Proving Properties of Programs
What is a Correctness Proof?

PLT @ Northwestern

Computer Science, Northwestern University

Testing Sorting Algorithms

e output is ordered
For all lists I, (sorted? (sortl))

e output is a permutation of the input
For all lists I, (permutation-of? [(sort!))

e .. for some sorting algorithms: sort is stable

Proving Programs Correct

* How to state properties of programs?

Proving Programs Correct

¢ How to state properties of programs?
e output is ordered: for all lists [, Sorted((sort [))

e output is a permutation of the input: for all lists [, [<~ (sort [)

® How to prove programs correct?

Proving Programs Correct

¢ How to state properties of programs?
e output is ordered: for all lists [, Sorted((sort [))

e output is a permutation of the input: for all lists [, [<~ (sort [)
® How to prove programs correct?

¢ What is a correctness proof?

Correctness Proof is Not Just About Algorithms!

struct Node { int data;
Node* next; };

void insert(Node* head, int data) {
while (head->next != nullptr)
head = head->next;
head->next = new Node{data, nullptr};

Correctness Proof is Not Just About Algorithms!

struct Node { int data;
Node* next; };

void insert(Node* head, int data) {
while (head->next != nullptr)
head = head->next;
head->next = new Node{data, nullptr};

}

Node *rest = new Node{10, nullptr};
Node *A = new Node{l, rest};

insert(A, 99);

Correctness Proof is Not Just About Algorithms!

struct Node { int data;
Node* next; };

void insert(Node* head, int data) {
while (head->next != nullptr)
head = head->next;
head->next = new Node{data, nullptr};

}

Node *rest = new Node{10, nullptr};
Node *A = new Node{l, rest};

Node *B = new Node{2, rest};
insert(A, 99);

// breaks statements about B!

Correctness Proof is Not Just About Algorithms!

¢ A model of programming languages, e.g. how program runs

Correctness Proof is Not Just About Algorithms!

¢ A model of programming languages, e.g. how program runs

e Powerful tools for expressing properties & making deductions

10

Correctness Proof is Not Just About Algorithms!

¢ A model of programming languages, e.g. how program runs

e Powerful tools for expressing properties & making deductions

Separation Logic: “These two pieces of programs shall share no
memory”

11

Correctness Proof is Not Just About Algorithms!

¢ A model of programming languages, e.g. how program runs

e Powerful tools for expressing properties & making deductions
Separation Logic: “These two pieces of programs shall share no
memory”

¢ Can the proof guide the implementation of programs?

12

Correctness Proof is Not Just About Algorithms!

¢ A model of programming languages, e.g. how program runs

e Powerful tools for expressing properties & making deductions
Separation Logic: “These two pieces of programs shall share no
memory”

¢ Can the proof guide the implementation of programs?

For now, we restrict our attention to a tiny subset of Racket.

13

Our Goal: Correctness of Insertion Sort

e output is ordered
e output is a permutation of the input

(define (sort 1)
(match 1
['() 1]
[(cons hd tl) (insert hd (sort tl))]))

(define (insert x 1)

(match 1
['() (cons x '())]
[(cons hd tl) (if (< x hd)

(cons x 1)
(cons hd (insert x tl)))]))

14

Example Properties Involving Lists

Example. The length function distributes over append:

(length (append [l;)) = (length) + (length [;).

> (length (append (cons 5 (cons 2 '()))
(cons 9 '())))
3

> (+ (length (cons 5 (cons 2 '())))
(length (cons 9 '())))
3

15

The Data Definition of Lists

A list [is either:

e An empty list ' ()
® A cons cell (cons y I”) where I’ is another list.

16

The Data Definition of Lists

A list [is either:
e An empty list ' ()

® A cons cell (cons y I”) where I’ is another list.

(cons 5 (cons 2 '()))is alist because:

17

The Data Definition of Lists

A list [is either:

e An empty list ' ()
e A cons cell (cons y I”) where I’ is another list.

(cons 5 (cons 2 '())) isa list because:
® (cons 5 (cons 2 '())) looks like (cons y ") wherel’is (cons 2 '())

® (cons 2 '())is a(another) list because:

18

The Data Definition of Lists

A list [is either:

e An empty list ' ()
e A cons cell (cons y I”) where I’ is another list.

(cons 5 (cons 2 '()))isalist because:
® (cons 5 (cons 2 '())) looks like (cons y ") wherel’is (cons 2 '())
® (cons 2 '())isa(another) list because:

e (cons 2 '()) lookslike (cons z!”) wherel”is '()

e '()isalist

19

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append ll;)) = (length I) + (length ;).

20

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).
Proof Template. (This is not a complete proof.)

21

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).
Proof Template. (This is not a complete proof.)

e Caselis '(): show that

(length (append '() [;)) = (length '()) + (length ;).

22

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).
Proof Template. (This is not a complete proof.)

e Caselis '(): show that

(length (append '() [;)) = (length '()) + (length ;).

e Caselis (cons y I'): assuming that for any 1”,
(length (append I’ I”)) = (length I’) + (length ["”),

23

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).
Proof Template. (This is not a complete proof.)

e Caselis '(): show that

(length (append '() [;)) = (length '()) + (length ;).
e Caselis (cons y I'): assuming that for any 1”,

(length (append I’ I”)) = (length I’) + (length ["”),
we need to show that

(length (append (cons yl’) I;)) = (length (cons y I)) + (length [;).

24

A Template of Induction Over Lists

Example. The length function distributes over append:
(length (append ll;)) = (length I) + (length ;).

Proof Template. (This is not a complete proof.)
e Caselis '(): show that
(length (append '() [;)) = (length '()) + (length ;).
e Caselis (cons y I'): assuming that for any 1”,
(length (append I’ I”)) = (length I’) + (length ["”),
we need to show that
(length (append (cons yl’) I;)) = (length (cons y I)) + (length [;).

e By induction, (length (append [[;)) = (length l) + (length ;) holds
for all lists [and ;.

25

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

Proof (1/4). Induction on 1.

e Caselis '(): we need to show that
(length (append '() l;)) = (length '()) + (length [;).

26

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).
Proof (1/4). Induction on 1.
e Caselis '(): we need to show that
(length (append '() l;)) = (length '()) + (length [;).

We are stuck: can’t make progress with (length (append '() [;)) and
(length '()).

27

“Running” Programs in Math

We will assume a programming language that

e Uses only lists, if, match, functions, number & arithmetic
e Does not use mutable variables

¢ All expression terminates

This way, we can partition programs into sets that “behave the same”. For
example, (if #t 5 3) should be the same as 5.

Let e; = e, means that the programs e; and e, are equivalent.

28

“Running” Programs in Math

In the end, we want to be able to deduce that:

® (append (cons 1 (cons 2 '())) (cons3 (cons4 '())))
(cons 1 (cons 2 (cons3(cons4'()))))

® (length (cons3 (cons4'())))=2

® (length (append '() 1)) = (length ;)

and more.

“_mn

We will bake some program execution rules into “=".

29

Rules for “Running” Functions

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

30

Rules for “Running” Functions

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

We can replace (append '() [;) by
(append '() [;)

B (match '()
['() L]
[(cons hd tl) (cons hd (append tl [))])

31

Rules for “Running” Functions

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

Similarly, we can replace (append (cons y) I;) by

(append (consyl") Ij)
) (match (consyl’)
['() I
[(cons hd tl) (cons hd (append tl [))])

32

Rules of “Running” Matches (1)

(match '()
['() 61]
[(cons hd tl) ey])

€1

33

Rules of “Running” Matches (1)

(match '()
['() 61]
[(cons hd tl) ey])

€1

Example:

(match '()
['()]

[(cons hd tl) (cons hd (append tl [))])

h

34

Rules of “Running” Matches (2)

(match (consyl)
['() el = ez{hd «— y, tl « I'}
[(cons hd tl) e;])

35

Rules of “Running” Matches (2)

(match (consyl)
['() el = ez{hd «— y, tl « I'}
[(cons hd tl) e;])

Example:

(match (consyl’)
['() L]
[(cons hd tl) (cons hd (append tl [))])

(cons y (append I" I1))

36

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

Proof (1/4). Induction on 1.
e Caselis '(): we need to show that
(length (append '() l;)) = (length '()) + (length [;).
By calculation in earlier slides,

(length (append '() [;))
(length ;)

37

Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

Proof (1/4). Induction on 1.
e Caselis '(): we need to show that
(length (append '() l;)) = (length '()) + (length [;).
By calculation in earlier slides,

(length (append '() [;))
(length ;)

(length '()) + (length [})

38

Running the Length function

(define (length xs)
(match xs
['() 0]
[(cons hd tl) (+ 1 (length tl))]))

39

Running the Length function

(define (length xs)
(match xs
['() 0]
[(cons hd tl) (+ 1 (length tl))]))

We calculate:
(length '())

(match '()
['() 0]
[(cons hd tl) (+ 1 (length t1))])

40

Running the Length function

(define (length xs)
(match xs
['() 0]
[(cons hd tl) (+ 1 (length tl))]))

We calculate:
(length '())

(match '()
['() 0]
[(cons hd tl) (+ 1 (length t1))])

41

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

Proof (1/4). Induction on 1.
e Caselis '(): we need to show that
(length (append '() [;)) = (length '()) + (length [;).
By calculation in earlier slides,

(length (append '() [;))
(length ;)

= (length '())+ (length L)

42

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

Proof (2/4). Induction on 1.

e Caselis '(): we need to show that
(length (append '() [;)) = (length '()) + (length [;).

By calculation in earlier slides,
(length (append '() 1))
(length ;)
0+ (length ;)
(length '()) + (length ;)

43

Recap: Proving Properties of List Functions by Induction

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

Proof Template.
o/ Case lis '(): show that
(length (append '() [;)) = (length '()) + (length ;).

e TODO Case [is (cons y I’): assuming that for any [”,
(length (append I’ I”)) = (length I’) + (length [”), we need to show

(length (append (cons yI’) I;)) = (length (cons y I’)) + (length [;).

e By induction, (length (append [[;)) = (length l) + (length ;) holds
for all lists [and [;.

44

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
(length (append ll;)) = (length I) + (length ;).

Proof (3/4).

e Caselis (cons y!’): we need to show that if for any [”,
(length (append I’ I”)) = (length I’) + (length [”) then we have
(length (append (cons yl’) I;)) = (length (cons y I)) + (length [;):

45

More Calculation (1)

(length (append (consyl’) [;))
(the rule of function call)
(length (match (consyl)
['() L]
[(cons hd tl) (cons hd (append tl L))]))

(define (append xs ys)
(match xs
['() ys]
[(cons hd tl) (cons hd (append tl ys))]))

46

More Calculation (1)

(length (append (consyl’) [;))
(the rule of function call)
(length (match (consyl)
['() L]
[(cons hd tl) (cons hd (append tl L))]))
(the rules of match)
(length (cons y (append ' 1)))

(define (length xs)
(match xs
['() 0]
[(cons hd tl) (+ 1 (length tl))]))

47

More Calculation (2)

(length (append (consyl’) [;))
(the rule of function call)
(length (match (consyl)
['() L]
[(cons hd tl) (cons hd (append tl L))]))
(the rules of match)
(length (cons y (append ' 1)))
(the rule of function call)
(match (cons y (append I’ }))
['() 0]
[(cons hd tl) (+ 1 (length t1))])

48

More Calculation (2)

(length (append (consyl’) [;))
(the rule of function call)
(length (match (consyl)
['() L]
[(cons hd tl) (cons hd (append tl L))]))
(the rules of match)
(length (cons y (append ' 1)))
(the rule of function call)
(match (cons y (append I’ }))
['() 0]
[(cons hd tl) (+ 1 (length t1))])
(the rules of match)
(+ 1 (length (append I 1)))

49

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
(length (append ll;)) = (length I) + (length ;).
Proof (3/4).
e Caselis (cons y!’): we need to show that if for any [”,
(length (append I’ I”)) = (length I’) + (length [”) then we have
(length (append (cons yl’) I;)) = (length (cons y I)) + (length [;):

(length (cons y (append I’ [1)))
1+ (length (append I’ [1))

(length (append (consyl’) [;))

50

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
(length (append ll;)) = (length I) + (length ;).

Proof (3/4).
e Caselis (cons y!’): we need to show that if for any [”,

(length (append I’ I”)) = (length I’) + (length [”) then we have
(length (append (cons yl’) I;)) = (length (cons y I)) + (length [;):

(length (cons y (append I’ [1)))
1+ (length (append I’ [1))

(length (append (consyl’) [;))

1+ (length I’) + (length [;)
(length (cons y I”)) + (length [;)

51

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
(length (append ll;)) = (length I) + (length ;).

Proof (4/4).

e Caselis (cons y!’): we need to show that if for any [”,
(length (append I’ I”)) = (length I’) + (length [”) then we have
(length (append (cons yl’) I;)) = (length (cons y I)) + (length [;):

(length (append (consyl’) [;)) (length (cons y (append I’ [1)))
1+ (length (append I’ I1))
(induction hypothesis)
1+ (length I’) + (length [;)

= (length (consyl’))+ (length ly)

52

Proving Properties of List Functions by Induction (cont'd)

Example. The length function distributes over append:
(length (append ll;)) = (length I) + (length ;).

Proof (4/4).

e Caselis (cons y!’): we need to show that if for any [”,
(length (append I’ I”)) = (length I’) + (length [”) then we have

(length (append (cons yl’) I;)) = (length (cons y I)) + (length [;):

(length (append (consyl’) [;)) (length (cons y (append I’ [1)))
1+ (length (append I’ I1))
(induction hypothesis)
1+ (length I’) + (length [;)
(length (cons y I”)) + (length [;)

By induction, (length (append [1)) = (length l) + (length [;).

53

Sum Up: Proving Properties of List Functions by Induction

Property: “For all lists [, ... [..."
Proof (template).
Induction on I:

e Caselis "():..."() ..

e Caselis (consyl'):if...I'...then .. (consy!") ...

By induction, ... [....

54

How Induction “Runs”

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

1. (length (append '() (cons 9 '()))) =
(length '()) + (length (cons 9 '()))

We have shown that (length (append '() 1)) = (length '())+ (length [;).
In this specific instance, [; is (cons 9 '()).

55

How Induction “Runs”

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

1. (length (append '() (cons 9 '()))) =

-
(length '())+ (length (cons 9 '()))

2. (length (append (cons 2 '()) (cons 9 '()))) =
(length (cons 2 '())) + (length (cons 9 '()))

We have shown that if for any 1”,

(length (append I’ I”)) = (length I’) + (length [”) then we have
(length (append (cons y ") I;)) = (length (cons y I’)) + (length [;).
Here the premise is true by (1), y :=2and I’ := ' ().

56

How Induction “Runs”

Example. The length function distributes over append:
(length (append [l;)) = (length) + (length [;).

1. (length (append '() (cons 9 '()))) =
(length '()) + (length (cons 9 '()))
2. (length (append (cons 2 '()) (cons 9 '()))) =
(length (cons 2 '())) + (length (cons 9 '()))
3. (length (append (cons 5 (cons 2 '())) (cons 9 '())))
(

length (cons 5 (cons 2 '()))) + (length (cons 9 '()))

We have shown that if for any [,

(length (append I’ I”)) = (length I’) + (length [”) then we have
(length (append (cons y!’) I;)) = (length (cons y I’)) + (length [;).
Here the premise is true by (2), y :=5and I’ := (cons 2 '()).

57

Appendix: Rules of Function Calls

For any function definition

(define (fx;xy...)
e)

We have the computation rule

(fere ...) = e{x; < e, Xy ey ...

58

Appendix: Rules of Match

(match '()
L'() €1]
[(cons hd t1l) e;])

(match (cons x1)
['() 61]
[(cons hd t1) e])

€1

ex{hd « x,t1 « [}

59

Appendix: Rules of If

(if #t
€1
ez)

(i1f #f
€1
ez)

€1

€2

60

