
Implementing an Array Shape Inference System for MATLAB


Using��

Pramod G. Joisha Prithviraj Banerjee

Technical Report No. CPDC–TR–2002–10–003
c© 2002 Center for Parallel and Distributed Computing

October 2002

Center for Parallel and Distributed Computing
Department of Electrical & Computer Engineering,

Technological Institute,
2145 Sheridan Road,
Northwestern University,

IL 60208–3118.

Implementing an Array Shape Inference System for
MATLAB Using��

∗

Pramod G. Joisha Prithviraj Banerjee

Center for Parallel and Distributed Computing, Electrical and Computer Engineering Department, Technological
Institute, 2145 Sheridan Road, Northwestern University, IL 60208–3118.

Phone: (847) 467-4610, Fax: (847) 491-4455
Email: [pjoisha, banerjee]@ece.northwestern.edu

Abstract

In implicitly typed array-based languages such as MATLAB, APL and IDL, advance
determination of an array’s shape empowers the execution of efficient code. Static knowl-
edge of an array’s shape could sanction a variety of code optimizations besides permit-
ting compile-time verification of shape correctness and serving as a debugging aid. This
report presents a symbolic array shape inference system for MATLAB, a prototypical
array-based language. Unlike prior efforts at array shape determination that have used
lattice-theoretic techniques, our methods are based on algebraic systems that exploit
properties associated with MATLAB’s shape semantics. This confers a unique advan-
tage to our approach in that useful shape information can be deduced even when the
actual array extents are compile-time unknowns. The shape inference system has been
implemented in Mathematica as part of , a type inference engine for MATLAB.
We report array shape inference measurements on a benchmark suite comprising pro-
grams that span the published test suites of some recent research MATLAB compilers,
and we show how even when shapes are symbolic, our system detects the equivalence of
over 60% of these shapes in 5 out of 6 benchmarks, and over 30% in the sixth. In all
remaining situations, all array shapes were inferred to be compile-time constants.

Keywords array shape determination, computer algebra, Mathematica, MATLAB

1 Introduction

There has been a revival of interest in typeless array-based languages in recent years following the commercial
success of a number of problem-solving and visualization environments such as MATLAB and IDL. By melding
a lucid syntax with features like implicit typing, multidimensional data structures, real and complex arithmetic,
a rich polymorphic function set, and an interactive interpretive execution model, these languages have proven

∗
�� fonts by Wolfram Research, Inc.

1 Introduction 2

to be ideal tools for an “exploratory” style of program development in which the processes of data examination,
manipulation, visualization and incremental code development form a tight, feedback-driven loop.
However, the very same features that have contributed to the popularity of these languages—particularly

implicit array shape typing and array shape polymorphism—have impeded their compilation, limiting execu-
tion scopes to interpretation. Because of this, the last few years have witnessed much activity in the area of
array shape determination for such languages since the quality of the generated code is crucially dependent
on the kind of shape information available to a compiler. Solutions have ranged from “hand-holding” the
compiler through the type determination phase by providing shape declarations in the form of comments, to
static inference mechanisms that infer and propagate shape attributes when possible, and that resort to a dy-
namic interpreter-like strategy otherwise. Static inference mechanisms are attractive due to their automatable
nature, but their advantage is currently limited to situations in which the shape attributes are completely
determinable at compile time. In situations where shape attributes are unknown, even partially, conservative
run-time resolution is relied upon.
As an example, consider the synthetic MATLAB code fragment shown in Figure 1. The symbol ← will

be used to denote the assignment operation in MATLAB. The statement c ← a*b on line L4 assigns to
program variable c the result of a*b, where * is MATLAB’s matrix multiplication operation. If either a or
b is a scalar, the other variable can be an arbitrary array and the result is produced by multiplying the scalar
with the elements of the array. On the other hand, if both a and b are nonscalar, they have to be conforming
matrices for the operation to be valid—that is, their shapes must be p× q and q × r respectively [Mat97]. In
current static shape inference systems for MATLAB [DRP99, QMSZ98, CB98], the shape of c, at least on the
first iteration, can be inferred if the initial shapes of a and b are known at compile time. However, if either
of these initial shapes are unknown, even partially (some array extents known, others unknown), the shape
of c will also be considered unknown and conservative code to perform run-time resolution will be generated.
Unknown shapes have a propagative effect in that one unknown shape could lead to a whole set of shapes
becoming unknown. This could be the case for the code fragment in Figure 1 if it were part of a function in
which a, b and e are the formal parameters, and if the function was being analyzed in isolation.

L1: d ← max(b*b, abs(a)*b);
L2: d ← (b+a)*fix(b);
L3: while p1,
L4: c ← a*b;
L5: a ← c+(a.ˆb);

L6: b ← c-(a./c);
L7: while p2,
L8: e ← e*d;

end;
end;

L9: h ← (b.ˆb)-a;

Figure 1: A Motivating Code Fragment

Our premise is that even when shapes are not known at compile time, we can do better if the algebraic
properties associated with the language’s shape semantics are taken advantage of. For instance, in the case of
Figure 1, we shall see that

1. The shapes of d on both lines L1 and L2 are identical for any a and b. This means that a translator
can replace shape conformance checks for lines L1 and L2 by a single one for line L1.

2. At the end of each iteration, the shapes of a and b on lines L5 and L6 will be identical.

3. There can only be three possibilities for the shape of c, two for a and b, and three for e during the
entire execution lifetime of the loops. We can also arrive at symbolic expressions for these possibilities,
which a code generator could use for such tasks as preallocating storage for the arrays.

3

1.1 Background

As far back as 1974, the potential for performance improvements by statically validating array shape checks
was known [BS74]. Early attempts viewed shape determination through the more general problem of automatic
type estimation [Ten74, KU78]. In [KU78], a scheme for automatically inferring types in an abstraction of
typeless languages such as APL, SNOBOL and SETL, and based on the theory of lattices, was presented.
Most subsequent efforts that use lattices to detect some type attribute, be it shape or intrinsic type, appear
to be of this flavor [Mil79, Chi86, Bud88, DRP99]. Though [KU78] looked at types in a broad sense, it seems
to be most suited to situations in which a language’s types can be naturally arranged into a partial order. In
particular, types higher up in the lattice hierarchy were always considered to be safe replacements for types
lower down, independent of program context, because the underlying partial order was interpreted to mean
value subsumption.b “Safeness” means that program correctness is never compromised by such replacements.
This makes lattices particularly useful for problems such as intrinsic type determination (finding whether a
program variable is an integer, a real or a complex number) and they have been successfully used for this
purpose both in MATLAB [DRP99] and APL [Chi86, Bud88]. Note that intrinsic type determination is also
an issue with MATLAB because, in addition to a structural aspect, its arrays have an independent intrinsic
type attribute that defines the arithmetic possible on their contents. For shape determination, it isn’t even
clear whether a partial order can be defined among individual shapes in the above sense without introducing
abstract shapes. Of course, a partial order can always be defined by introducing abstractions that represent
sets of shapes and this was the approach taken for approximate shape determination in [Bud88].
The FALCON compiler used a static inference mechanism that gathered shape information from program

constants and that propagated this information using tables [DRP99]. Shapes that were even partially un-
known at compile time were handled at run time through the introduction of so-called shadow variables. Both
the “Otter” parallel MATLAB compiler [QMSZ98] and the Menhir system [CB98] use similar methods; Menhir
additionally relies on user-provided annotations called directives when sufficient type information is lacking.
There has also been work in the bottom-up design of array-based languages that permit a complete static

analysis of shape. The FISh language is one such example [JS98]. FISh imposes a number of restrictions to
enable this static analysis, some as severe as not allowing the shape of an array to change during execution.
These kind of restrictions do not exist in MATLAB. It also isn’t clear whether FISh can be used as a production
language; the only nontrivial FISh programs on which timings have been reported appear to be the Fast Fourier
Transform, quicksort and matrix multiplication [JS98].

2 Overview of Our Approach

Our basic idea is to uncouple the shape semantics of each of the language’s operators and to represent them
separately by special expressions called shape-tuple class (SC) expressions in an intermediate representation of
the input program. An SC expression represents a unique array shape. When possible, we evaluate these SC
expressions at compile time to arrive at explicit array shapes. Otherwise, the SC expressions remain and get
executed at run time as part of the program. In the latter situation, we still take advantage of their algebraic
properties so that the run-time overhead associated with their computation is either eliminated or mitigated.

2.1 Uncoupling Shape Semantics

All data in MATLAB is ultimately an array. This remark also applies to scalars, which are considered arrays
of size 1 × 1. We view an array in MATLAB as the value tuple (T,D) where T is its type descriptor and D
is its notation. That is, D is a depiction of the array and T determines the import of that depiction to arrive
at the array’s value. An example of a concrete notation would be the sequence of binary digits that stands
for the array in computer memory. Another example would be the syntactic phrase used to specify the array.
The reason for considering values as tuples of T and D, rather than as images under some mapping on the

bIf s and t are two types such that s ≤ t, then the interpretation was that all values representable by s are also representable
by t.

4

set of notations, is because such a mapping may not be single valued. This becomes clear when we consider
a syntactic phrase like a+b in MATLAB, which, though a valid depiction of an array in the language, could
represent different values depending on the program context.
The type descriptor in turn can be viewed as a tuple (I,S, . . .) comprised of type attributes such as the

intrinsic type I and the shape S. We regard the array operations built into the MATLAB language (called
built-in functions [Mat97]) as partial functions that operate on value tuples and produce value tuples as their
result.c

Consider a built-in function f that produces a value tuple by operating upon k value tuples:

((I,S, . . .),D)← f
(
((I1,S1, . . .),D1), ((I2,S2, . . .),D2), . . . , ((Ik,Sk, . . .),Dk)

)
.

We can think of the above assignment being replaced by a sequence of assignments that calculate each of the
type attributes and the array notation separately:

I ← fI
(
((I1,S1, . . .),D1), ((I2,S2, . . .),D2), . . . , ((Ik,Sk, . . .),Dk)

)
,

S ← fS
(
((I1,S1, . . .),D1), ((I2,S2, . . .),D2), . . . , ((Ik,Sk, . . .),Dk)

)
,

...

D← fD
(
((I1,S1, . . .),D1), ((I2,S2, . . .),D2), . . . , ((Ik,Sk, . . .),Dk)

)
.

We call this separation uncoupling and the shape-tuple class expression mentioned earlier is basically the S
in the second assignment above. As indicated, the shape-tuple class operator fS is completely responsible for
calculating shape; for instance, a case of nonconforming shapes would be intercepted in its computation of S.
At the very least, fS could be the original f with everything except S discarded from the result. The code
generation phase sees only these uncoupled assignments. The objective is to either fully evaluate at compile
time the uncoupled assignments pertaining to type, or to at least algebraically simplify them, so that the work
of computing them at run time is either removed or reduced. In this report, we will only be concerned with
fS and the calculation of S.

2.2 Shape Inference Flow

Input programs are first subject to the SSA transformation [CFRW91] that results in every program variable
having exactly one definition. The intermediate representation is then passed to Mathematica by the front-end
for shape analysis. Mathematica cleaves the shape semantics from those MATLAB expressions in which the
operators are built-in functions and represents them as separate shape-tuple class expressions. Assignments of
program constants give rise to constant SC expressions. Loops and conditional statements remain unchanged.
To propagate shapes across user-defined functions, user-defined function interfaces are modified to take the
SC expressions of arguments as additional parameters. After cleaving, Mathematica evaluates or simplifies
as many of the SC expressions as possible. It may also determine a set of SC expressions that describe the
possible shapes of a MATLAB expression during the entire execution lifetime of the program. The result is
passed back to the front-end, which uses the gathered shape information for further optimizations and code
generation.

3 Shape-Tuple Class Expressions

The shape tuple 〈p1, p2, . . . , pm〉 will be used to describe the extents of an m-dimensional MATLAB array in
which pi is the extent along the ith dimension. The number of components m in this notation is always at
least 2 because arrays in MATLAB have at least two dimensions.

cProgramming language functions, of course, aren’t the same as the mathematical concept. But we believe that this modelling
is a good approximation and sufficiently broad for our purposes. For example, built-in functions that depend on some internal
state can be thought of as depending on a value tuple that persists across invocations.

5

3.1 Mathematical Preliminaries

Let LS be the set of all shape tuples whose components belong to the set of nonnegative integersW. We choose
W so as to encompass the empty array construct in MATLAB [Mat97]. We shall often overload the notation
〈p1, p2, . . . , pn〉 to mean an n× n square diagonal matrix in which each pi (1 ≤ i ≤ n) is a principal diagonal
element. This allows us to bring to bear the machinery of matrix arithmetic when manipulating shape tuples
on paper, avoiding the invention of new notation to a large extent. For example, the determinant |s| can be
used to express the size of a shape tuple s.

3.1.1 Illegal Shape Tuples

To capture shape errors, we include “illegal” shape tuples by considering a set IS whose members do not belong
to LS. A suitable choice for IS would be:

IS = {〈π1, π2〉, 〈π1, π2, 1〉, 〈π1, π2, 1, 1〉, . . . } (1)

where π1 and π2 are integers such that either π1 < 0 or π2 < 0 or both.
d The canonical illegal shape tuple

〈π1, π2〉 will be represented by the symbol π. The augmented set S = LS ∪ IS is the universe of shape tuples
that we will be dealing with.

3.1.2 Shape-Tuple Equivalence

In MATLAB, any m-dimensional array can always be considered to have n dimensions, where n > m, simply
by treating higher dimensions to have unit extents. Since higher dimensions are indicated to the right in
the shape-tuple notation, shape tuples that only differ in trailing unit extents represent the same shape in
MATLAB. Specifically, because all arrays in MATLAB have at least two dimensions, unit extents that trail
after the second component can be discarded. Thus, we can define an equivalence relation ℘ on S such that
two shape tuples are related by ℘ if and only if they represent the same shape. That is, if s = 〈p1, p2, . . . , pk〉
and t = 〈q1, q2, . . . , ql〉 where k, l ≥ 2, then

s℘ t⇐⇒



s = t if k = l,

s = 〈q1, q2, . . . , ql, 1, . . . , 1〉 if k > l,

t = 〈p1, p2, . . . , pk, 1, . . . , 1〉 if k < l.
(2)

If s is the equivalence class of a shape tuple s, observe that the set of illegal shape tuples IS forms an
equivalence class π by this relation. Furthermore, observe that the shape tuple of a MATLAB expression can
be any element in some shape-tuple class (i.e., equivalence class) under ℘. The simplest such shape tuple (one
in which all unnecessary trailing unit extents are cast out) will be referred to as the canonical shape tuple of
the equivalence class. The set of all shape-tuple classes under ℘, called the quotient set of S by ℘ (see [TM75]),
will be denoted by S℘. These notions were introduced in [JB01].

3.1.3 Shape-Tuple Algebras

There exists a class of built-in functions in MATLAB, called Type I, for which the shapes of the outputs are
completely determined by the shapes of the inputs [JB01]. This class forms the majority in the language and
contains such common operations as matrix multiplication and array addition. Most other built-in functions
fall into the Type II category and the rest into the Type III group [JSB00]; though our framework and
implementation also handle members of the Type II class, algebraic simplifications are currently aimed at only
the Type I class.
By definition, for any Type I built-in function �, there is a mapping �̈ from S×S×· · ·×S to S that expresses

the shape tuple of the built-in function’s output in terms of the shape tuples of its inputs. The set S and the

dIn this report, π1 will be set to −1 and π2 to 1.

6

n-ary operation �̈ are therefore said to form the algebraic system [S, �̈] (see [TM75]). Algebras like [S, �̈], in
which the n-ary function is a shape-tuple operator, will be specifically referred to as shape-tuple algebras.
In [JB01], we showed how the shape-tuple algebra of a Type I built-in function can be formally described

using systematic matrix arithmetic on the shape tuples of the function’s arguments. The motivation for for-
mulating shape-tuple algebras is to have a reference “recipe” for the mechanical computation of shape tuples.e

In this way, shape-tuple algebras form the basis for precisely expressing the language’s shape semantics.

3.1.4 Shape-Tuple Class Algebras

Using shape-tuple algebras, shape-tuple class (SC) algebras can be built that operate on shape-tuple classes
rather than individual shape tuples [JB01]. Because they describe shape semantics to within shape-tuple
equivalence, SC algebras are useful in characterizing the shape-tuple algebras that underlie them.
For example, let ⊕̈ be the shape-tuple operator of the array addition built-in function in MATLAB.

Example infix and prefix invocations of this built-in function are a+b and plus(a, b) respectively. Using
the shape-tuple algebra [S, ⊕̈], an SC algebra [S℘, ⊕̇] can be built that operates on the quotient set S℘ rather
than the shape-tuple set S. For any three shape-tuple classes s, t and u, [S℘, ⊕̇] can be shown to have a
number of nice properties [JSB00]:

π⊕̇s = s⊕̇π = π, (Annihilation) (3)

ι⊕̇s = s⊕̇ι = s, (Identity) (4)

s⊕̇s = s, (Idempotency) (5)

s⊕̇t = t⊕̇s, (Commutativity) (6)

s⊕̇(t⊕̇u) = (s⊕̇t)⊕̇u (Associativity) (7)

where ι is the equivalence class of the scalar shape tuple ι = 〈1, 1〉. This means that shape-tuple expressions
such as s⊕̈t and t⊕̈s, though not necessarily identical, will still be the same to within shape-tuple equivalence—
that is, they will fall into the same shape-tuple class s⊕̇t.
The main attraction of SC algebras is that only a few of them suffice to describe MATLAB’s shape

semantics. For example, there are over 20 built-in functions, spanning a number of common operations, whose
SC algebras are isomorphic to [S℘, ⊕̇] [JSB00]. In fact, so far, we have been able to uncover nine quotient
algebras to which are isomorphic the shape semantics of over 50 Type I built-in functions in MATLAB [JSB00].

3.2 SC Expressions in Mathematica

We begin by issuing the Off command to switch off certain diagnostic messages that Mathematica would
otherwise emit whenever new symbols are created.f

In[1]:= Off[General::spell,
General::spell1]

In[2]:= �1, 9 �
��������������

�� FullForm

Out[2]//FullForm=
OverBar�AngleBracket�1, 9��

In[3]:= �x , y , z , �1� .. �
���

 := �x, y, z �
���������������������

All expressions in Mathematica are treated in a uniform way. Every expression consists of a head and a
sequence of arguments, all of which can themselves be arbitrary expressions. For example, when x+y is typed
as input, Mathematica considers it internally as the expression Plus[x, y] in which the head expression
is the function object Plus and the argument expressions are the objects x and y. When printing out this
expression, Mathematica gives it once again as x+y. Similarly, an input such as e, where e is any Mathematica
expression, is treated internally as OverBar[e]. This full form can be seen by using e // FullForm, which
is the postfix invocation of FullForm[e]. Thus on line In[2] above, the input results in Mathematica
outputting the full form of the SC expression 〈1, 9〉.
We next need to “simplify” SC expressions when possible. This is achieved by the definition on line

In[3] , which basically says that the equivalence class of a shape tuple having trailing unit extents from the

eAn implementation is free to use alternate ways to compute a shape tuple so long as the mapping specified by the shape-tuple
algebra is honored to within shape-tuple equivalence.

fThe Mathematica outputs shown in this report can be exactly reproduced by typing the code shown against each of the
In[n]:= prompts into a notebook interface to version 4.1 of Mathematica. The typeset inputs can be entered as is into a
notebook using special control sequences [Wol99].

7

third component onward is the same as the equivalence class of a shape tuple in which these trailing extents
are dropped. The definition, made against the OverBar object, carries four parameter specifications. These
specifications are Mathematica patterns that represent entire classes of expressions [Wol99]. While the patterns
x and y stand for arbitrary single expressions in Mathematica, the pattern z stands for zero or more such
expressions. Repeated occurrences of particular expressions can also be specified—the pattern (1).. stands
for one or more occurrences of the integer literal 1.
When evaluating an expression, Mathematica looks up the definitions that it knows against the head of

the expression, and determines an appropriate one to apply using pattern matching.

In[4]:= �8, 9, 3, 3, 1, 1 �
�������������������������������������

Out[4]= �8, 9, 3, 3�
�������������������������

In[5]:= �x, 2, 3 �
�������������������

Out[5]= �x, 2, 3�
�������������������

In[6]:= ����� = ��1, 1 �
����������������

;

In[7]:= Ι� = �1, 1 �
�������������

;

For example, on line In[4] above, Mathematica determines that the definition on line In[3] can be used
to evaluate the expression because the pattern 〈x ,y ,z , (1)..〉 matches the expression. In particular, the
patterns x and y match the objects 8 and 9, while the pattern z matches the sequence of objects 3 and 3.
Thus the right-hand side of the definition evaluates to 〈8,9,3,3〉. The expression 〈8,9,3,3〉, however, cannot
be evaluated further because none of the currently known definitions against the OverBar object apply—that
is, none of them have left-hand sides that match 〈8,9,3,3〉. It is for the same reason that the input expression
on line In[5] remains unchanged.

3.3 Codifying SC Operators in Mathematica

In Mathematica, several attributes can be declared against function objects that affect their treatment during
pattern matching and evaluation. For example, when a function object plusSC is assigned the attribute
Flat, as has been done on line In[8] below, Mathematica automatically flattens nested expressions like
plusSC[x, plusSC[y, z]] and plusSC[plusSC[x, y], z] to plusSC[x, y, z], thus producing
the effect of associativity. Commutativity can be similarly simulated by assigning the Orderless attribute
that causes expressions to be reduced to a canonical form. Though the influence of these attributes is entirely
at a structural level, the concept of structure in Mathematica is a sophisticated one.

In[8]:= SetAttributes[plusSC, { Flat,
Orderless, OneIdentity }]

In[9]:= plusSC �Ι�, s : �Ι�� : � s

In[10]:= plusSC ������, : Ι�� � �����;

In[11]:= plusSC[s , s] := s

3.3.1 The ⊕̇ SC Operator

The definitions against the plusSC object on lines In[9] through In[11] take advantage of these properties
while capturing the identity, annihilation and idempotency properties of ⊕̇.g That is, additional definitions
aren’t necessary to handle invocations such as plusSC[t, ι] and plusSC[s, t, ι]. This is because the
Orderless attribute automatically takes care of rearranging plusSC[t, ι] to plusSC[ι, t], enabling
the definition on line In[9] to be used for its evaluation. In the case of plusSC[s, t, ι], the pattern
matcher automatically rearranges it to plusSC[ι, plusSC[s, t]] due to the Flat and Orderless
attributes, allowing the definition on line In[9] to be once again used for its evaluation.
Example invocations of plusSC are shown below. Line Out[12] essentially reflects the fact that when we

add a 2× 3 matrix to a scalar in MATLAB, the result will be a 2 × 3 matrix. On line Out[13] , we see that
the result of adding two 4× 1× 0 empty arrays in MATLAB is also a 4× 1× 0 empty array.

In[12]:= plusSC ��2, 3, 1 �
���������������������

, �1, 1 �
��������������

	
Out[12]= �2, 3�

�������������
In[13]:= plusSC ��4, 1, 0 �

���������������������
, �4, 1, 0 �

���������������������
	

Out[13]= �4, 1, 0�
�������������������

But it is on line Out[14] below that we see a more interesting symbolic result, and that is the algebraic
identity s⊕̇(t⊕̇u)⊕̇v = s⊕̇(v⊕̇u)⊕̇t.
gThe pattern s :ι stands for an expression, which when omitted, is taken to have the value ι [Wol99].

8

In[14]:= plusSC[s, plusSC[t, u], v] === plusSC[s, plusSC[v, u], t]

Out[14]= True

Additional definitions can be provided to catch cases of nonconforming shapes. For example, the definition
on line In[15] below will be considered by Mathematica only after earlier definitions provided against the
plusSC object are considered and don’t apply. Thus, given the expression plusSC[s, t] where s and t
are two explicit SC expressions, the definition on line In[15] will apply only if the definitions given on lines
In[9] through In[11] don’t apply. But since that would mean s and t represent two explicit array shapes
that don’t conform under MATLAB’s array addition rules, the resulting shape-tuple class would have to be
π. An example of this situation is shown on line Out[16] , which basically corresponds to the illegal attempt
of adding a 7× 4 matrix to a 7× 5 matrix in MATLAB.

In[15]:= plusSC ��_Integer, __Integer �
��

,

�_Integer, __Integer �
��

	 � �����;

In[16]:= plusSC ��7, 4 �
�������������

, �7, 5 �
�������������

	
Out[16]= ��1, 1�

����������������

Line In[15] also illustrates how Mathematica definitions can be set up to map explicit shapes to an explicit
shape.

3.3.2 The �̇ SC Operator

Another SC algebra is [S℘, �̇], which describes the shape semantics of *, MATLAB’s matrix multiplication
operation. The SC operator �̇ is unlike ⊕̇ in a number of respects: for instance, idempotency doesn’t hold
because two identically shaped arrays may not conform under MATLAB’s matrix multiplication rules, and
properties such as commutativity and associativity don’t hold. However, �̇ does satisfy the identity and
annihilation properties [JSB00]. These properties are coded against the mtimesSC object on lines In[17] to
In[19] .

In[17]:= mtimesSC�Ι�, s � : � s

In[18]:= mtimesSC�s , Ι�� : � s

In[19]:= mtimesSC� , �����, � � �����;

In[20]:= mtimesSC��p_, q_ �
�������������������

, �q_, r_ �
�������������������

	 : �

�p, r �
��������������

Line In[20] expresses the fact that whenever we matrix multiply a p×q matrix by a q×r matrix in MATLAB,
the result will always be a p× r matrix.

3.3.3 Algebraic Simplifications

By using the algebraic properties of SC operators, it may often be possible to simplify SC expressions. For
example, two identically shaped arrays conform to the rules of matrix multiplication in MATLAB only when
their shapes are of the form p× p. In that case, the product’s shape is also p× p [Mat97]. Thus, for any SC
expression s, the SC expression s�̇s can be either s or π. From Equations (3) and (5), this means that the
following identity holds:

s⊕̇(s�̇s) = s�̇s. (8)

We shall adopt the convention that �̇ has a higher precedence than ⊕̇; this will make the use of parentheses
unnecessary whenever operators can be bound according to precedence.
A number of other identities involving �̇ and ⊕̇ can be shown to hold. Each input line, from In[21] to

In[32] below, codifies one such identity; only 12 identities have been coded because they are enough for the
example in Figure 1. The proofs of these identities follow.

9

In[21]:= plusSC[s_,
t:mtimesSC[s , s]] := t

In[22]:= mtimesSC[t:mtimesSC[s_,
s], t] := t

In[23]:= mtimesSC[plusSC[s_, t_],
plusSC[s_, t_]] :=
plusSC[mtimesSC[s, s],
mtimesSC[t, t]]

In[24]:= mtimesSC[plusSC[mtimesSC[
s_, t_], s_, t_], plusSC[
mtimesSC[s_, t_], s_,
t_]] := plusSC[mtimesSC[s,
s], mtimesSC[t, t]]

In[25]:= mtimesSC[plusSC[s_, t_],
t_] := plusSC[mtimesSC[t,
t], s]

In[26]:= mtimesSC[s_, plusSC[s_,
t_]] := plusSC[mtimesSC[s,
s], t]

In[27]:= plusSC[u:mtimesSC[s_, s_],
mtimesSC[s_, t_]] :=
plusSC[u, t]

In[28]:= plusSC[mtimesSC[s_, t_],
u:mtimesSC[t_, t_]] :=
plusSC[s, u]

In[29]:= mtimesSC[plusSC[u:mtimesSC[
s_, s_], t_], plusSC[
v:mtimesSC[t_, t_], s_]] :=
plusSC[u, v]

In[30]:= mtimesSC[plusSC[u:mtimesSC[
t_, t_], s_], t_] :=
plusSC[s, u]

In[31]:= mtimesSC[s_, plusSC[
u:mtimesSC[s_, s_], t_]] :=
plusSC[u, t]

In[32]:= mtimesSC[u:mtimesSC[
mtimesSC[mtimesSC[s_, t_],
t], t], t] := u

Lemma 1

(s⊕̇t)�̇(s⊕̇t) = s�̇s⊕̇t�̇t. (1.1)

Proof. When s is ι, both sides of Equation (1.1) become t�̇t. The same is true when t is ι, and when s = t. So let
s �= ι, t �= ι and s �= t. Then

(s⊕̇t)�̇(s⊕̇t) = π⊕̇π = π. (P1.1)

Now, s�̇s is either s or π for any s. Similarly, t�̇t is either t or π for any t. Therefore, s�̇s⊕̇t�̇t will be either π or
s⊕̇t. But when s �= ι, t �= ι and s �= t, s⊕̇t will also be π. Thus

s�̇s⊕̇t�̇t = π (P1.2)

whenever s �= ι, t �= ι and s �= t. Hence, (s⊕̇t)�̇(s⊕̇t) = s�̇s⊕̇t�̇t is always true. �

Lemma 2

(s�̇s)�̇(s�̇s) = s�̇s, (2.1)

s�̇(s�̇s) = s�̇s, (2.2)

(s�̇s)�̇s = s�̇s. (2.3)

Proof. Because s�̇s is either s or π, (s�̇s)�̇(s�̇s) is always s�̇s. Equations (2.2) and (2.3) also follow by similar
arguments. �

Lemma 3

(s�̇t⊕̇s⊕̇t)�̇(s�̇t⊕̇s⊕̇t) = s�̇s⊕̇t�̇t. (3.1)

Proof. When s = ι, or t = ι, the result trivially follows. When s = t, the left-hand side of Equation (3.1) becomes

(s�̇s⊕̇s)�̇(s�̇s⊕̇s),

which, by Equation (8), becomes (s�̇s)�̇(s�̇s). This in turn simplifies to s�̇s by Equation (2.1). But when s = t,
the right-hand side of Equation (3.1) is also s�̇s. Hence

(s�̇t⊕̇s⊕̇t)�̇(s�̇t⊕̇s⊕̇t) = s�̇s⊕̇t�̇t

is also true in this case.
Now let s �= ι, t �= ι and s �= t. Then

(s�̇t⊕̇s⊕̇t)�̇(s�̇t⊕̇s⊕̇t) = (s�̇t⊕̇π)�̇(s�̇t⊕̇π) = π�̇π = π.

10

By Equation (P1.2), the right-hand side of Equation (3.1) is also π in this case. Hence, (s�̇t⊕̇s⊕̇t)�̇(s�̇t⊕̇s⊕̇t) =
s�̇s⊕̇t�̇t is always true. �

Lemma 4

(s⊕̇t)�̇t = s⊕̇t�̇t, (4.1)

s�̇(s⊕̇t) = s�̇s⊕̇t. (4.2)

Proof. When s = ι, or t = ι, the result trivially follows. When s = t, the right-hand side of Equation (4.1) becomes

s⊕̇s�̇s

which, by Equation (8), becomes s�̇s. But when s = t, the left-hand side of Equation (4.1) is also s�̇s. Therefore,

(s⊕̇t)�̇t = s⊕̇t�̇t

is also true in this case.
When s �= ι, t �= ι, and s �= t, the left-hand side of Equation (4.1) becomes π. The right-hand side becomes π or

s⊕̇t. But since s �= ι, t �= ι, and s �= t, s⊕̇t is also π. Therefore (s⊕̇t)�̇t = s⊕̇t�̇t is always true. Equation (4.2) can
be similarly proved. �

Lemma 5

s�̇s⊕̇s�̇t = s�̇s⊕̇t, (5.1)

s�̇t⊕̇t�̇t = s⊕̇t�̇t. (5.2)

Proof. When s = ι, or t = ι, the result trivially follows. When s = t, the result follows by Equation (8).
Now let s �= ι, t �= ι and s �= t. Then both sides of Equation (5.1) become π so that s�̇s⊕̇s�̇t = s�̇s⊕̇t is always

true. Equation (5.2) can be similarly shown to hold. �

Lemma 6

(s�̇s⊕̇t)�̇(s�̇s⊕̇t) = s�̇s⊕̇t�̇t. (6.1)

Proof. When s = ι, or t = ι, the result trivially follows. When s = t, the result follows by Equations (8) and (2.1).
Now let s �= ι, t �= ι and s �= t. Then both sides of Equation (6.1) become π so that (s�̇s⊕̇t)�̇(s�̇s⊕̇t) = s�̇s⊕̇t

is always true. �

Lemma 7

(s�̇s⊕̇t)�̇(s⊕̇t�̇t) = s�̇s⊕̇t�̇t⊕̇s⊕̇t. (7.1)

Proof. When s = ι, or t = ι, the result follows by Equations (2.2), (2.3) and (8). When s = t, the result follows by
Equations (8) and (2.1).
Now let s �= ι, t �= ι and s �= t. Then both sides of Equation (7.1) become π so that (s�̇s⊕̇t)�̇(s⊕̇t�̇t) =

s�̇s⊕̇t�̇t⊕̇s⊕̇t is always true. �

Lemma 8

s�̇(s�̇s⊕̇t) = s�̇s⊕̇t, (8.1)

(s⊕̇t�̇t)�̇t = s⊕̇t�̇t. (8.2)

Proof. Consider Equation (8.1). When s = ι, the result follows trivially. When t = ι, the result follows by
Equation (2.2). When s = t, the result follows by Equations (8) and (2.2).

4 Join Nodes 11

Now let s �= ι, t �= ι and s �= t. Then both sides of Equation (8.1) become π so that s�̇(s�̇s⊕̇t) = s�̇s⊕̇t is
always true. We can similarly prove Equation (8.2). �

Lemma 9

s�̇
(
s�̇(s�̇(s�̇t))

)
= s�̇(s�̇(s�̇t)), (9.1)(

((s�̇t)�̇t)�̇t
)
�̇t = ((s�̇t)�̇t)�̇t. (9.2)

Proof. Consider Equation (9.1). When s = ι, or s�̇t = π, the result follows trivially. When t = ι, the result follows
by Equation (2.2). The only remaining possibility is s and t being of the form 〈p, q〉 and 〈q, r〉 respectively. Then
s�̇(s�̇(s�̇t)) would have to be either π, or 〈q, r〉 if p = q. But this would mean s�̇

(
s�̇(s�̇(s�̇t))

)
= s�̇(s�̇(s�̇t)).

Equation (9.2) can be similarly proved.
A point to note here is that the number of applications of �̇ in both Equations (9.1) and (9.2) is significant. For

instance, 〈1, 2〉�̇(〈1, 2〉�̇(〈1, 2〉�̇〈2, 1〉)) = π �= 〈1, 2〉�̇(〈1, 2〉)�̇〈2, 1〉) = 〈1, 2〉. �

4 Join Nodes

Consider a join node c ← φ(a, b) in the SSA form of a MATLAB program. We can characterize the
shape-tuple class u of c, given the shape-tuple classes s and t of a and b, as

u = Φ̇P (s, t) =

{
s if P = 0,

t if P = 1.
(9)

In the above, P plays the role of a run-time selector. Every join node in a program’s control-flow graph
(CFG) has its own unique selector P . Because a join node in a MATLAB CFG can be assumed to have only
two predecessors, its run-time selector takes on a value of 0 or 1 to indicate the incident edge along which
control flows into it; this value can flip-flop because CFG nodes may be revisited in the course of a program’s
execution. Note that this modelling of the φ function is only for the purpose of analysis at the intermediate
stages because the final transformed code will be free of φ functions.

4.1 φµ and φν Functions

Because of the structured nature of control flow in the MATLAB language (conditional statements, structured
loops, and no goto statements), join nodes in the SSA form will always have lexically preceding definitions,
except for loop-header join nodes for which one definition will be lexically preceding and the other will be
lexically succeeding. We distinguish the two kinds of φ functions by referring to loop-header φ functions as
φµ functions and φ functions that occur at the end of loops and conditional statements as φν functions.

4.2 Representing Join Nodes in Mathematica

Every kind of construct in MATLAB can be represented symbolically in Mathematica. For example, a MAT-
LAB expression like a+b, where a and b are MATLAB variables, can be represented in Mathematica by the
expression plus[a, b] where a and b are Mathematica symbols. A φµ function can be denoted by the
Mathematica expression phiµ[P][a, b] where P is the φµ function’s run-time selector. The MATLAB as-
signment statement c ← e can be represented as LeftArrow[c, e], which in turn can be directly entered
as c ← e into Mathematica. Thus, a join node like c ← φµ(a, b) in a MATLAB CFG can be denoted
by the Mathematica expression c ← phiµ[P][a, b]. Higher-level MATLAB constructs such as while
loops can also be represented; in this report, we shall use the Mathematica expression while[{s1, s2, . . .,
sn}] to stand for a MATLAB while loop whose body consists of a sequence of statements.h On line In[33]
below, we show how the SSA form of the MATLAB program in Figure 1 can be entered into Mathematica.

hA while loop’s test expression isn’t represented because it isn’t used in this report.

5 Uncoupling Array Shape Semantics 12

In[33]:= stmts := { d1 � max[mtimes[b0, b0], mtimes[abs[a0], b0]], d2 �
mtimes[plus[b0, a0], fix[b0]], while[{a1 � phi Μ[P][a0, a2],
b1 � phi Μ[P][b0, b2], c � mtimes[a1, b1], a2 � plus[c,
power[a1, b1]], b2 � minus[c, rdivide[a2, c]], while[{e1 �
phi Μ[Q][e0, e2], e2 � mtimes[e1, d2]}], a3 � phi Ν[R][a0, a2],
b3 � phi Ν[R][b0, b2], h � minus[power[b3, b3], a3] }] }

Observe the use of the common run-time selector P among the join nodes in the loop header of the outer
while loop, the use of the run-time selector Q in the single join node of the inner while loop, and the use
of the run-time selector R among the join nodes that come at the end of the outer while loop.

5 Uncoupling Array Shape Semantics

On lines In[34] to In[41] below are definitions against the Mathematica object σ that is used to uncouple
the shape semantics from a MATLAB expression.

In[34]:= Σ[mtimes[x_, y_]] :=
mtimesSC[Σ[x], Σ[y]]

In[35]:= Σ[plus[x_, y_]] :=
plusSC[Σ[x], Σ[y]]

In[36]:= Σ[minus[x_, y_]] :=
plusSC[Σ[x], Σ[y]]

In[37]:= Σ[power[x_, y_]] :=
plusSC[Σ[x], Σ[y]]

In[38]:= Σ[rdivide[x_, y_]] :=
plusSC[Σ[x], Σ[y]]

In[39]:= Σ[max[x_, y_]] :=
plusSC[Σ[x], Σ[y]]

In[40]:= Σ[abs[x_]] := Σ[x];
Σ[fix[x]] := Σ[x]

In[41]:= Σ[(phi Μ| phi Ν)[P_][x_, y_]] :=
phiSC[P][Σ[x], Σ[y]]

As an example, the definition on line In[34] is responsible for cleaving the shape semantics from a matrix
multiplication operation in MATLAB. In this case, the uncoupled shape semantics is represented by the
SC expression mtimesSC[σ[x], σ[y]], where σ[x] and σ[y] are the SC expressions of the MATLAB
expressions that correspond to the x and y patterns. Because the array addition (plus), array subtraction
(minus), array power (power), right array division (rdivide) and max built-in functions in MATLAB have
SC algebras that are isomorphic to [S℘, ⊕̇], their SC expressions have the same head plusSC. In the case of
the built-in functions abs and fix, the SC operators are identity mappings. Line In[41] maps both φµ and
φν functions to the same SC expression; if there is a need to distinguish between φµ and φν functions at the
level of SC expressions, different Mathematica objects can be used to represent their SC expression heads.

5.1 Uncoupling Shape Semantics from MATLAB Statements

The definitions on lines In[42] to In[44] below generate SC expressions from MATLAB assignment state-
ments, statement lists and while loops respectively.

In[42]:= Σ[x_ � y_] :=
Σ[x]
 Σ[y]

In[43]:= Σ[s_List] :=
Flatten[Σ /@ s]

In[44]:= Σ[while[b_List]
] := Σ[b]

The definition on line In[42] generates an SC expression rewriting rule [Wol99] from a MATLAB assign-
ment statement. That is, given the assignment c ← e, it generates the rewriting rule σ[c] → σ[e] that
indicates the SC expression of c to be σ[e]. Rewriting rules were chosen because they can be conveniently
used for further manipulations. The Mathematica expression g /@ {e1, e2, . . . } applies the Mathematica
expression g on each element in a list, producing {g[e1], g[e2], . . . } as the result; this is how σ is applied
on a sequence of MATLAB statements on line In[43] . The Flatten built-in Mathematica object [Wol99]
flattens out nested lists that may arise in σ /@ s. Finally, line In[45] below shows an application of σ on
the Mathematica representation of the MATLAB program in Figure 1.

In[45]:= scs = Σ[stmts]

Out[45]= �Σ�d1� � plusSC�mtimesSC�Σ�b0�, Σ�b0��, Σ�a0��,
Σ�d2� � plusSC�mtimesSC�Σ�b0�, Σ�b0��, Σ�a0��,
Σ�a1� � phiSC�P��Σ�a0�, Σ�a2��,
Σ�b1� � phiSC�P��Σ�b0�, Σ�b2��, Σ�c� � mtimesSC�Σ�a1�, Σ�b1��,
Σ�a2� � plusSC�Σ�a1�, Σ�b1�, Σ�c��,
Σ�b2� � plusSC�Σ�a2�, Σ�c��, Σ�e1� � phiSC�Q��Σ�e0�, Σ�e2��,
Σ�e2� � mtimesSC�Σ�e1�, Σ�d2��, Σ�a3� � phiSC�R��Σ�a0�, Σ�a2��,
Σ�b3� � phiSC�R��Σ�b0�, Σ�b2��, Σ�h� � plusSC�Σ�a3�, Σ�b3���

13

5.2 Removing Redundant Array Shape Computations

On examining line Out[45] above, we can immediately see that the SC expressions of d1 and d2 are the
same. This corresponds to Inference 1 on page 2 and happens because of a number of “behind the scenes”
transformations that Mathematica applies during the evaluation process, due to the definitions that were
made earlier against the various objects that occur in the SC expressions. In particular, the identities on lines
In[28] and In[25] in § 3.3.3, along with the Orderless attribute, cause the SC expressions of d1 and d2
to be reduced to the same form.

5.2.1 Forward Substitution

By using traditional compiler techniques like forward substitution, it may be possible to expose other identical
SC expressions.

In[46]:= fsub[{ x___, l_
 r_ }] := Flatten[{ #, l
 (r / .
#) }]&[fsub[{ x}]]; fsub[{}] = {} ;

For instance, the recursive Mathematica function object fsub defined above takes an arbitrary list of SC
expression rewriting rules and forward substitutes every definition into its lexically succeeding use. An SC
expression that substitutes a use is itself forward substituted prior to the substitution. Before showing the
result of applying fsub on the output on line Out[45] , we make three special formatting definitions against
the mtimesSC, plusSC and phiSC objects that only affect the way expressions involving these objects are
typeset and displayed. This will make reading of the outputs easier.

In[47]:= mtimesSC / : MakeBoxes[mtimesSC[x_, y_], StandardForm] :=
Module[{a, b, c, d},

{a, b} = If[Head[x] === mtimesSC
 Head[x] === plusSC,
 {"(", ")"}, {{}, {}}];

{c, d} = If[Head[y] === mtimesSC
 Head[y] === plusSC,
 {"(", ")"}, {{}, {}}];

RowBox[Flatten[{a, MakeBoxes[x, StandardForm], b,
RowBox[{OverscriptBox[" �", "."],
AdjustmentBox[StyleBox["*", FontFamily
 "Times"],
BoxMargins
 {{−0.81, 0}, {0, 0}}, BoxBaselineShift

−0.125] }], c, MakeBoxes[y, StandardForm], d }]]]

In[48]:= plusSC / : MakeBoxes[plusSC[x_, y_], StandardForm] :=
RowBox[{MakeBoxes[x, StandardForm], OverscriptBox[" �", "."],
MakeBoxes[y, StandardForm] }]

In[49]:= phiSC / : MakeBoxes[phiSC[P_][x_, y_], StandardForm] :=
RowBox[{SubscriptBox[OverscriptBox[" �", "."],
MakeBoxes[P, StandardForm]], "(", MakeBoxes[x, StandardForm],
",", MakeBoxes[y, StandardForm], ")" }]

The Mathematica expression e // Timing produces the result {t′, e′}, where t′ is the time taken by the
Mathematica kernel to evaluate e to e′.i

In[50]:= fsub[scs] // Timing

Out[50]= �0. Second, �Σ�d1� � Σ�b0� �
�� Σ�b0��

�
Σ�a0�, Σ�d2� � Σ�b0� �

�� Σ�b0��
�

Σ�a0�,
Σ�a1� � �

�
P�Σ�a0�, Σ�a2��, Σ�b1� � �

�
P�Σ�b0�, Σ�b2��,

Σ�c� � �
�
P�Σ�a0�, Σ�a2�� �

�� ��P�Σ�b0�, Σ�b2��, Σ�a2� �
�
�
P�Σ�a0�, Σ�a2�� �

�� ��P�Σ�b0�, Σ�b2���
�

�
�
P�Σ�a0�, Σ�a2���

�
�
�
P�Σ�b0�, Σ�b2��,

Σ�b2� � �
�
P�Σ�a0�, Σ�a2�� �

�� ��P�Σ�b0�, Σ�b2���
�

�
�
P�Σ�a0�, Σ�a2���

�
�
�
P�Σ�b0�, Σ�b2��, Σ�e1� � �

�
Q�Σ�e0�, Σ�e2��,

Σ�e2� � �
�
Q�Σ�e0�, Σ�e2�� �

�� �Σ�b0� �
�� Σ�b0��

�
Σ�a0��,

Σ�a3� � �
�
R�Σ�a0�, �

�
P�Σ�a0�, Σ�a2�� �

�� ��P�Σ�b0�, Σ�b2���
�

�
�
P�Σ�a0�, Σ�a2���

�
�
�
P�Σ�b0�, Σ�b2���,

Σ�b3� � �
�
R�Σ�b0�, �

�
P�Σ�a0�, Σ�a2�� �

�� ��P�Σ�b0�, Σ�b2���
�

�
�
P�Σ�a0�, Σ�a2���

�
�
�
P�Σ�b0�, Σ�b2���,

Σ�h� � �
�
R�Σ�a0�, �

�
P�Σ�a0�, Σ�a2�� �

�� ��P�Σ�b0�, Σ�b2���
�

�
�
P�Σ�a0�, Σ�a2���

�
�
�
P�Σ�b0�, Σ�b2����

�
�
�
R�Σ�b0�, �

�
P�Σ�a0�, Σ�a2��

�
�� ��P�Σ�b0�, Σ�b2���

�
�
�
P�Σ�a0�, Σ�a2���

�
�
�
P�Σ�b0�, Σ�b2�����

iThe shown timings are on a 440 MHz UltraSPARC-IIi running Solaris 7 and having 128MB of main memory.

6 Symbolic Fixed-Point Solutions 14

5.2.2 Common SC Expression Elimination

On inspecting line Out[50] above, we can see that the SC expressions of a2 and b2 are also the same. This
corresponds to Inference 2 on page 2. A common-subexpression elimination pass, either in the front-end or in
Mathematica itself, can now be applied on these SC expressions so that b2 and d2 use the same SC expressions
as a2 and d1 respectively. In this way, the overall overhead due to array shape computation in the translated
code can be reduced. Moreover, since successful shape checks on σ[d1] and σ[a2] would respectively imply
the success of shape checks on σ[d2] and σ[b2], the latter shape checks become redundant. This fact can
also be taken advantage of by a translator.

6 Symbolic Fixed-Point Solutions

Let 2S℘ denote the power set of S℘, and let �̇ be the SC operator of �, a binary Type I MATLAB function.
We construct the set-of-shapes (SS) algebra [2S℘ , �̆] by considering the mapping �̆ : 2S℘ × 2S℘
→ 2S℘ defined as

S�̆T = {u|∃s ∈ S ∧ ∃t ∈ T such that u = s�̇t}. (10)

SS algebras are important because they provide us with a way to conservatively determine the set of possible
shapes of a given MATLAB expression. They are therefore the “broadest” of the shape-related algebras
because they operate on sets of SC expressions rather than individual SC expressions as is the case for SC
algebras.
On the set 2S℘ , a lattice L can be defined in which the set subset relation⊆ is the partial order, ∅ is the least

element, S℘ is the greatest element, and set union ∪ and set intersection ∩ are the join and meet operations.
From the definition in Equation (10), it is easy to see that the SS operator of every Type I MATLAB function
will be monotonic with respect to L.

6.1 Building SS Expressions

A set-of-shapes expression, defined on the domain 2S℘ , can be denoted in Mathematica as set[s1, s2, . . .,
sn] where each si (1 ≤ i ≤ n) is an SC expression. Lines In[51] and In[52] below show how the lattice join
of SS expressions can be defined.

In[51]:= join[___, �
 , ___] = �
 ; In[52]:= join[x set] := Union[x]

While line In[51] reflects the fact that a join with the greatest element of a lattice is always the greatest
element, line In[52] states that the join of other SS expressions that have the object set as their heads is
simply the union of their representative set expressions. Note that S℘ is used in a purely symbolic manner
on line In[51] .
A Mathematica object Σ is defined to generate SS expressions from MATLAB expressions, assignment

statements, while loops and statement lists. In the case of φ functions, the SS expression is set to the join
of the SS expressions of the φ function’s arguments; this is shown on line In[53] below.

In[53]:= �[(_phi Μ| _phi Ν)[x_,
y]] := join[�[x], �[y]]

In[54]:= �[s List] := Flatten[� / @ s]

In[55]:= �[(abs | fix)[x]] := �[x]

For unary MATLAB built-in functions like abs and fix whose SC operators are identity mappings, the SS
expression of the output is simply the SS expression of the input; this is shown on line In[55] above.
Given the MATLAB assignment c ← e, the definition on line In[56] generates the SS expression rewrit-

ing rule c → Σ[e] that indicates the SS expression of c to be Σ[e]. The definition also records this SS
expression as the upvalue [Wol99] of c so that subsequent instances of Σ[c] expand to Σ[e].

In[56]:= �[x � y] := (�[x] ^ := #; x
 #)&[�[y]]

15

The definition on line In[57] below generates an SS expression from a MATLAB expression of the form
h(x, y) where h is any of mtimes, plus, minus, power, rdivide and max. It does this by first constructing
Σ(x) and Σ(y), the SS expressions of x and y. If either of these SS expressions is S℘, the greatest element of L,
then S℘ is returned. Otherwise, the set of products of every SC expression in Σ(x) with every SC expression
in Σ(y) is formed, with the product operator being the SC operator for h.

In[57]:= �[(h_)[x_, y_]] := If[#1 === �

 #2 === �
 ,
�
 , Union[Flatten[Outer[�[h], #1, #2]]]]&[�[x], �[y]]

In[58]:= �[mtimes] = mtimesSC; �[plus | minus | power | rdivide | max] =
plusSC;

6.2 Preventing Exponential Blow-Up

If Σ(x) and Σ(y) have m and n SC expressions each, their Cartesian product will have mn SC expressions.
However, because of algebraic properties like those discussed in § 3.3.3, a number of these SC expressions may
simplify to the same SC expression. The Union built-in Mathematica object takes care of eliminating such
repetitions.
There also exists another kind of simplification that arises from set-of-shapes identities. An example of

such an identity is
{s�̇s⊕̇t�̇t, s�̇s⊕̇t, s⊕̇t�̇t} = {s�̇s⊕̇t, s⊕̇t�̇t}.

The reason for the above identity is that for a given pair of SC expressions s and t, s�̇s⊕̇t�̇t will always be
either s�̇s⊕̇t or s⊕̇t�̇t. Lines In[59] and In[60] below code two such SS identities.

In[59]:= set[u___, plusSC[p:mtimesSC[s_, s_], q:mtimesSC[t_, t_]],
v___] /; MemberQ[{u, v}, plusSC[p, t]] � MemberQ[{u, v},
plusSC[q, s]] := set[u, v]

In[60]:= set[u___, plusSC[mtimesSC[s_, t_], s_, t_], v___] / ;
MemberQ[{u, v}, plusSC[mtimesSC[s, s], t]] � MemberQ[{u, v},
plusSC[mtimesSC[t, t], s]] := set[u, v]

Lemma 10
{s�̇s⊕̇t�̇t, s�̇s⊕̇t, s⊕̇t�̇t} = {s�̇s⊕̇t, s⊕̇t�̇t}. (10.1)

Proof. Obviously,
{s�̇s⊕̇t, s⊕̇t�̇t} ⊆ {s�̇s⊕̇t�̇t, s�̇s⊕̇t, s⊕̇t�̇t}. (P10.1)

Now t�̇t can be either t or π. Hence, s�̇s⊕̇t�̇t is either s�̇s⊕̇t or π. When s�̇s⊕̇t�̇t is π, s⊕̇t�̇t will also be π.
Therefore

{s�̇s⊕̇t�̇t, s�̇s⊕̇t, s⊕̇t�̇t} ⊆ {s�̇s⊕̇t, s⊕̇t�̇t} (P10.2)

is always true. Equation (10.1) follows from Equations (P10.1) and (P10.2). �

Lemma 11
{s�̇t⊕̇s⊕̇t, s�̇s⊕̇t, s⊕̇t�̇t} = {s�̇s⊕̇t, s⊕̇t�̇t}. (11.1)

Proof. Once again,
{s�̇s⊕̇t, s⊕̇t�̇t} ⊆ {s�̇t⊕̇s⊕̇t, s�̇s⊕̇t, s⊕̇t�̇t}. (P11.1)

When s = ι, or t = ι, or s = t, s�̇t⊕̇s⊕̇t is obviously either s�̇s⊕̇t or s⊕̇t�̇t. So let s �= ι, t �= ι and s �= t. Then
s�̇t⊕̇s⊕̇t will be π. But then, both s�̇s⊕̇t and s⊕̇t�̇t will also be π. Therefore

{s�̇t⊕̇s⊕̇t, s�̇s⊕̇t, s⊕̇t�̇t} ⊆ {s�̇s⊕̇t, s⊕̇t�̇t} (P11.2)

is always true. Equation (11.1) follows from Equations (P11.1) and (P11.2). �

16

6.3 Handling Loops

The definition on line In[61] below shows how Σ operates on while loops.

In[61]:= �[while[b_List]] :=
(*1*)Module[{l, fp},
(*2*) l = Cases[b, lhs_ � _
 lhs, Infinity];
(*3*) fp = FixedPoint[�[b]&, �[b],

 $NUMITERS]; (* 1 to $NUMITERS+1 iterations. *)
(*4*) If[�[b] =!= fp,
(*5*) (�[#] ^:= �
 ; #
 �
)& /@ l, (* Force solution to �
 . *)
(*6*) fp]]

In (*2*), all program variables defined in the body of the while loop, including those defined in nested
constructs, are determined. FixedPoint is a built-in object in Mathematica that applies a function until the
result no longer changes; the expression FixedPoint[f, e, n] begins with e, and then repeatedly applies
f at most n times until two consecutive applications of f produce the same result [Wol99]. Thus the effect
produced in (*3*) is to apply Σ on the while loop’s body at least once and at most $NUMITERS+1 times,
stopping if a fixed-point value for the list of SS expression rewriting rules is achieved. In (*4*), a check is
made if a fixed point has indeed been achieved—this is done by once again applying Σ on the while loop’s
body and symbolically comparing the result with the outcome of (*3*). If so, the fixed-point value is returned;
otherwise, the SS expressions of all the variables defined in the loop body are forced to the greatest element
S℘ of the lattice.

6.4 Fixed-Point SS Expressions

Before applying Σ on the Mathematica representation of the program in Figure 1, an initial solution needs to
be set up. This is done on line In[62] below, which sets the initial SS expression of a variable v that is live
on entry into the code fragment to set[σ[v]] where σ[v] is the SC expression that describes v’s shape on
entry into the code fragment. For variables defined within the code fragment, the initial solution is set to the
empty set set[].

In[62]:= { �[a0], �[b0], �[e0] } = { set[Σ[a0]], set[Σ[b0]], set[Σ[e0]] } ;
�[d1 | d2| a1| b1| c| a2| b2| e1| e2| a3| b3| h] = set[];

In[63]:= $NUMITERS = �; �[stmts] // Timing

Out[63]= �0.22 Second,
�d1 � set�Σ�b0� �

�� Σ�b0��
�

Σ�a0��, d2 � set�Σ�b0� �
�� Σ�b0��

�
Σ�a0��,

a1 � set�Σ�a0� �
�� Σ�a0��

�
Σ�b0�, Σ�b0� �

�� Σ�b0��
�

Σ�a0�, Σ�a0��,
b1 � set�Σ�a0� �

�� Σ�a0��
�

Σ�b0�, Σ�b0� �
�� Σ�b0��

�
Σ�a0�, Σ�b0��,

c � set�Σ�a0� �
�� Σ�b0�, Σ�a0� �

�� Σ�a0��
�

Σ�b0�, Σ�b0� �
�� Σ�b0��

�
Σ�a0��,

a2 � set�Σ�a0� �
�� Σ�a0��

�
Σ�b0�, Σ�b0� �

�� Σ�b0��
�

Σ�a0��,
b2 � set�Σ�a0� �

�� Σ�a0��
�

Σ�b0�, Σ�b0� �
�� Σ�b0��

�
Σ�a0��,

e1 � set���Σ�e0� �
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0��� �
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0���
�
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0��, �Σ�e0� �
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0��� �
��

�Σ�b0� �
�� Σ�b0��

�
Σ�a0��, Σ�e0� �

�� �Σ�b0� �
�� Σ�b0��

�
Σ�a0��, Σ�e0��,

e2 � set���Σ�e0� �
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0��� �
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0���
�
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0��, �Σ�e0� �
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0���
�
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0��, Σ�e0� �
�� �Σ�b0� �

�� Σ�b0��
�

Σ�a0���,
a3 � set�Σ�a0� �

�� Σ�a0��
�

Σ�b0�, Σ�b0� �
�� Σ�b0��

�
Σ�a0�, Σ�a0��,

b3 � set�Σ�a0� �
�� Σ�a0��

�
Σ�b0�, Σ�b0� �

�� Σ�b0��
�

Σ�a0�, Σ�b0��,
h � set�Σ�a0� �

�� Σ�a0��
�

Σ�b0�, Σ�b0� �
�� Σ�b0��

�
Σ�a0�, Σ�a0��

�
Σ�b0����

Line In[63] shows an application of Σ. The application is preceded by the setting of $NUMITERS to ∞ to
see if a useful fixed-point solution besides the forced case exists. For the given example, this does turn out
to be the situation. For other input programs, a non-forced fixed point may either take an indefinite number
of iterations because of the infinite height of the lattice L, or may never be reached because of exponential
blow-up due to the coded algebraic identities not covering the simplification of the generated SS expressions.
The trade-off is achieved by suitably setting $NUMITERS to some finite value that is also small. For the
example in Figure 1, a value of 3 suffices to reach the fixed point. Observe that the fixed-point solution on line
Out[63] reveals all the claims made in Inference 3 on page 2. As mentioned before, the symbolic expressions

7 Results 17

on line Out[63] can be used by a translator for optimizations such as preallocating array storage and verifying
array shape correctness ahead of time.

7 Results

Apart from demonstrating the feasibility of our ideas, the Mathematica code shown in this report doubles as
an initial algorithmic specification of a shape inference system for MATLAB. A full-blown implementation
has been completed as part of a type analysis engine for MATLAB called . The implementation is
extensive and covers close to 70 built-in functions in the language, including a number of important Type II
built-in functions like array indexing and colon expressions. In most cases, the original semantics of the built-
in functions have been supported. For instance, in array indexing expressions, the subscripts themselves are
allowed to be arrays. Conditional statements, all of MATLAB’s looping constructs, and user-defined functions
have also been covered.

7.1 Benchmarks

Metrics pertaining to shape information were collected over a set of 11 programs obtained from a variety of
sources including the test suites of recent research compilers for MATLAB. The benchmarks were organized
into input files that are called M-files in MATLAB jargon. Table 1 lists these benchmarks, along with brief
descriptions, their sources and their sizes in terms of the number of input files and the total number of
lines. Each benchmark consists of a separate driver routine from which is invoked the entry function of the
benchmark. This organization is taken from FALCON. The current version of supports built-in
functions such as disp and fprintf using which output to an external file can be generated. However, no
support currently exists for reading data from an external file. Some of the benchmarks did read data from
external files; these were modified to include the loaded data in the driver routine. This wasn’t found to be
a problem because those benchmarks that did load data from external files only read in a couple of scalars.
Two benchmarks that manipulate three dimensional arrays have also been included. In fact, in most of the
publically available benchmarks, all data were restricted to scalars, vectors and matrices. This is specifically
true for the test suites of previous research MATLAB compilers where arrays were confined to scalars, vectors
and matrices. This is because early versions of MATLAB only supported matrices; multidimensional array
support began in version series 5, the current version series being 6.

Benchmark Synopsis Origin M-Files Lines

adpt Adaptive Quadrature by Simpson’s Rule ✝ FALCON 2 79

capr Transmission Line Capacitance Chalmers University of Technology, Sweden 5 68

clos Transitive Closure ✞ OTTER 2 30

crni Crank-Nicholson Heat Equation Solver FALCON 3 48

diff Young’s Two-Slit Diffraction Experiment The MathWorks’ Central File Exchange 2 40

dich Dirichlet Solution to Laplace’s Equation FALCON 2 49

edit Edit Distance The MathWorks’ Central File Exchange 2 34

❑ fdtd Finite Difference Time Domain (FDTD) Technique Chalmers University of Technology, Sweden 2 47

fiff Finite-Difference Solution to the Wave Equation FALCON 2 32

nb1d One-Dimensional N-Body Simulation OTTER 2 53

❑ nb3d Three-Dimensional N-Body Simulation Modified nb1d 2 46
❑ Benchmarks involve three-dimensional arrays.

Table 1: Benchmark Suite Description

7.2 Shape Composition

The “Shapes” column of Table 2 presents the total number of inferred shapes in each benchmark. These
include the shapes of the original program variables, as well as the shapes of temporary variables that are
introduced in the steps that lead up to type determination. For instance, temporaries get introduced during

18

the SSA conversion step that precedes the type determination phase. It additionally includes variables that
are introduced by the effective splitting of Φ̇P (s, t) into copies during the SSA inversion phase. The “Explicit
Shapes” column indicates the percentage of inferred shapes that are explicit. The column also shows the
breakup of these explicit shapes between scalar and nonscalar shapes. Explicit shapes allow translators to
generate highly efficient code. For example, if a translator could infer that the variables a and b in the
MATLAB expression a+b are scalars, it can generate a simple machine instruction to perform the addition
rather than a generalized array addition routine. The measurements are with respect to Version 1.0 of .

Benchmark Shapes
Explicit Shapes

Symbolic Type Inference Timings
Copies (secs)

% Scalar Nonscalar (%) Kernel MathLink

adpt 188 43.09 71 10 63.55 33.30 11.20 (25%)

capr 232 30.60 63 8 60.87 39.10 15.80 (29%)

clos 64 100 21 43 0.00 5.34 9.56 (64%)

crni 139 100 64 75 0.00 11.40 10.60 (48%)

diff 92 91.30 70 14 62.50 17.70 61.70 (78%)

dich 143 100 94 49 0.00 40.50 16.90 (29%)

edit 83 28.92 19 5 62.71 4.30 7.00 (62%)

fdtd 192 100 38 154 0.00 5.52 10.18 (65%)

fiff 88 100 58 30 0.00 5.16 11.04 (68%)

nb1d 163 10.43 12 5 64.38 11.40 6.80 (37%)

nb3d 118 16.10 14 5 37.37 7.24 5.56 (43%)

Table 2: Shape Composition

All nonexplicit shapes are symbolic. The “Symbolic Copies” column in Table 2 displays the percentage of
the symbolic shapes that are inferred to be identical. This deduction happens as a consequence of algebraic
simplifications such as those discussed in § 3.3.3. Establishing that one symbolic shape is exactly the same as
another allows a translator not only to reduce the overhead of run-time array shape computation but also to
avoid unnecessary shape checks. Table 2 also shows that in benchmarks that have symbolic shapes, a usually
large percentage of the symbolic shapes can be determined to be identical. This indicates that making such
an inference has the potential to considerably lower shape-related run-time overheads. As far as we know, no
previous approach to shape determination can make this kind of an inference.

7.3 Timings

Timing measurements are presented in the last column. These were obtained on a 440 MHz UltraSPARC-IIi
workstation running Solaris 7 and having 128MB of main memory. The “Kernel” subcolumn displays the time
taken by the Mathematica kernel to arrive at all type inferences—intrinsic type, value range and shape—for
each benchmark.
The “MathLink” subcolumn records the time taken to transfer the intermediate representation of the input

program across to the Mathematica kernel, and to transfer the inferred type information back to the front-end.
This data movement, which occurs over a special interprocess communication interface called MathLink, can
be expensive. As Table 2 shows, in 5 out of 11 benchmarks, the MathLink timings account for over 60% of the
total type inference times. The MathLink channel has been improving with newer releases and it is possible
that the total type inference timings will be closer to that shown in the “Kernels” subcolumn in future versions
of Mathematica. Still, considering the quality of the inferences made, we believe that the current timings are
acceptable, especially since a typical usage scenario is one where the interpretor is used for prototyping and
code development, and an inference-capable compiler is used for final production code generation.

8 Conclusions 19

8 Conclusions

This report presented a framework for inferring array shapes in array-based languages like MATLAB, and
also showed how such a framework can be implemented using a commercial symbolic analysis package like
Mathematica. Unlike all previous approaches, our framework exploits the algebraic properties that underlie
MATLAB’s shape semantics. This gives our approach a unique advantage in its ability to arrive at useful
shape inferences even when array extents aren’t compile-time determinable. Some of the inferences that our
framework is capable of, as far we are aware, haven’t been arrived at by any previous automatic array shape
inference technique, be it for MATLAB or another array-based language. Examples of these are the powerful
inferences shown on lines Out[50] and Out[63] .
Of course, the quality of the inferences is crucially dependent on how fully the various algebraic properties

relating to array shape semantics are characterized. If none of the coded algebraic identities apply for a certain
input program, shape equivalence may not be detected, and a useful fixed-point solution may not be arrived
at. But the shape semantics of most of the language operators have simple algebraic properties that can be
easily identified and codified, and from which shape inference benefits immediately accrue. Moreover, since
not coding some algebraic identity does not mean incorrectness but only a missed opportunity at simplification
and a useful inference, such systems can be built incrementally, ultimately trading quality of inference with
run-time efficiency. We believe that the implementation of , an archetype of such a type inference
system, confirms this point in that a system capable of high-quality inferences can also be practically built
and used.

References

[BS74] Alan M. Bauer and Harry J. Saal. “Does APL Really Need Run-Time Checking?”. Software—Practice and
Experience, 4(2):129–138, 1974.

[Bud88] Timothy Budd. An APL Compiler. Springer-Verlag, Inc., New York City, NY 10010, USA, 1988. ISBN
0–387–96643–9.

[CB98] Stéphane Chauveau and François Bodin. “Menhir: An Environment for High Performance MATLAB”. In
Proceedings of the 4th International Workshop on Languages, Compilers and Run-Time Systems, volume
1511 of Lecture Notes in Computer Science, pages 27–40. Springer-Verlag, May 1998.

[CFRW91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, and Mark N. Wegman. “Efficiently Computing Static Single
Assignment Form and the Control Dependence Graph”. ACM Transactions on Programming Languages
and Systems, 13(4):451–490, October 1991.

[Chi86] Wai-Mee Ching. “Program Analysis and Code Generation in an APL/370 Compiler”. IBM Journal of
Research and Development, 30(6):594–602, November 1986.

[DRP99] Luiz Antônio De Rose and David A. Padua. “Techniques for the Translation of MATLAB Programs into
FORTRAN 90”. ACM Transactions on Programming Languages and Systems, 21(2):286–323, March 1999.

[JB01] Pramod G. Joisha and Prithviraj Banerjee. “Computing Array Shapes in MATLAB”. In Proceedings of the
14th International Workshop on Languages and Compilers for Parallel Computing, volume 2624 of Lecture
Notes in Computer Science. Springer-Verlag, August 2001.

[JS98] Barry C. Jay and Paul A. Steckler. “The Functional Imperative: Shape!”. In Proceedings of the 7th Eu-
ropean Symposium On Programming, volume 1381 of Lecture Notes in Computer Science, pages 139–153,
March/April 1998.

[JSB00] Pramod G. Joisha, U. Nagaraj Shenoy, and Prithviraj Banerjee. “An Approach to Array Shape Deter-
mination in MATLAB”. Technical Report CPDC–TR–2000–10–010, Center for Parallel and Distributed
Computing, Department of Electrical and Computer Engineering, Northwestern University, October 2000.

[KU78] Marc A. Kaplan and Jeffrey D. Ullman. “A General Scheme for the Automatic Inference of Variable
Types”. In Proceedings of the 5th ACM SIGPLAN Symposium on Principles of Programming Languages,
pages 60–75, January 1978.

[Mat97] The MathWorks, Inc. MATLAB: The Language of Technical Computing, January 1997. Using MATLAB
(Version 5).

REFERENCES 20

[Mil79] Terrence C. Miller. “Type Checking in an Imperfect World”. In Proceedings of the 6th ACM SIGPLAN
Symposium on Principles of Programming Languages, pages 237–243, January 1979.

[QMSZ98] Michael J. Quinn, Alexey Malishevsky, Nagajagadeswar Seelam, and Yan Zhao. “Preliminary Results from
a Parallel MATLAB Compiler”. In Proceedings of the 12th International Parallel Processing Symposium,
pages 81–87, April 1998.

[Ten74] Aaron M. Tenenbaum. “Type Determination in Very High-Level Languages”. Ph.D. dissertation, Courant
Institute of Mathematical Sciences, New York University, October 1974. Report NSO–3.

[TM75] J. P. Tremblay and R. Manohar. Discrete Mathematical Structures with Applications to Com-
puter Science. Computer Science Series. McGraw-Hill, Inc., 1975. ISBN 0–07–065142–6.

[Wol99] Stephen Wolfram. The Mathematica Book. Wolfram Media, Inc., Fourth Edition, 1999. ISBN 0–521–
64314–7.

