| Statistics Toolbox | ![]() |
Parameter estimates and confidence intervals for negative binomial data
Syntax
Description
parmhat = nbinfit(x)
returns the maximum likelihood estimates (MLEs) of the parameters of the negative binomial distribution given the data in the vector x.
[parmhat,parmci] = nbinfit(x,alpha)
returns MLEs and 100*(1-alpha) percent confidence intervals. By default, alpha = 0.05, which corresponds to 95% confidence intervals.
[...] = nbinfit(...,options)
specifies control parameters for the numerical optimization used to compute MLEs. Create this argument with the MATLAB optimset function. The default is optimset('Display','notify').
Note
The variance of a negative binomial distribution is greater than its mean. If the sample variance of the data x is less than its sample mean, nbinfit cannot compute MLEs. You should use the poissfit function instead.
|
See Also
nbincdf, nbininv, nbinpdf, nbinrnd, nbinstat, mle, optimset
| nbincdf | nbininv | ![]() |