Nz))*Cx);
 Ez(2:Nx, 2:Ny, :) = Ez(2:Nx, 2:Ny, :)+(Dt/eps0)* ...
 ((Hy(2:Nx, 2:Ny, :)-Hy(1:Nx-1, 2:Ny, :))*Cx ...
 -(Hx(2:Nx, 2:Ny, :)-Hx(2:Nx, 1:Ny-1, :))*Cy);
 % Sample the electric field at chosen points.
 Ets(n, :) = [Ex(4, 4, 4) Ey(4, 4, 4) Ez(4, 4, 4)];
end;
```


[^0]:    ${ }^{\text {a }}$ The outputs in this report can be exactly reproduced by typing the code shown against each $\operatorname{In}[n]:=$ prompt into a notebook interface to version 1.0 of MAGICA, running on Mathematica 4.1.
    ${ }^{\text {b }}$ MATLAB's built-in functions can be classified into one of three groups, based on how the shapes of the outputs are dependent on the shapes of the inputs [JSB00]. Type I built-ins produce outputs whose shapes are completely determined by the shapes of the arguments, if any. Type II built-ins produce an output whose shape is also dependent on the elemental values of at least one input. All remaining built-ins fall into the Type III group.

[^1]:    ${ }^{\text {c }}$ The construction $\% n$ stands for the value computed on the $n$th output line in Mathematica [Wol99].
    ${ }^{\mathrm{d}}$ In our terminology, the rank of an array is its dimensionality.
    ${ }^{e}$ Unlike languages such as C, Java, APL and Mathematica itself, MATLAB doesn't consider an assignment as an expression. Hence, a phrase like $(a \leftarrow 1)+1$ is syntactically illegal in MATLAB.

[^2]:    ${ }^{\text {f }}$ The symbol $\leftarrow$ can be directly entered into a notebook by typing the key sequence [ESC <- [ESC.
    ${ }^{\mathrm{g}}$ The inferred rank is redundant in this case; it becomes significant when the shape tuple is symbolic.

[^3]:    ${ }^{\mathrm{h}}$ MAGICA slightly alters Mathematica's syntax; the way the 【 and 】 symbols are used is an instance of this. In Mathematica sans MAGICA, these symbols are used in a syntactically different way [Wol99].
    ${ }^{i}$ nextN and prevN are used in MAGICA for producing correctly adjusted value range end points.

[^4]:    ${ }^{\mathrm{j}}$ The relation $s \leq t$ means that all values representable by $s$ are also representable by $t$.
    ${ }^{\mathrm{k}}$ The two False values on Out [14] together mean that NONREAL and BYTE are not comparable.

[^5]:    ${ }^{1}$ This terminology is borrowed from APL [PP75].

[^6]:    ${ }^{m}$ The colonST[1, 1, M] shape tuple expression will be equivalent to either the illegal shape tuple, the $\langle 1,0\rangle$ empty shape tuple or to the $\langle 1, w\rangle$ shape tuple where $w$ is some positive integer. In the former two cases, both the $i$ and $j$ loops will not be executed. In the third case, the two loops will be executed and $i$ and $j$ will be set to scalar integers in the body of the loop.

[^7]:    ${ }^{n}$ Version 1.0 of MAGICA assumes that rand generates random numbers in the $[0,1]$ closed interval. This results in inferences that are more conservative than necessary because in actuality, rand generates random numbers in the $(0,1)$ open interval.

[^8]:    ${ }^{\circ}$ The driver script statement count considers the invocation of adapt, which returns 3 output values, as three assignments. This is a result of the way MAGICA handles multiple output functions. If these three assignments are treated as one, the statement count reduces to 21 .

[^9]:    p The fdtd function returns seven outputs. If the seven assignments that are generated against the invocation of fdtd are counted as one, the total statement count reduces to 181 .

