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Design and Modeling of Waveguide-Coupled
Single-Mode Microring Resonators
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Abstract—We discuss a first-order design tool for waveguide-
coupled microring resonators based on an approximate solution
of the wave propagation in a microring waveguide with micron-
size radius of curvature and a large lateral index contrast. The
model makes use of the conformal transformation method and a
linear approximation of the refractive index profile, and takes into
account the effect of waveguide thickness, dispersion, and diffrac-
tion. Based on this model, we develop general design rules for the
major physical characteristics of a waveguide-coupled microring
resonator, including the resonance wavelength, the free spectral
range, the coupling ratio, the bending radiation loss and the
substrate leakage loss. In addition, the physical model provides
leads to alternative coupling designs. We present two examples,
one using a phase-matching parallel waveguide with a smaller
width than the ring waveguide, and the other using a vertical
coupling structure. Both these designs significantly increase the
coupling length and reduce or eliminate the dependence on a
narrow air gap in a waveguide-coupled microring resonator.

Index Terms—Conformal transforms, microresonators, nano-
fabrication, nanophotonics.

I. INTRODUCTION

OPTICAL ring waveguide resonators are useful compo-
nents for wavelength filtering, multiplexing, switching

and modulation [1], [2]. The main performance characteristics
of these resonators are the free-spectral range (FSR), the
finesse (or -factor), the transmission at resonance, and the
extinction ratio. The major physical characteristics underlying
these performance criteria are the size of the ring, the propaga-
tion loss, and the input and output coupling ratios (equivalent
to the reflectivities of a Fabry–Perot resonator). There are
various components of losses, including sidewall scattering
loss, bending radiation loss, and substrate leakage loss. Ring
resonators based on (rib) waveguide structures with weak
lateral confinement have very low sidewall scattering loss.
However, the high radiative bending loss limits its minimum
radius to about 2 mm, in which case the FSR will be small
(in the order of 100 GHz [3]), and the finesse will also be
low because the scattering loss is very high for such a large
circumference, although the scattering loss per cm is lower.
On the other hand, strongly guiding ring waveguides with
very large lateral refractive index contrast (air-semiconductor-
air) can have diameters as small as 1–2m with negligible
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Fig. 1. A schematic of the waveguide-coupled microcavity resonator, show-
ing a microring resonator coupled to straight waveguides.

bending loss. Therefore, compared with the weakly guiding
waveguide, the strongly guiding microcavity can be up to 1000
times smaller. Because of the small size, the propagation loss
in the cavity is also negligible. Consequently, both the FSR
and the finesse are much larger for this resonator. An FSR of
6 THz (50 nm) can be achieved, sufficiently large to cover the
entire 30-nm erbium amplifier bandwidth.

Fig. 1 shows a schematic of an add–drop filter (or optical
switch) implemented with a microring resonator [4]. The
two tangential straight waveguides (WG1 and WG2) serve
as evanescent wave input and output couplers. If the signal
entering port A is on-resonance with the ring or disk, then that
signal couples into the cavity from WG1, couples out from the
cavity into WG2, and exits the device at port C. A signal that
is off-resonance with the cavity remains in WG1 and exits at
port B. The critical dimension in this optical switch is the 0.1-

m gap separating the microring cavity from the tangential
waveguides. These gap sizes determine the input and output
coupling ratios of the resonator, which in turn determine the
magnitude of the finesse and the at-resonance transmittance.
In the case of a microring coupled to straight waveguides, the
gaps are very small due to the strong optical confinement and
the small coupling interaction length. These small gaps are
difficult to fabricate. In particular, it is difficult to ensure that
the two coupling gaps on both sides of the ring are identical.
If the coupling factors are not equal, then the finesse and the
ON–OFF ratio of the resonator will be reduced. To achieve
more dependable performance, it is, therefore, useful to design
alternative coupling structures that significantly reduce the
dependence on a narrow air gap.

The aim of this paper is to model the wave propagation
in a microring waveguide, to develop a first-order design
tool that provides guidance for alternative coupling designs,

0733–8724/98$10.00 1998 IEEE



1434 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 8, AUGUST 1998

and to formulate general design rules for the major physical
characteristics of a waveguide-coupled microring resonator.
While there are available very precise numerical methods,
such as the finite difference time domain (FDTD) method [5],
that can solve the electromagnetic field distribution in any
complicated three-dimensional (3-D) photonic structures, they
are time consuming to use and, for most purposes, the accu-
racy is not essential for first-run designs. Recently, multiple
coupled-resonator filters have also been proposed and modeled
using the so-called “coupling of modes in time” method, in
which the ring eigenmodes are never explicitly solved [6]. By
contrast, we will follow the more conventional approach in
which the waveguide eigenmodes are first solved, and then
used to calculate the other parameters such as the coupling
coefficient and radiation loss. This will be achieved using
a model that is relatively simple and intuitive, approximate
but reasonably accurate, and analytical wherever possible. The
advantage of such an approach, as will be shown, is the gain in
physical insight. Some approximations are necessary in order
to simplify computations and the complexity associated with
the 3-D nature of the problem. In particular, the treatment of
the vertical dimension (thickness) of the device is approximate.
Nevertheless, the model attempts to account for some of
the 3-D physical effects such as waveguide dispersion, edge
diffraction, and bending loss.

II. M ETHOD OF CALCULATION

AND PHYSICAL CONSIDERATIONS

The current method is an extension of the conformal trans-
formation method used previously for solving the waveguide
modes of a microdisk structure [7]. This method is chosen be-
cause of the intuitive physical picture it gives, as will become
apparent later. We consider a semiconductor waveguide with
core thickness , and core material index , surrounded in
the horizontal direction by air. The cladding material index is

, which for simplicity is assumed to be the same for both
the upper and lower cladding layers. Two possible realizations
for the vertical layer structure are shown in Fig. 2(a) and
(b) where Fig. 2(a) is a weak vertical guiding structure with

. Since photons are strongly confined only in the
horizontal direction, we call this theType I or the photonic
well structure. Fig. 2(b) is a strong vertical guiding structure
where . (For example, the low-index medium could
be air, or acrylic/polyimide with .) Since the photons
are strongly confined in both transverse dimensions we call
this theType II or the photonic wirestructure. In theory the
later structure is more interesting as photons are more strongly
confined, but in practice it is not easy to realize, especially for
electrically contacted devices.

A. Conformal Transformation Method for Ring
Waveguides with Finite Thickness

In cylindrical coordinates, the ring waveguide mode may be
given by the 3-D scalar wave equation

(1)

(a) (b)

Fig. 2. Two possible realizations of the vertical layer structure: (a) Type I
or weak vertical guiding structure and (b) Type II or strong vertical guiding
structure.d is the waveguide core thickness andt2 is the lower cladding or
buffer thickness.

where
, and is the free space wavelength. For each

vector there are two modes corresponding to the two possible
polarizations. These are the transverse electric (TE) and the
transverse magnetic (TM) modes with the electric field and
the magnetic field, respectively, parallel to thedirection.
For simplicity we will consider only the TE mode, since the
method of analysis is similar for the TM mode. For the TE
mode, is the component of the magnetic field (i.e., the
electric field has no component).

The conformal transformation to be discussed later applies
only to the - plane. We, therefore, first reduce the 3-
D waveguide problem to two-dimensional (2-D) by making
two approximations. In the first approximation, we assume
that the waveguide mode can be written in the form

, where describes the mode in the
- plane and describes the resonant field in the

direction. In the second approximation, we use the effective
index method (EIM) [8] to determine and its associated
wavevector component

(2)

For verification of this approximation, we compare the effec-
tive indexes for both Type I and Type II waveguides
calculated with EIM and with multigrid finite-difference nu-
merical methods [9]. For example, the difference in
between the two methods is shown for TMmode in Fig. 3.
Note that the EIM approximation is a good one except when
the width is smaller than 0.2m for Type I waveguides and
0.4 m for Type II waveguides.

Fig. 4(a) shows the approximate for the TE modes as a
function of the normalized core thickness, , for both Type I
and Type II waveguides. In the Type I case we assume a GaAs
core with and an Al0.45Ga0.55As cladding with

. Note that for Type II single-mode waveguides,
should be 0.3, whereas could be much larger for

Type I waveguides. Roughly speaking, for Type I
waveguides and for Type II single-mode waveguides.
For Type I waveguides, depends also on the waveguide
width, as shown in Fig. 4(b).

Having solved and , (1) can be reduced to the 2-D
scalar wave equation for

(3)
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Fig. 3. Percentage error in effective index calculated by the effective index
method and the finite-difference numerical method, for TMoo mode in Type I
and Type II waveguides as a function of waveguide width (a). The waveguide
thickness(d) is assumed to be 0.45�m for Type I waveguides. Type II
waveguides are assumed to be square(a = b).

where . We assume the ring to have a width
of , an inner rim radius of , and an outer rim radius of

, as shown in Fig. 5(a). We next make a transformation to a
new coordinate system such that the curved waveguides
become straight in the– plane. Such a transformation is
given by [10]

(4)

Our transformation is somewhat different from the literature
in that we use instead of (or ), where is the
effective ring radius to be defined later. The resulting wave
equation in the space is then

(5)

where

for
for and

(6)

and . The effect of waveguide
thickness is now embedded in . The transformed linear
waveguide is shown in Fig. 5(b), with the straight edges
at and . The
refractive index in this waveguide is a function of, as
illustrated in Fig. 6(a) for the two possible cases corresponding
roughly to the Type I and Type II waveguides. In the former
case, the effective refractive index outside the waveguide

(a)

(b)

Fig. 4. (a)nz , the equivalent index in thez direction for the TE modes, as
a function ofd=� for Type I and Type II waveguides. (b)nz as a function of
waveguide width, for Type I waveguides with the given material compositions
and core thickness.

increases radially as so at some point the index will
be large enough to support oscillatory modes. On the other
hand, for Type II waveguides in which , the field
is completely evanescent outside the guide and there is no
radiation loss.

B. The Effect of Diffraction

In reality, the evanescent tail of the bounded mode will
diffract outside the waveguide. This means that, which
is continuous across the boundaries of the waveguide, must
decrease monotonically once outside the waveguide since the
field there is not guided. The dependence ofon outside
the waveguide corresponds to the diffraction effect. Here,
we approximately include the effect by assuming that the
evanescent wave outside the waveguide diffracts as a Gaussian
wave, with the value decreasing with according to the
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(a)

(b)

Fig. 5. (a) Geometry of the ring waveguide in thex-y plane. (b) Equiv-
alent straight waveguide in the(u; v) transform space;u1 and u2 are the
coordinates of the edges of the ring.

usual expression

(7)

where is the effective mode radius at the waveguide
edge. This effective mode radius may be approximated by

, where being the decay
constant of outside the waveguide core. The diffraction
effect changes the refractive index distribution outside the
waveguide, as shown in Fig. 6(b). The change is especially
drastic for the Type II case. In both cases, the external index
for now increases monotonically with and exceeds
the waveguide effective index at some “turning” point.
Essentially, the effect of diffraction is to move this point closer
to the waveguide edge. Beyond this point an oscillatory field
exists meaning that there will always be some radiation loss
through nonresonant tunneling.

Diffraction has two opposing effects on the field coupling
between two adjacent waveguides. First, because is
reduced, the modal field will now decay less rapidly outside the
ring waveguide, and therefore overlap more with the adjacent
waveguide. Second, because the field expands in the vertical
direction the coupling is reduced by the decreased modal
overlap in the vertical direction. Overall, the coupling may
be diminished, especially for the Type II structures where the
diffraction effect is strong. In other words, to achieve the same
coupling coefficient in both Type I and Type II structures, the
required gap spacing will have to be even smaller in the Type
II structures, which aggravates the difficulty in realizing these

structures. For these reasons, we will henceforth focus mainly
on the Type I structures.

C. The Physical Meaning of

We expect the radial distribution of the eigenmode in a
curved waveguide to be somewhat skewed toward the outer
edge . Different parts of the radial wavefunction will
propagate in the (or ) direction with slightly different
pathlengths given by . Therefore, for the radial mode as a
whole to remain in phase, the propagation constant must vary
along . This shows that in a curved waveguide theand

components are inherently coupled, and the eigenmodes, in
general, cannot be separated neatly intoand components.
Nevertheless, to make the solution tractable, we shall assume
the separation of variables and write

(8)

In other words, we assume that thecentroid of the radial
intensity distribution, , propagates around the ring with
an averagepropagation vector . is then theeffective
ring radius, defined as the radial distance to thecentroid
of the radial function [11]. The resonance condition in the
propagation direction requires that , where is
an integer called the azimuthal mode number, which gives
the number of nodes along the direction. Clearly, and

are inter-dependent and must be solved self-consistently,
along with the radial function , which is now given by
the one-dimensional (1-D) wave equation

(9)

where ( as
before). This equation has a discrete set of solutions which are
characterized by a radial mode number,, giving the number
of nodes in the direction. Once and are known, the
resonance wavelength of the cavity is given by

(10)

where , defined by , is implicitly dependent
on . The resonance frequency is then given by

, and the FSR is given by
. The dependence of on wavelength is known as

the waveguide dispersion.

D. Solution for the Radial Modes

Equation (9) is similar to the Schrodinger equation of
quantum mechanics, with corresponding to the “energy”
eigenvalue and to the “potential.” The
problem of wave propagation (eigenfunctions) in a waveguide
(quantum well) with arbitrary refractive index (potential) pro-
file can be solved by the transfer matrix method [12] or the
WKB method [13]. Here, we aim for a simpler solution, which
is based on the observation that the index profiles in Fig. 6(a)
and (b) are approximately linear inside the waveguide, and
also over most regions of interest outside the waveguide where
the field is not negligibly small. This linear approximation of
the index profile is good for strongly confined, single-mode
waveguides, except when the radii of curvature are very small



CHIN AND HO: WAVEGUIDE-COUPLED SINGLE-MODE MICRORING RESONATORS 1437

(a) (b)

(c)

Fig. 6. Plots of the “potential”ku(u)2 + k
2

v
as a function ofu for Type I and Type II waveguides: (a) without considering the diffraction effect and (b)

with diffraction taken into account. (c) Linear approximations of the “potential” (with diffraction included) in various regions, showing the two possible cases
where the potentials in Region II have opposite slopes, resulting in different solutions(FII) in that region. Various notations used in the text are indicated.

m . Within this linear approximation, (9) can be
solved analytically in terms of Airy functions, much like the
analogous problem of a quantum well in the presence of an
applied electric field [14]. The same technique has also been
applied by Goyalet al. to bent planar waveguides [15]. We
briefly describe the method below.

Consider Region I as shown in Fig. 6(c). In the linear
approximation, we write ,

where and are constants to be determined case by case.
Equation (9) becomes

(11)

where is the eigenvalue. It can be shown that, by
defining the dimensionless variable
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where , (11) is reduced to the Airy equation

(12)

the general solution for which is a linear combination of Airy
functions

(13)

Similar parameters , and can be defined for Regions
II and III, where the Airy solutions are labeled by
and , respectively. The coefficients’s and ’s are
then found by matching boundary conditions at the two
interfaces (corresponding to ) and .
The boundary conditions refer to the continuities ofand

. The final result can be
expressed as a matrix equation relating the field amplitudes
on both sides of the waveguide

(14)

The eigenvalue equations are then determined by the physical
requirement that the wavefunctions decay away from the
waveguide. This leads to two distinct cases, with different
eigenvalue equations.

Case i: As shown in part (i) of Fig. 6(c), the behavior of the
Airy functions dictates that , and the eigenvalue
equation is

(15)

where

Case ii: As shown in part (ii) of Fig. 6(c), in this case
, and the eigenvalue equation is

(16)

where

The primes in these equations denote first derivatives of the
Airy functions with respect to . Although strictly speaking
the eigenstates are not bound, the decay time of these states are
so long that they can be considered as quasistationary states.

III. RESULTS AND DISCUSSIONS

A. Effective Indexes and Radial Wavefunctions

The solutions to (15) or (16) yield the eigen-indexes
and eigenfunctions of all the ring waveguide modes. The
effective index in a microring waveguide is a function

of the radius (say, ), the waveguide width , the vertical
waveguide structure , and the optical wavelength

. The dependence on the vertical waveguide structure is
lumped into a single parameter as discussed before. In
most cases, we are interested in waveguides that have a single
transverse mode.

Fig. 7(a)–(c) shows the changes of for TE modes as the
waveguide parameters , and , respectively, are varied
while the others are kept constant. One can see thatchanges
significantly only if the rings are small, and thatis typically
less than 0.3 m for single-transverse-mode waveguides at

m. As the width increases, many more radial modes
can exist, each having a different curve.

To illustrate the radial eigenfunctions Fig. 8 shows the
intensity profiles of the four radial modes

supported in a microring waveguide with a width
of 0.9 m and a radius of 3 m. The indicated values of

give the positions of the “center of gravity” of these
modes. Let us consider first the high-order modes. These
modes tend to be more concentrated near the inner edge of
the waveguide, implying that the radial propagation of these
modes is slower near the inner edge. This fact can be deduced
from Fig. 6(c), which shows that decreases as the inner
edge is approached. Next, we consider the low-order modes
such as and . The centroids of these modes are shifted
toward the outer edge of the waveguide, as shown by the fact
that m. In fact, changes
slowly to a microdisk-likewhispering gallerymode as the
waveguide width is increased. The transition from microring
mode to microdisk mode is illustrated in Fig. 9, which depicts
the normalized intensity profile of as the width of the
waveguide is increased. Note that hardly touches the inner
rim, and its position and profile remain unchanged, as long as

m. As the width is increased, the effective index
increases and moves up into the triangular region of the

“potential” inside the waveguide [see insets]. Onceis inside
the triangular region, the eigenmode sees a potential similar to
that in a microdisk, and therefore is guided in the same way.

B. Resonance Wavelength and Free Spectral Range

Nanoscale waveguides display significant dispersion and
because the resonance modes for the small ring waveguides are
spaced far apart, the effective index will be different at each
resonance wavelength. Over a small wavelength range, the
material index dispersion may be neglected in the calculation
of . A typical result around m is shown in
Fig. 10(a). It shows that is essentially a linear, decreasing
function of the wavelength, with a slope dependent somewhat
on the width . Using these linear functions, can be
determined in terms of the azimuthal mode numberfor
given and , according to (10). These are shown
in Fig. 10(b) where several important results can be noted.
First, for a fixed , as the waveguide width decreases,
each resonance is shifted toward shorter wavelength or higher
frequency. Secondly, the wavelength decreases with the mode
number, and the wavelength spacing, or FSR, decreases as the
wavelength decreases. This behavior agrees with experimental
observations [4].
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(a) (b)

(c)

Fig. 7. While keeping the other parameters constant, these figures show how the effective indexnv depends on (a)nz , which is linked to the waveguide
thickness (d) through Fig. 4, (b) the ring radiusR2 (for variousnz), and (c) the waveguide widthw, showing hownv varies with the radial wavefunctions.

In Table I, the wavelengths and the FSR for major reso-
nances around 1.55m in a ring resonator with the parameters

m, m, and m, are listed and
compared with those calculated using the FDTD numerical
simulations [5]. The good agreement between the two sets
of results gives us confidence that our method is reasonably
accurate. For the 5-m diameter resonators, we note that the
FSR can be as large as 50 nm (6 THz), sufficient to cover
the entire 30-nm Erbium amplifier bandwidth. The extremely
large FSR represents one of the advantages of nano-photonic
semiconductor microcavity resonators.

C. Resonant Waveguide Coupling and Coupling Factor

In a waveguide-coupled microring resonator, the coupling
gap size is determined by the amount of coupling required

and the coupling length available. A larger gap is desirable as
it increases the fabrication tolerance. For a given coupling
coefficient, the gap size can be enlarged if the coupling
distance is increased. The coupling distance can be increased
by using several configurations. A vertical resonant coupling
configuration is discussed in Section III-F. Twoplanar con-
figurations, as shown in Fig. 11, are discussed here. The
more obvious one is the “racetrack” configuration, where the
coupling distance is approximately the length of the straight
sections, which are tangential to the semicircular arcs at both
ends. At the transitions between the curved and the straight
sections, the mode will change adiabatically between the radial
mode in a curved waveguide and the normal mode in a straight
waveguide. As the straight sections are lengthened the radius
of the curved sections must be reduced if the total cavity length
is to remain constant.
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Fig. 8. Intensity profiles (in real space) of the four radial modes supported
in a microring waveguide with a width of 0.9�m and a radius of 3�m. The
Re� values give the positions of the centroids of these modes.

Fig. 11(b) shows the alternative configuration where the
microring is coupled to a parallel curved waveguide over a
significant part of the circumference. Note that the physical
pathlengths in the concentric coupled sections in the two
waveguides are different. In other words, if the coupled
waveguides are identical, the propagating wavefronts in the
two waveguides will in general be out of phase by

after traveling an angle of. Therefore, to maintain
phase matching, the two waveguides must bedifferent in such
a way that . This can be achieved by
varying the width of the outer waveguide. Fig. 12(a) shows
the product as a function of , for two concentric
waveguides spaced 0.3m apart. We see that it is possible
to match the optical pathlengths by choosing a suitable com-
bination for the two waveguides, such as (0.4m,

Fig. 9. Normalized intensity profile of the lowest order radial mode in a
microring as the width of the waveguide is increased from 0.15�m to 1.5
�m. The two insets show the “potential” profiles and positions of the effective
index eigenvalues(k2

v
) whenw = 0:3 �m andw = 0:6 �m, respectively.

0.2 m) in the case shown. The matching combinations of
are displayed in Fig. 12(b) for two cases of different

radii and gap spacings. Note that the inner waveguide, which
is required to have a larger value of , will always be wider
than the outer waveguide becauseis an increasing function
of [see Fig. 7(c)].

The coupling coefficient between two parallel waveg-
uides, in the weak coupling limit applicable in most cases, is
given by [16]

(17)

where and denote the radial modes in waveguide 1
and 2, respectively, and are their propagation vectors,

is the dielectric perturbation and is the perturbation in
[cf., (3)] due to the presence of the other waveguide. In the
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(a)

(b)

Fig. 10. (a) Effective index of the microring waveguide as a function of
wavelength (in the vicinity of 1.5�m) for two different waveguide widths. (b)
The resonance wavelengths and the corresponding azimuthal mode numbers
(m).

case of resonant coupling, since the coupled eigenmodes in the
concentric ring waveguides are moving in phase, the coupling
coefficient between them can be calculated in exactly the same
way as for parallel straight waveguides. (The ring nature of
the waveguides is built into the radial wavefunctions.)

The coupling coefficients are a function of wavelength. The
results for m are shown in Fig. 13 as a function of
gap spacing. Note that as the gap spacing is changed, the width

TABLE I
CALCULATED RESONANCE WAVELENGTHS FOR FSR

FOR A 5-�m DIAMETER MICROCAVITY RING RESONATOR

This method FDTD method

m �m(nm) FSR (nm) �m(nm) FSR (nm)

25 1615.27 1613.10
49.96 50.66

26 1565.31 1562.44
49.96 47.56

27 1518.35 1514.88
44.23 44.73

28 1474.12 1470.15
41.72 42.17

29 1432.30 1427.98

(a)

(b)

Fig. 11. Twoplanar geometries for resonant coupling that may give a larger
coupling length: (a) the “race-track” configuration and (b) a microring coupled
to parallel curved waveguides. Notice the outer waveguide is narrower than
the inner waveguide.

of the outer waveguide has to be modified somewhat in order
to maintain phase matching with the inner waveguide (is
assumed fixed). Once is determined, the coupling factor

, or the fractional power coupled from one waveguide to
another after a length, is given by . Fig. 14 gives

, in the weak coupling limit, for various coupling lengths
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(a)

(b)

Fig. 12. (a) The optical pathlength (the product ofnv and Re� ) in two
concentric ring waveguides, separated by a 0.4-�m wide gap, as a function of
their waveguide widths. The inner ring has an outer radius(R12) of 5 �m,
while the outer ring has an inner radius(R21) of 5.4�m. The phase-matched
pair (w1; w2) is joined by a horizontal line. (b) Matching combinations of
w1 andw2 for two cases with different values of radius and gap spacing.

and gap sizes. It can be used to design the gap size and
coupling length required to achieve a desired coupling factor.
The coupling factor should be larger than the scattering loss per
round trip, which is typically 1–2%. In the parallel coupling
scheme, the coupling length is typically limited to a quadrant,
so m (for m). With this
coupling length, a coupling factor of 1–2% can be achieved
with a coupling gap between 0.3 and 0.4m, or 3–4 times

Fig. 13. The coupling coefficient (in�m�1) between two resonant con-
centric ring waveguides as a function of their gap spacing, and the corre-
sponding width(w2) required of the outer waveguide in order to maintain
phase-matching. The inner waveguide has a fixed width(w1) and radius
(R12).

wider than the 0.1-m gap currently used in the tangential
waveguide structure [4]. Although the fabrication tolerance
for the 0.3- m gap is still small, it is not as stringent as for
the 0.1- m case. For larger microring resonators, the gap will
be even larger and the coupling coefficient will be much less
sensitive to small variations in the gap size.

D. Radiation Loss

The radial field decays as it exits the ring edge until the
outer index grows exponentially and becomes greater than the
azimuthal index . At this point, becomes real, and
the field begins to propagate once again. This propagation of
the radial field is a nonresonant coupling of the field to the
outer high-index region and constitutes the radiative bending
loss. The value of the field intensity at this point where the
decaying field begins to propagate is analogous to solving
for the tunneling of light through a lossy barrier, and can
be calculated in a similar fashion to the quantum mechanical
tunneling (such as the alpha-particle emission from a nucleus).
In the WKB approximation, the transmission coefficient
through the barrier (the region from to ) is given by [17]

(18)

where

(19)
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Fig. 14. A plot of coupling factor(Pc) as a function of coupling length for
various gap sizes.

is the radial field decay factor outside the waveguide. The
turning point is given by [see Fig. 6(c)], or

,
which is an implicit equation for since is a function of

as in (7).
To calculate the round-trip radiation loss, we note that in

making one round-trip, the waveguide mode makes a number
of bounces in the radial direction equal to the azimuthal mode
number, . Thus the round trip loss is

, from which it follows that the radiation loss coefficient
is as shown in (20) at the bottom of

the page where is the free-space wavelength. The results
for ring waveguides with various diameters and a fixed width
and thickness are shown in Fig. 15. Note that the bending
radiation loss is less than 1% for diameters greater than 1

m, but increases exponentially below that. If the waveguide
thickness is decreased, the radiation loss will be larger because,
first, is smaller, lowering the tunneling barrier, and second,
the increased diffraction effect brings the external high-index
region closer to the edge of the waveguide, thereby increasing
the tunneling probability.

E. Substrate Leakage Loss

Energy in a waveguide can be lost not only laterally but
also vertically into the substrate. For a Type I waveguide,

Fig. 15. The round-trip radiation loss as a function of the ring radius. The
inset is a plot of the radial wavefunction for the caseR2 = 0:6 �m. The
radiation loss is less than 1% for diameters greater than 1�m.

the waveguide core is typically separated from the substrate
by a buffer layer of thickness , as shown in Fig. 2(a). A
significant amount of signal attenuation in a waveguide can
occur owing to leakage to the substrate if the effective index
of the waveguide is below the bulk index of the substrate.
Hence, the design of the buffer layer thickness is important
for minimizing this leakage. A tradeoff is usually necessary
between a thick buffer to minimize the leakage loss and a thin
buffer to reduce the etching depth.

The leakage loss to the substrate is very similar to the
radiation loss of a curved waveguide, and can be calculated
in exactly the same way using the tunneling picture. For the
case where the buffer layer is etched only partially through,
diffraction from the mesa into the unetched buffer can also be
considered in a similar way. In the case of vertical leakage
the TM polarization is expected to experience greater leakage
loss due to the larger extent of the electric field in the vertical
direction. (For similar reason, the TE modes will suffer greater
lateral leakage loss.) A narrow waveguide is also expected
to have a larger substrate leakage loss because its effective
index is lower. In Fig. 16(a), is calculated as a function of
buffer thickness for a 0.5-m wide waveguide with a fixed
core thickness of 0.5 m. Note that a fairly thick buffer

m is required for reasonably small leakage loss.
The index contrast should be increased if a smaller

(20)
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(a)

(b)

Fig. 16. (a) Substrate leakage loss as a function of the buffer thickness(t2)
for TE and TM modes. (b) Substrate leakage loss as a function of waveguide
thickness, subject to the constraint thatd + t2 = 2 �m. A broad minimum
occurs aroundd = 0:6 �m.

buffer thickness is desired. In cases where one is constrained
to a fixed etching depth, the core and buffer thicknesses are
not independent, and should be optimized together to yield
the minimum leakage loss. As an example, Fig. 16(b) gives
the leakage loss as a function of the waveguide thickness
under the constraint m. A broad minimum occurs
around m. For very thin waveguides, the leakage
loss increases because of the weak confinement.

F. Vertical Resonant Coupling

The lateral coupling geometries discussed in Section III-B
suffer from several disadvantages. First, in terms of fabrica-
tion, the small gap width is difficult to control. Secondly,
without phase matching, the coupling length is very short.
To overcome these difficulties, a novel alternative is to use
the vertical coupling geometry, as shown schematically in
Fig. 17. This is basically a stack structure in which two
identical waveguide layers are grown epitaxially one on top of
another. The epiwafer is processed in such a way that the lower

Fig. 17. Schematic of the vertical coupling geometry, showing the vertical
stack structure with the ring waveguide (WG1) sitting atop the lower coupling
waveguides (WG2). The separation layer determines the coupling coefficient.

waveguide is the coupling waveguide, and the material outside
the ring waveguide area is etched away to leave only the input
and output waveguides. The deep etching required to form
such a vertical structure with low loss is not difficult as there
are no small gaps to worry about. In this structure, the coupling
between the waveguides is in the vertical direction. The cou-
pling mechanism is similar to substrate leakage loss discussed
in the previous section, except the coupling is phase-matched.
The main advantage is that the coupling coefficient can be
controlled accurately during the epitaxial growth process as
it is determined primarily by the thickness of the separation
layer, independent of surface scattering or edge diffraction.
Since there is no phase mismatch due to path difference, the
interaction length is the maximum possible. Furthermore, it
is relatively easy to make electrical contact to such a device.
Direct electrooptic modulation of the coupling coefficient can
be achieved by doping the upper waveguide-type, the lower
waveguide -type, and the separation layer undoped, and
applying an electric field across the undoped separation layer
[18]. Alternatively, if electro-optic modulation of the reso-
nance frequency is desired, then the ring waveguide should be
undoped and the electric field is applied across it. Despite these
advantages, however, a major difficulty with this structure is
its integrability with other devices. Further investigation of the
vertical coupling structure will be given elsewhere.

IV. SUMMARY

In summary, we have discussed the design of a number
of important parameters, including the resonance wavelength,
the effective ring radius , the coupling factor ,
the bending radiation loss and the substrate leakage
loss , all of which are important to the operation of
a waveguide-coupled microring resonator. As an example,
consider the resonatorfinesse (the ratio of FSR to the
bandwidth) or the factor (the ratio of the absolute frequency
to the bandwidth). These two parameters are both important
when one is interested in both the FSR and the bandwidth.
They are related by

(21)
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(a)

(b)

Fig. 18. (a) The finesse, and (b) theQ factor, of the microring resonator as
a function of the ring radius for varying scattering loss coefficients, assuming
a coupling factor of 1%. A peak in finesse occurs at the optimal radius of
about 1�m.

Using this relation, the factor may be written in a form that
shows explicitly its dependence on all the parameters discussed
above

(22)

Fig. 19. The finesse of the microring resonator as a function of diameter,-
as the coupling factorsPc1 andPc2 are varied.

where and are the reflectivities, given by
at each waveguide-to-ring coupling point ( are

the coupling coefficients at these points). The loss terms in the
exponent may include other losses such as absorption loss.,
the surface scattering loss in the cavity, is not considered in
our model but may yet be the dominant source of loss. Fig. 18
shows both the finesse and thefor a case of fixed
and varying scattering loss coefficient, , and cm 1.
In each case the finesse shows a maximum “turning point” at
an optimal diameter of about 2m. The finesse decreases
for larger diameters because of increasing scattering loss, and
decreases for smaller diameters because of increasing radiative
bending loss. On the other hand, shows no such turning
point in the range shown because the factorin (22) is a
monotonically increasing function of the ring diameter at a
fixed wavelength. The maximum finesse at the turning point is
limited by the 1-% waveguide-to-cavity coupling. If there was
zero coupling and the scattering loss was also zero, then the
finesse would increase indefinitely with the ring radius. On the
other hand, an increase in or an introduction of unbalanced

(i.e., not equal to ) will decrease the finesse, as
shown in Fig. 19. The control of , via accurate control of
the gap size, can be achieved by nanofabrication technology
as has been demonstrated for both GaAs and InP materials [4].
With the gap-enhancing designs proposed above, this control
may be more reliably achieved. On the other hand, a good way
to switch the resonator off is to electrooptically unbalance it so
that the input coupling is different from the output coupling,
analogous to the transmission of a Fabry–Perot resonator
where front and back mirrors are not identical.

The conformal transformation method at the core of our
model gives a good physical picture of the guiding and
radiation mechanism in the microring cavity. Much of the
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physics can be derived by analogy with quantum wells and
tunneling through potential barriers. Based on this physical
picture, we have developed a novel approach for significantly
increasing the coupling length, and hence the coupling gap
size, by using a phase-matched parallel waveguide having a
different width than the ring waveguide. An alternative vertical
coupling structure is also proposed in which the control of the
coupling coefficient is built into the material growth process.
The resonant coupling between two waveguides with different
widths has an appropriate analogy with the resonant coupling
between two quantum wells with different well widths, which
can be achieved by applying an appropriate uniform electric
field across the wells. Mathematically, the similarity arises
because curving the waveguides has the same effect on (4)
(within our linear approximation) as the presence of a uniform
electric field does on the Schrodinger equation for a quantum
well [14].

In summary, we have discussed an approximate model for
solving the effective indexes and the eigenmodes of a micro-
ring waveguide with a small radius of curvature and a large
lateral index contrast. The model takes into account some 3-D
effects such as waveguide dispersion and edge diffraction. The
resonance frequencies and the FSR calculated with this model
agree well with the FDTD method. Once the ring mode profile
and the effective index are known, the coupling coefficient
and its dependence on gap size can be obtained readily. The
model provides physical insight and design guidance useful
for first-cut optimal designs of waveguide-coupled microring
resonators before tedious laboratory fabrications are carried
out.
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