
Register	Allocation
by	Puzzle	Solving

4/19/2016

EECS	322:	Compiler	Construction

Simone	Campanoni
Robby	Findler

Materials

• Research	paper:	
• Authors:	Fernando	Magno Quintao Pereira,	Jens	Palsberg
• Title:	Register	Allocation	by	Puzzle	Solving
• Conference:	PLDI	2008

• Ph.D.	thesis
• Author:	Fernando	Magno Quintao Pereira
• Title:	Register	Allocation	by	Puzzle	Solving
• UCLA	2008

A	compiler

Front-end
IR

Character	stream	(Source	code)

Middle-end

IR

Back-end
Machine	code

Task:	From	Variables	to	Registers

(:MyVeryImportantFunction

(MyVar1 <- 2)
(MyVar2 <- 40)
(MyVar3 <- MyVar1)
(MyVar3 +=	MyVar2)
(print	MyVar3)
)

Software

Hardware
r8 r9 r10

?

MyVar1 MyVar2 MyVar3

No
overlapping

Register	Allocation

A. Spill	all	variables
B. Puzzle	solving
C. Linear	scan
D. Graph	coloring
E. Integer	linear	programming

Compilation	 time

Generated-code	run	time

A

C

D
E

B
Equivalent	quality
of	graph	coloring

...	in	significantly
less	time!

Ideal

Summary

•Graph	coloring	abstraction:	Houston	we	have	a	problem

•Puzzle	abstraction

• From	a	program	to	a	collection	of	puzzles

• Solve	puzzles

• From	solved	puzzles	to	assembly	code

To	register	allocators:	what	are	you	doing?

(:MyVeryImportantFunction

(MyVar1 <- 2)
(MyVar2 <- 40)
(MyVar3 <- 0)
(MyVar3 +=	MyVar1)
(MyVar3 +=	MyVar2)
(print	MyVar3)
)

Software

Hardware
r8 r9

MyVar1 MyVar2 MyVar3

• MyVar1	->	stack	(spilled)
• MyVar2	->	r8
• MyVar3 ->	r9

Graph	coloring	abstraction:	a	problem

(:MyVeryImportantFunction

(MyVar1 <- 2)
(MyVar2 <- 40)
(MyVar3 <- 0)
(MyVar3 +=	MyVar1)
(MyVar3 +=	MyVar2)
(print	MyVar3)
)

Software

Hardware
r8 r9

• MyVar1	:	64	bits
• MyVar2	:	32	bits
• MyVar3 :	32	bits

• r8	can	store	either	one	64-bit	valuel or	two	32-bit	values
• r9	can	store	64	bit	values

MyVar1 MyVar2 MyVar3

Can	this	be	obtained
by	the	graph-coloring	algorithm
you	learned	in	this	class?

Register	aliasing

Summary

•Graph	coloring	abstraction:	Houston	we	have	a	problem

•Puzzle	abstraction

• From	a	program	to	a	collection	of	puzzles

• Solve	puzzles

• From	solved	puzzles	to	assembly	code

Puzzle	Abstraction

• Puzzle	=	board	(areas	=	registers)			+				pieces	(variables)

• Pieces	cannot	overlap
• Some	pieces	are	already	placed	on	the	board
• Task: fit	the	remaining	pieces	on	the	board	(register	allocation)

R8												 r15

From	register	file	to	puzzle	boards

• Every	puzzle	board	has	areas	divided	in	two	rows
(soon	will	be	clear	why)

• A	register	determinates	the	shape	of	the	corresponding	puzzle	board.	
Register	aliasing	determines	the	#columns

PowerPC
ARM	integer	registers

SPARC	v8
ARM	float	registers

SPARC	v9

Puzzle	pieces	accepted	by	boards

Summary

•Graph	coloring	abstraction:	Houston	we	have	a	problem

•Puzzle	abstraction

• From	a	program	to	a	collection	of	puzzles

• Solve	puzzles

• From	solved	puzzles	to	assembly	code

From	a	program	to	puzzle	pieces

1. Convert	a	program	into	an	elementary program
A. Transform	code	into	SSA	form
B. Transform	A	into	SSI	form
C. Insert	in	B	parallel	copies	between	every	instruction	pair	

2. Map	the	elementary	program	into	puzzle	pieces

Static	Single	Assignment	(SSA)	representation

• A	variable	is	set	only	by	one	instruction	in	the	function	body
(myVar1	<- 5)
(myVar2	<- 7)
(myVar3	<- 42)

• A	static	assignment	can	be	executed	more	than	once

SSA	and	not	SSA	example
float	myF (float	par1,	float	par2,	float	par3){

return	(par1	*	par2)	+	par3;	}

float	myF(float	par1,	float	par2,	float	par3)	{
myVar1	=	par1 *	par2	
myVar2	=	myVar1	+	par3
ret	myVar2}

float	myF(float	par1,	float	par2,	float	par3)	{
myVar1	=	par1 *	par2	
myVar1	=	myVar1 +	par3
ret	myVar1}

SSA

• Code	analysis	needs	to	represent	facts	at	every	program	point	

• What	if
• There	are	a	lot	of	facts	and	
there	are	a	lot	of	program	points?

• potentially	takes	a	lot	of	space/time	

Motivation	for	SSA

float	myF(float	par1,	float	par2,	float	par3)	{
myVar1	=	par1 *	par2	
myVar2	=	myVar1	+	par3
ret	myVar2	}

Example
Predecessor										

Successor

Static	Single	Assignment	(SSA)
Add	SSA	edges	from	definitions	to	uses
• No	intervening	statements	define	variable	
• Safe	to	propagate	facts	about	x	only	along	SSA	edges	

What	about	joins?

• Add	Φ functions/nodes	to	model	joins
• One	argument	for	each	incoming	branch	

• Operationally
• selects	one	of	the	arguments	based	on	how	control	flow	reach	this	node	

• At	code	generation	time,	need	to	eliminate	Φ nodes	

If	(b	>	N)

b =	c +	1 b =	d	+	1

Not	SSA

b3=Φ(b1,	b2)	
If	(b3	>	N)

b1	=	c +	1 b2	=	d	+	1

SSA

If	(?	>	N)

b1	=	c +	1 b2	=	d	+	1

Still	not	SSA

Eliminating	Φ

• Basic	idea:	Φ represents	facts	that	value	of	join	
may	come	from	different	paths
• So	just	set	along	each	possible	path	

b3=Φ(b1,	b2)	
If	(b3	>	N)

b1	=	c +	1 b2	=	d	+	1

If	(b3	>	N)

b1	=	c +	1
b3	=	b1

b2	=	d	+	1
b3	=	b2

Not	SSA

Eliminating	Φ in	practice	

• Copies	performed	at	Φ may	not	be	useful	
• Joined	value	may	not	be	used	later	in	the	program

(So	why	leave	it	in?)	

• Use	dead	code	elimination	to	kill	useless	Φs
• Register	allocation	maps	the	variables
to	machine	registers

Static	Single	Information	(SSI)	form

In	a	program	in	SSI	form:
• Every	basic	block ends	with	a	π-function
that	renames	the	variables	that	are	live	going	out	of	the	basic	block

If	(b	>	1)

… =	c +	1 … =	c	*	2

Not	SSI

If	(b	>	1)
(c1,	c2)	=	π(c)

… =	c1	+	1 … =	c2	*	2

SSI

Basic	block:	sequence	of	instructions	with	
• only one entry	point	and	
• only one exit	point
:L1
(myVar1	<- 5)
(myVar2	+=	myVar1)
(cjump myVar1	=	myVar2	:L2	:L1)
:L2
(c	<- 10)

BB1

BB2

SSA	and	SSI	code

b3=Φ(b1,	b2)	
If	(b3	>	1)
(c1,	c2)	=	π(c)

… =	c1	+	1 … =	c2	*	2

b1	=	d1	+	1 b2	=	d2	+	4

If	(b	>	1)

… =	c	+	1 … =	c	*	2

b	=	d	+	1 b	=	d	+	4

Not	SSA	and	not	SSI

b3=Φ(b1,	b2)
If	(b3	>	1)

… =	c	+	1 … =	c	*	2

b1	=	d	+	1 b2	=	d	+	4

SSA but	not	SSI SSA	and	SSI

Parallel	copies

• Rename	variables	in	parallel

V	=	X	+	Y
Z	=	A	+	B

(V1,	X1,	Y1,	Z1,	A1,	B1)	=	(V,	X,	Y,	Z,	A,	B)
V1	=	X1	+	Y1
(V2,	X2,	Y2,	Z2,	A2,	B2)	=	(V1,	X1,	Y1,	Z1,	A1,	B1)
Z2	=	A2	+	B2

From	a	program	to	puzzle	pieces

1. Convert	a	program	into	an	elementary program
A. Transform	code	into	SSA	form
B. Transform	A	into	SSI	form
C. Insert	in	B	parallel	copies	between	every	instruction	pair	

Elementary	form:	an	example

From	a	program	to	puzzle	pieces

1. Convert	a	program	into	an	elementary program
A. Transform	code	into	its	SSA	form
B. Transform	code	into	its	SSI	form
C. Insert	parallel	copies	between	every	instruction	pair	

2. Map	the	elementary	program	into	puzzle	pieces

Add	puzzle	boards

Generating	puzzle	pieces
• For	each	instruction	i
• Create	one	puzzle	piece	for	each	live-in	and	live-out	variable
• If	the	live	range	ends	at	i,	then	the	puzzle	piece	is	X
• If	the	live	range	begins	at	i,	then	Z-piece
• Otherwise	Y-piece

V1	(used	later)	=	V2	(last	use)	+	3
r10	=	r10	+	3

Example

Example

Summary

•Graph	coloring	abstraction:	Houston	we	have	a	problem

•Puzzle	abstraction

• From	a	program	to	a	collection	of	puzzles

• Solve	puzzles

• From	solved	puzzles	to	assembly	code

Solving	type	1	puzzles

• Approach	proposed:	complete	one	area	at	a	time
• For	each	area:
• Pad	a	puzzle	with	size-1	X- and	Z-pieces
until	the	area	of	puzzle	pieces	==	board

Padding

• Solve	the	puzzle

Board	with	1	pre-assigned	piece

Solving	type	1	puzzles:	a	visual	language

Puzzle	solver	->	Statement+
Statement	->	Rule	|	Condition
Condition	->	(Rule	:	Statement)
Rule	->	

• Rule	=	how	to	complete	an	area
• Rule	composed	by
pattern:	
what	needs	to	be	already	filled
(match/not-match	an	area)

strategy:	
what	type	of	pieces	to	add	and	where
• A	rule	r succeeds	in	an	area	a iff

i. r matches	a
ii. pieces	of	the	strategy	of	r

are	available

Area	a

Solving	type	1	puzzles:	a	visual	language

Puzzle	solver	->	Statement+
Statement	->	Rule	|	Condition
Condition	->	(Rule	:	Statement)
Rule	->	

Puzzle	solver	success
• A	program	succeeds	iff
all	statements	succeeds
• A	rule	r succeeds	in	an	area	a iff

i. r matches	a
ii. pieces	of	the	strategy	of	r are	available

• A	condition	(r	: s) succeeds	iff
• r	succeeds	or
• s succeeds

Solving	type	1	puzzles:	a	visual	language

Puzzle	solver	->	Statement+
Statement	->	Rule	|	Condition
Condition	->	(Rule	:	Statement)
Rule	->	

Puzzle	solver	execution
o For	each	statement	s1,	…, sn

v For	each	area	a such	that
the	pattern	of	simatches	a

q Apply	si to	a
q If	si fails,	

terminate	
and	report	failure

Program	execution:	an	example

• A	puzzle	solver

• Puzzle

R8									r9
Puzzle	solved!

1. s1	matches	a1	only
2. Apply	s1	to	a1	succeeds

and	returns	this	puzzle

3. s2	matches	a2	only
4. Apply	s2	to	a2

A. Apply	first	rule	of	s2:	fails
B. Apply	second	rule	of	s2:	success

K

K
s1 s2

a1 a2 Q

Q

K

Q

Program	execution:	another	example

• A	puzzle	solver

• Puzzle

Puzzle	solved!

1. s1	matches	a1	only
2. Apply	s1	to	a1

A. Apply	first	rule	of	s1:	success

3. s2	matches	a2	and	a3
4. Apply	s2	to	a2

5. Apply	s2	to	a3

s1

a1										a2										a3
x1 x2 x3 y1 y2

s2 a1										a2										a3
x3 x1 x2 y1 y2

a1										a2										a3
x3 x1 y1a1										a2										a3

x3 x1 y1 x2 y2

• A	puzzle	solver

• Puzzle

s1 s2

Program	execution:	yet	another	example

1. s1	matches	a1	only
2. Apply	s1	to	a1

A. Apply	first	rule	of	s1:	success

3. s2	matches	a2	and	a3
4. Apply	s2	to	a2:	fail

No	1-size	x	pieces,
we	used	them	all	in	s1

a1										a2										a3
x1 x2 x3 y1 y2

a1										a2										a3
x3x1 x2 y1 y2

s1 s2

Finding	the	right	puzzle	solver
is	the	key!

Solution	to	solve	type	1	puzzles
Theorem:	a	type-1	area	is	solvable
iff this	program	succeeds

Wait,	…
did	we	just	solve	a	NP	problem
in	polynomial	time?

Register	allocation:
complete	all	areas

Simplified	problem	solved:
complete	one	area	
at	a	time

Solution	to	solve	type	1	puzzles:	complexity

For	one	instruction	in	P:
• Application	of	a	rule	to	an	area:	O(1)
• A	puzzle	solver	O(1)	rules	on	each	area	of	a	board
• Execution	of	a	puzzle	solver	on	a	board	with	K	areas	takes	O(K)	time

Corollary	3.	
Spill-free	register	allocation	with	pre-coloring	
for	an	elementary	program	P	and	K	registers	
is	solvable	in	O(|P|	x	K)	time

Solving	type	0	puzzles

Solving	type	0	puzzles:	algorithm

oPlace	all	Y-pieces	on	the	board

oPlace	all	X- and	Z-pieces	on	the	board

Spilling

• If	the	algorithm	to	solve	a	puzzles	fails
i.e.,	the	need	for	registers	exceeds	the	number	of	available	registers
=>	spill

• Observation:	translating	a	program	into	its	elementary	form	
creates	families	of	variables,	one	per	original	variable
• To	spill:	
• Choose	a	variable	v	to	spill	from	the	original	program
• Spill	all	variables	in	the	elementary	form	
that	belong	to	the	same	family	of	v

Summary

•Graph	coloring	abstraction:	Houston	we	have	a	problem

•Puzzle	abstraction

• From	a	program	to	a	collection	of	puzzles

• Solve	puzzles

• From	solved	puzzles	to	assembly	code

From	solved	puzzles	to	assembly	code

AL,	BX

Thank	you!

Compilation	 time

Generated	code	run	 time

A

C

D
E

B
Equivalent	quality
of	graph	coloring

...	in	significantly
less	time!

Ideal

Today	and	last	Wed.

