Algorithms for computing Nash equilibria of large sequential games

Javier Peña

joint work with
Samid Hoda, Andrew Gilpin, and Tuomas Sandholm at Carnegie Mellon

8th US-Mexico Workshop
Huatulco, Mexico
Plan

Games & Nash equilibrium

Sequential games

A first-order approach

An interior-point approach
Games & Nash equilibrium

- In a multi-agent system, each agent’s outcome depends on the actions of all agents.
- Game theory: set of tools to understand how agents (should) act.
- **Equilibrium**: a choice of strategy for each agent so that no agent wishes to deviate.

Theorem (Nash, 1950)

Under suitable assumptions such an equilibrium exists (may involve randomization).
Sequential games

Games that involve turn-taking, chance moves, and imperfect information.

Example (the ultimatum game)

- Player 1 proposes how to divide a sum of money with Player 2
- Player 2 accepts Player 1’s proposal, or rejects it (and neither gets anything)

Game tree
Sequential games

Example (simplified poker)

Card deck with two Js and two Qs

- Opening: players bet 1 each
- One card is dealt to each player
- Player 1 can check or raise
 - If Player 1 checks then Player 2 can check or raise
 - If Player 2 checks there is a showdown (higher card wins)
 - If Player 2 raises then Player 1 can fold, or call (showdown)
- If Player 1 raises then Player 2 can fold, or call (showdown)
Game tree for simplified poker
The sequence form

Consider a dry example

Set of sequences for Player 1:

\[S := \{\emptyset, A, B, C, D, BE, BF, CG, CH\}. \]
The sequence form

Set of realizations plans for Player 1

\[Q = \{ x \in \mathbb{R}^S : E x = e, x \geq 0 \}, \]

where

\[
E = \begin{bmatrix}
1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1
\end{bmatrix}, \quad e = \begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\]

Complex: set \(Q \) of the above form.
The sequence form

Assume S_1, S_2 are sets of sequences for Players 1 and 2.

Player 1’s payoff matrix $A \in \mathbb{R}^{S_1 \times S_2}$

In previous example

$$A = \begin{bmatrix}
\varepsilon & a & b & c & d \\
\varepsilon & 1 & -1 & & \\
A & 1/2 & & \\
B & & 1/2 & & \\
C & & & -1 & \\
D & & & -1 & \\
BE & & & & 1/2 \\
BF & & & & 2 \\
CG & & & & -1 \\
CH & & & & -1
\end{bmatrix}.$$
Assume

- Q_1, Q_2: realization plans of Players 1 and 2
- A: Player 1’s payoff matrix

Nash equilibrium

$$\max_{x \in Q_1} \min_{y \in Q_2} \langle x, Ay \rangle = \min_{y \in Q_2} \max_{x \in Q_1} \langle x, Ay \rangle.$$

- In matrix games Q_1, Q_2 are simplices
- In sequential games Q_1, Q_2 are complexes
- Can be formulated as a linear program
Poker

Texas Hold’em (with limits): Game tree has $\sim 10^{18}$ nodes.

Rhode Island Hold’em: simplification of Texas Hold’em. Created for AI research (Shi & Littman 2001). Game tree has $\sim 10^9$ nodes.

Gilpin & Sandholm 2005:

- *GameShrink* technique to reduce the game tree
- For RI Hold’em poker: reduce from $\sim 10^9$ to $\sim 10^6$ nodes.
- Solved LP formulation of Nash equilibrium with CPLEX barrier.
 Took 7 days, 17 hours and 25 GB RAM in a 1.65GHz, 64 GB RAM IBM eServer p5 570.
- Main bottleneck: symbolic Cholesky factorization of ADA^T at each interior-point iteration.
A first-order approach

Suppose we want to solve

$$\min_u f(u)$$

for a convex function f.

Speed of convergence of a first-order method depends on the smoothness of f.

To get an ϵ-solution:

- Best possible convergence for general convex functions (via, e.g., a subgradient method) is $O(\frac{1}{\epsilon^2})$.

- If f is smooth, strongly convex and ∇f is Lipschitz then speed improves to $O(\frac{1}{\sqrt{\epsilon}})$.
Want to solve

$$\max_{x \in Q_1} \min_{y \in Q_2} \langle x, Ay \rangle = \min_{y \in Q_2} \max_{x \in Q_1} \langle x, Ay \rangle.$$

That is,

$$\max_{x \in Q_1} \phi(x) = \min_{y \in Q_2} f(y),$$

where

$$f(y) := \max_{x \in Q_1} \langle x, Ay \rangle,$$

and

$$\phi(x) := \min_{y \in Q_2} \langle x, Ay \rangle.$$

These functions are *non-smooth* but with a special structure.
Nesterov’s smoothing technique

Suppose d_1, d_2 are smooth and strongly convex on Q_1, Q_2 respectively. These are *prox-functions*.

Let $\mu > 0$ be a smoothness parameter and consider

$$f_\mu(y) := \max_{x \in Q_1} \{ \langle x, Ay \rangle - \mu d_1(x) \},$$

$$\phi_\mu(x) := \min_{y \in Q_2} \{ \langle x, Ay \rangle + \mu d_2(y) \}.$$

Because d_1, d_2 are strongly convex, both f_μ and ϕ_μ are smooth.

Idea

Approximate f, ϕ with f_μ, ϕ_μ.

Theorem (Nesterov)

Can use the above smoothing technique to find \((\bar{x}, \bar{y})\) such that

\[
\max_{x \in Q_1} \langle x, Ay \rangle - \min_{y \in Q_2} \langle \bar{x}, Ay \rangle \leq \epsilon
\]

in \(O(1/\epsilon)\) gradient-type iterations.

Main work at each iteration: three matrix-vector products involving \(A\), and three subproblems of the form

\[
\max_{u \in Q_i} \{ \langle g, u \rangle - d_i(u) \}.
\]

Comments

- Critical component: prox-functions \(d_1, d_2\) for \(Q_1, Q_2\).
- Factor in \(O(\cdot)\): \(\|A\|\) and “niceness” of \(d_1, d_2\)
Nice prox-functions

A function d is *nice* for Q if

1. d is strongly convex and continuous in Q, diff in relint(Q)
2. $\min\{d(x) : x \in Q\} = 0$
3. for any g the subproblem

$$\max \{ \langle g, x \rangle - d(x) : x \in Q \}$$

is easy, e.g., it has a closed-form solution.

Measure of niceness

Niceness parameter $= \rho/D$, where

$$D = \max\{d(x) : x \in Q\}$$

and ρ is the strong convexity parameter of d
Examples

Entropy prox-function for Δ_n

$$d(x) = \ln n + \sum_{i=1}^{n} x_i \ln x_i$$

d nice with $\rho = 1$ and $D = \log n$.

Subproblem $\max \{ \langle g, x \rangle - d(x) : x \in Q \}$ has solution $x_j = \frac{e^{g_j}}{\sum e^{g_i}}$.

Euclidean prox-function for Δ_n

$$d(x) = \frac{1}{2} \sum_{i=1}^{n} (x_i - 1/n)^2$$

d nice with $\rho = 1$ and $D = \frac{n-1}{2n}$.

Subproblem $\max \{ \langle g, x \rangle - d(x) : x \in Q \}$ can be solved in $O(n \log n)$ steps.
General Construction

Theorem (HGP 2006)

Any nice-prox function for the simplex yields a nice prox-function for any complex.

Comments

1. Provide estimate of the niceness of the induced prox-function
2. Subproblem’s sln: recursively solve subproblems over simplices
Example

Consider \(Q = \{ x \in \mathbb{R}^S : Ex = e, x \geq 0 \} \), where

\[
\emptyset \quad A \quad B \quad C \quad D \quad BE \quad BF \quad CG \quad CH
\]

\[E = \begin{bmatrix}
1 & 1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{bmatrix}, \quad \mathbf{e} = \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}
\]

Assume \(\psi(\cdot) \) is a prox-function for simplices.

Prox-function for \(Q \):

\[
d(x) = \psi(x(A, B)) + \psi(x(C, D)) + \\
x(B) \cdot \psi \left(\frac{x(BE, BF)}{x(B)} \right) + x(C) \cdot \psi \left(\frac{x(CG, CH)}{x(C)} \right)
\]
Example (continued)

Solution to subproblem

$$\max \left\{ \langle g, x \rangle - d(x) : x \in Q \right\}$$

Backward pass:

\[\bar{g}(C) := g(C) + \max_{z(CG,CH) \in \Delta} \{ \langle g(CG, CH), z(CG, CH) \rangle - \psi(z(CG, CH)) \}\]

\[\bar{g}(B) := g(B) + \max_{z(BE,BF) \in \Delta} \{ \langle g(BE, BF), z(BE, BF) \rangle - \psi(z(BE, BF)) \}\]

\[\bar{g}(D) := g(D)\]

\[\bar{g}(A) := g(A)\]
Forward pass:

\[
x(A, B) = \arg\max_{z(A, B) \in \Delta} \{ \langle \bar{g}(A, B), z(A, B) \rangle - \psi(z(A, B)) \}
\]

\[
x(C, D) = \arg\max_{z(C, D) \in \Delta} \{ \langle \bar{g}(C, D), z(C, D) \rangle - \psi(z(C, D)) \}
\]

\[
x(BE, BF) = x(B) \cdot \arg\max_{z(BE, BF) \in \Delta} \{ \langle g(BE, BF), z(BE, BF) \rangle - \psi(z(BE, BF)) \}
\]

\[
x(CG, CH) = x(C) \cdot \arg\max_{z(CG, CH) \in \Delta} \{ \langle g(CG, CH), z(CG, CH) \rangle - \psi(z(CG, CH)) \}
\]
Complexity results

From Nesterov’s and HGP’s Theorems get:

Induced Entropy Prox Function

\[
\left\lceil \left(\frac{4G^2}{\epsilon} \right) \max |A_{ij}| \right\rceil \text{ itns} \xrightarrow{} (\bar{x}, \bar{y}) \in Q_1 \times Q_2 \text{ such that }
\]

\[
\max_{x \in Q_1} \langle A\bar{y}, x \rangle - \min_{y \in Q_2} \langle Ay, \bar{x} \rangle \leq \epsilon
\]

\(G \) sublinear in size of the game tree

Induced Euclidean Prox Function

\[
\left\lceil \left(\frac{4G}{\epsilon} \right) \lambda_{\text{max}}^{1/2}(A^T A) \right\rceil \text{ itns} \xrightarrow{} (\bar{x}, \bar{y}) \in Q_1 \times Q_2 \text{ such that }
\]

\[
\max_{x \in Q_1} \langle A\bar{y}, x \rangle - \min_{y \in Q_2} \langle Ay, \bar{x} \rangle \leq \epsilon
\]
Computational experience

Test problems, size of A

- Rhode Island Hold’em poker, $1M \times 1M$.
- Abstractions of Texas Hold’em poker:

 $$81 \times 81, 1041 \times 1041, 10421 \times 10421, 160k \times 160k$$

Main work per iteration

- (Most expensive) matrix-vector products $x \mapsto A^T x$, $y \mapsto Ay$
- Subproblems $\max_{u \in Q_i} \{ \langle g, u \rangle - d_i(u) \}$

In these problems

- Do not need to form A explicitly
- Instead have subroutines that compute $x \mapsto A^T x$, $y \mapsto Ay$.
Computational experience: a C++ prototype

Machine:
1.65GHz IBM eServer p5 570 with 64 gigabytes of RAM

Implementation based on Nesterov’s *Excessive Gap Technique*.

Ran each of the test problems for 5000 iterations.

| size | CPU time | gap/ max $|A_{ij}$| |
|------------|----------|-----------|------|
| 81×81 | 0.84sec | 2.32×10^{-5} | |
| 1041×1041 | 14.4sec | 1.62×10^{-3} | |
| 10421×10421 | 8.08min | 6.5×10^{-4} | |
| $160k \times 160k$ | 49.57min | 2.14×10^{-1} | |
| $1M \times 1M$ | 5.18hrs | 9.01×10^{-1} | |
More about the $160k \times 160k$ problem

Matrix A

$\text{nnz} = 8684668$
More about the $160k \times 160k$ problem

$25k \times 25k$ and $1k \times 1k$ upper-left blocks of A
More about the $160k \times 160k$ problem

Matrix E

Matrix F

$\text{nnz} = 226073$
More about the $160k \times 160k$ problem

Upper-left blocks of E
More about the $160k \times 160k$ problem

Path of the iterates’ gap

$$\max_{x \in Q_1} \langle x, Ay^k \rangle - \min_{y \in Q_2} \langle x^k, Ay \rangle$$
More computational experience

Largest instance attempted so far:

\[
A \quad 13,240,601 \times 13,240,611 \\
E \quad 5,296,241 \times 13,240,601 \\
F \quad 5,296,241 \times 13,240,611
\]

Used a parallel implementation for the matrix-vector operations.

<table>
<thead>
<tr>
<th>cpus</th>
<th>matrix-vector (secs)</th>
<th>speed up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>278.858</td>
<td>1×</td>
</tr>
<tr>
<td>2</td>
<td>140.579</td>
<td>1.98×</td>
</tr>
<tr>
<td>3</td>
<td>92.851</td>
<td>3.00×</td>
</tr>
<tr>
<td>4</td>
<td>68.831</td>
<td>4.05×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cpus</th>
<th>EGT iteration (secs)</th>
<th>speed up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1425.786</td>
<td>1×</td>
</tr>
<tr>
<td>2</td>
<td>734.366</td>
<td>1.94×</td>
</tr>
<tr>
<td>3</td>
<td>489.947</td>
<td>2.91×</td>
</tr>
<tr>
<td>4</td>
<td>383.793</td>
<td>3.72×</td>
</tr>
</tbody>
</table>
Path of the iterates’ gap

\[
\max_{x \in Q_1} \langle x, A y^k \rangle - \min_{y \in Q_2} \langle x^k, A y \rangle
\]
An interior-point approach

Recall Nash equilibrium problem:

\[
\max_{x \in Q_1} \min_{y \in Q_2} \langle x, Ay \rangle = \min_{y \in Q_2} \max_{x \in Q_1} \langle x, Ay \rangle.
\]

where \(Q_1 = \{ x \geq 0 : Ex = e \} \), \(Q_2 = \{ y \geq 0 : Fy = f \} \).

LP formulation

\[
\begin{align*}
\text{max} & \quad f^T v \\
& \quad F^T v - A^T x \leq 0 \\
& \quad Ex = e \\
& \quad x \geq 0 \\
\text{min} & \quad e^T u \\
& \quad E^T u - Ay \geq 0 \\
& \quad Fy = f \\
& \quad y \geq 0
\end{align*}
\]
An interior-point approach

Easy to get an initial interior-point. Feasible IPM.

Crux of each IPM iteration

$$\begin{bmatrix}
D & -A & 0 & E^T \\
-A^T & -\tilde{D} & F^T & 0 \\
0 & F & 0 & 0 \\
E & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta x \\
\Delta y \\
\Delta v \\
\Delta u
\end{bmatrix}
= \begin{bmatrix}
X^{-1}r_x \\
-\tilde{Y}^{-1}r_y \\
0 \\
0
\end{bmatrix}, \quad (1)$$

where $D = X^{-1}S$, $\tilde{D} = Y^{-1}Z$, $z = A^Tx - F^Tv$, $s = E^Tu - Ay$.

Last equations in (1) equivalent to

$$\Delta x = P^T\alpha, \quad \Delta y = Q^T\beta,$$

where P^T, Q^T are bases for ker(E), ker(F) respectively.
System (1) is equivalent to

$$\begin{bmatrix} PDP^T & -PAQ^T \\ -QA^TP^T & -Q\tilde{D}Q^T \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} PX^{-1}r_x \\ -QY^{-1}r_y \end{bmatrix}. \quad (2)$$

Apply iterative methods (CG, SQMR) to (2).

To precondition (2):

Use Cholesky factorizations of PDP^T, $Q\tilde{D}Q^T$.

In poker games:

Can construct sparse P, Q
Get sparse Cholesky factors for PDP^T, $Q\tilde{D}Q^T$.
Get also highly structured PAQ^T.
Some sparsity pictures ($1k \times 1k$ problem)

\[PDP^T \quad \text{and} \quad Q\tilde{D}Q^T \]
Some sparsity pictures \((1k \times 1k \text{ problem})\)
Concluding remarks

- Saddle-point formulation for Nash equilibrium of two-person, zero-sum sequential games
- Interesting games (e.g., poker) yield enormous ($\sim 10^9$ and bigger) instances
- Saddle-point formulation is naturally amenable to modern smoothing techniques
- Rate of convergence $O(\frac{1}{\epsilon})$ with extremely low computational overhead. Interesting computational results
- Structured LP formulation amenable to specialized IPM