MATLAB Function Reference | ![]() ![]() |
Preconditioned Conjugate Gradients method
Syntax
x = pcg(A,b) pcg(A,b,tol) pcg(A,b,tol,maxit) pcg(A,b,tol,maxit,M) pcg(A,b,tol,maxit,M1,M2) pcg(A,b,tol,maxit,M1,M2,x0) pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...) [x,flag] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...) [x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...) [x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...) [x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,x0,p1,p2,...)
Description
x = pcg(A,b)
attempts to solve the system of linear equations A*x=b
for x
. The n
-by-n
coefficient matrix A
must be symmetric and positive definite, and should also be large and sparse. The column vector b
must have length n
. A
can be a function afun
such that afun(x)
returns A*x
.
If pcg
converges, a message to that effect is displayed. If pcg
fails to converge after the maximum number of iterations or halts for any reason, a warning message is printed displaying the relative residual norm(b-A*x)/norm(b)
and the iteration number at which the method stopped or failed.
pcg(A,b,tol)
specifies the tolerance of the method. If tol
is []
, then pcg
uses the default, 1e-6
.
pcg(A,b,tol,maxit)
specifies the maximum number of iterations. If maxit
is []
, then pcg
uses the default, min(n,20)
.
pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2)
use symmetric positive definite preconditioner M
or M = M1*M2
and effectively solve the system inv(M)*A*x = inv(M)*b
for x
. If M
is []
then pcg
applies no preconditioner. M
can be a function that returns M
\x
.
pcg(A,b,tol,maxit,M1,M2,x0)
specifies the initial guess. If x0
is []
, then pcg
uses the default, an all-zero vector.
pcg(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
passes parameters p1,p2,...
to functions afun(x,p1,p2,...)
, m1fun(x,p1,p2,...)
, and m2fun(x,p1,p2,...)
.
[x,flag] = pcg(A,b,tol,maxit,M1,M2,x0)
also returns a convergence flag.
Whenever flag
is not 0
, the solution x
returned is that with minimal norm residual computed over all the iterations. No messages are displayed if the flag
output is specified.
[x,flag,relres] = pcg(A,b,tol,maxit,M1,M2,x0)
also returns the relative residual norm(b-A*x)/norm(b)
. If flag
is 0
, relres <= tol
.
[x,flag,relres,iter] = pcg(A,b,tol,maxit,M1,M2,x0)
also returns the iteration number at which x
was computed, where 0 <= iter <= maxit
.
[x,flag,relres,iter,resvec] = pcg(A,b,tol,maxit,M1,M2,x0)
also returns a vector of the residual norms at each iteration including norm(b-A*x0)
.
Examples
A = gallery('wilk',21); b = sum(A,2); tol = 1e-12; maxit = 15; M = diag([10:-1:1 1 1:10]); [x,flag,rr,iter,rv] = pcg(A,b,tol,maxit,M);
Alternatively, use this one-line matrix-vector product function
and this one-line preconditioner backsolve function
flag
is 1
because pcg
does not converge to the default tolerance of 1e-6
within the default 20 iterations.
flag2
is 0
because pcg
converges to the tolerance of 1.2e-9
(the value of relres2
) at the sixth iteration (the value of iter2
) when preconditioned by the incomplete Cholesky factorization with a drop tolerance of 1e-3
. resvec2(1) = norm(b)
and resvec2(7) = norm(b-A*x2)
. You can follow the progress of pcg
by plotting the relative residuals at each iteration starting from the initial estimate (iterate number 0).
See Also
bicg
, bicgstab
, cgs
, cholinc
, gmres
, lsqr
, minres
, qmr
, symmlq
@
(function handle), \
(backslash)
References
[1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.
![]() | pbaspect | pchip | ![]() |