Register Allocation
by Puzzle Solving

EECS 322: Compiler Construction

Simone Campanoni
Robby Findler

4/19/2016

Materials

* Research paper:
* Authors: Fernando Magno Quintao Pereira, Jens Palsberg

 Title: Register Allocation by Puzzle Solving
* Conference: PLDI 2008

e Ph.D. thesis

e Author: Fernando Magno Quintao Pereira
* Title: Register Allocation by Puzzle Solving
* UCLA 2008

A compiler

Character stream (Source code)

\

| Front-end

]

k
v

[Middle-end

|

M

IR
v

| Back-end

Machine code

C

transf

de analysis

and

rmation

Task: From Variables to Registers

(:MyVerylmportantFunction MyVarl MyVar2 MyVar3
No (MyVarl <-2)
overlapping (MyVar2 <-40) Software
——————— {-(I\/IyVar3 <- MyVarl) e
‘ (MyVar3 += MyVar2) Hardware

(print MyVar3) r8 r9 r10

)

Register Allocation

Spill all variables
Puzzle solving
Linear scan

Graph coloring

mo O wp

Integer linear programming

4 Generated-code run time

A
C Equivalent quality
_B D of graph coloring
“«-——————= =TT E
... in significantly
less time!

|deal m

Compilation time

Summary

* Graph coloring abstraction: Houston we have a problem
* Puzzle abstraction

* From a program to a collection of puzzles

* Solve puzzles

* From solved puzzles to assembly code

To register allocators: what are you doing?

(:MyVerylmportantFunction MyVarl MyVar2 MyVar3
(MyVvarl <-2)
(MyVar2 <-40)
(Myvar3<-0) S_Of_tvza_re_)
(MyVar3 += MyVar1) Hardware

(MyVar3 += MyVar2) r8 r9
(print MyVar3)

* MyVarl -> stack (spilled)
* MyVar2 ->r8
* MyVar3 ->r9

Graph coloring abstraction: a problem

(:MyVerylmportantFunction

MyVarl MyVar2 MyVar3
* MyVarl : 64 bits

(MyVarl <-2)

(MyVar2 <-40) ¢ MyVar2 : 32 bits
(I\/lyVa r3 <- 0) * MyVar3 : 32 bits Software
(MyVar3 += Myvarl) T TTTTTToTTTTTTTTTTT oo e
(MyVar3 += MyVar2) 3 ‘ s ‘ Hardware
(print MyVar3) . o

) Register allaSIHg—>° r8 can store either one 64-bit valuel or two 32-bit values

* 9 canstore 64 bit values

Can this be obtained
by the graph-coloring algorithm
you learned in this class?

Summary

* Graph coloring abstraction: Houston we have a problem
* Puzzle abstraction

* From a program to a collection of puzzles

* Solve puzzles

* From solved puzzles to assembly code

Puzzle Abstraction

* Puzzle = board (areas = registers) + pieces (variables)
R8 r15

X
e Y

* Pieces cannot overlap

* Some pieces are already placed on the board
 Task: fit the remaining pieces on the board (register allocation)

X

From register file to puzzle boards

—AX BX CX DX
. Q0 AH AL |BHBL |CHCL DHDL BP SI DI SP Q7
14 D15
Fo 1~1!J | F29/r30 F31

/——x86, 8 111tegel registers, AX=EAX, SI=ESI, etc

/—SPARC V9, 8 qua,d -precision floating point registers —
] L] L

PowerPC SPARC v8 SPARC v9
ARM integer registers ARM float registers

Puzzle pieces accepted by boards

Board

Kinds of Pieces

Type-0

K-1

. X
Y ~—
. A

Type-1

e_______J
)20 E
_ z]

Type-2

[G |Eo

B K0 e e

Summary

* Graph coloring abstraction: Houston we have a problem
* Puzzle abstraction

* From a program to a collection of puzzles

* Solve puzzles

* From solved puzzles to assembly code

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form
B. Transform A into SS| form
C. Insertin B parallel copies between every instruction pair

2. Map the elementary program into puzzle pieces

Static Single Assignment (SSA) representation

* A variable is set only by one instruction in the function body
(myVarl <- 5)
(myVar2 <-7)
(myVar3 <-42)

* A static assighment can be executed more than once

SSA and not SSA example

float myF (float parl, float par2, float par3){
return (parl * par2) + par3; }

float myF(float parl, float par2, float par3) {
myVarl = parl * par2 SSP\
myVarl = myVar, 3
ret myVarl}

float myF(float parl, float par2, float par3) {
myVarl = parl * par2
myVar2 = myVarl + par3
ret myVar2}

SSA

Motivation for SSA

* Code analysis needs to represent facts at every program point

float myF(float parl, float par2, float par3) {
myVarl = parl * par2
myVar2 = myVarl + par3
ret myVar2 }

e What if

* There are a lot of facts and
there are a lot of program points?
» potentially takes a lot of space/time

—— l

X=3

X=3
X=3
X=3
X=3

)

b Successor

| -a+b| | I
y:=y*10
W y +z Wi=W+ y

X:=3 Predecessor

(

Static Single Assignment (SSA)

Add SSA edges from definitions to uses

* No interveningstatements define variable
» Safe to propagate facts about x only along SSA edges

What about joins?

* Add @ functions/nodesto model joins
* One argument for each incoming branch

e Operationally
* selects one of the arguments based on how control flow reach this node

* At code generation time, need to eliminate ® nodes

b3=0(b1, b2)
If (b3 > N)

Not SSA Still not SSA

Eliminating ©

* Basic idea: @ represents facts that value of join
may come from different paths

* So just set along each possible path

b3=D(b1, b2)
If (b3 > N)

Not SSA

Eliminating ®@ in practice

* Copies performed at ® may not be useful

* Joined value may not be used later in the program
(So why leaveitin?)

e Use dead code elimination to kill useless @®s

* Register allocation maps the variables
to machine registers

Static Single Information (SSI) form

In a program in SSI form:

* Every ends with a t-function
that renames the variables that are live going out of the basic block

rll-a'l- If (b > 1)
o b1 (c1, c2) =m(c)

Nliad

FH

— ..=C*2
L1

(myVarl <- 5)
(myVar2 += myVarl)

(cjump myVarl = myVar2 :L2 Néf.)t SSI
L2
(c <-10)

SSA and SSI code

b3=0(b1, b2)
If (b3 > 1)
(c1, c2) =m(c)

b3=0(b1, b2)
If (b3 > 1)

If (b >1)

Not SSA and not SSI but not SSI

Parallel copies

* Rename variables in parallel

]]

(V1, X1,Y1,Z1, A1, B1)=(V, X, Y, Z A, B)
V1=X1+Y1

(V2, X2, Y2,22, A2, B2) = (V1, X1, Y1, Z1, A1, B1)
72 = A2 + B2

° ¥ K .
WHAT JUST HAPPENED?. . ..

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form
B. Transform A into SS| form
C. Insertin B parallel copies between every instruction pair

Elementary form: an example

O (b)
P1: (A =(Ag) < Po [O:Ly] =70
py.5: [(Ap)Ly, (Ag)Ly] =7 (A)) @
Ly Ly | AL =-

€3 =
P3- (A3,C3) = (A23C23)
p4: [(A45C4)L4] = n(A3aC3)

Pe: (Ag: ALg) = (As, ALsy)
Ce7 = Alg

p7- (A7,C7) = (A6’C67)

Lil A= (a)
P Po-
branch L,, L, e
/.
. Ps-
p): > X L,
L, / AL=-
C= Pe-
P3- ¢c=AL
jump L, p7:
\ jump L,
P4 4
4 Pg:
\ 5
Ly join L,, Ly
Pg- P11
=c,A [——>e
P1o-
jump Leng

\

p8: [(AS’CS)L4] = TC(A7,C7)

e

Ly Pg: (Ag, Cg) = P[(Ay, cg):L,, (Ag, cg):L3]

¢ = C9, A9
P1o:0=0
pl] [()Lend] - T[()

From a program to puzzle pieces

2. Map the elementary program into puzzle pieces

Add puzzle boards

Ll —The board:

Agp=* AX BX P,
i (AD=(Ag)) Do [0L,]=70 :: ’B’H’:L P,
Pt [(Ap)Ly, (As):Ls] = (A)) —@® |+
L / L\s5 AL, =-)
Cp3 = P (Ag ALg) = (As, ALsg) | i
P3: (Az,c3) = (Ay,Cr3) Cg7 = AL, ’
P4 [(Ag.cy):Ly] =n(Az,c3) p7: (A7.07) = (AgCq7)
\ pg: [(Ag.cg)ily] =mA7.c7) | p,
/ p4. IH
L4 [pg: (Ag, cg) = D(Ay, cg):Ly, (Ag, cg):Ls]
e =Cg,Ag | o

P1o:0=0] ‘
pll [()Lend] = 71:() pO

Generating puzzle pieces

* For each instruction i
* Create one puzzle piece for each live-in and live-out variable
* If the live range ends at i, then the puzzle piece is X
* If the live range begins at i, then Z-piece
e Otherwise Y-piece

V1 (used later)
rl0=r10+3

=V?2 (last use) + 3

Board

Kinds of Pieces

Type-0

K-1

BV

N

/-‘

Type *

X
Y
Z

[N

Type-2

E

I K2 e

Pi- (A]) = (A()l)

< Do [0L]=70

./

L =

€3 =
P3: (A3,C3) = (A2,023)
p4: [(A49C4)L4] = TC(A39C3)

Ce7 = Alg

pP7- (A7,C7) = (Ag:Cq7)

\

pg: [(Ag,cg):Ly] = m(A,c7)

pd

Ly Po- (Ag, C9) = (D[(A4, C4)3L2, (Ag, 08)3L3]

* = 09, A9
P1o- 0=0
P11t [0:Lepgl =70

2 | b (C.d B fg=(C,d, Ef)
2 A b=C dE

§ px+1: (A”’ b”’ E”’ f”’ g”):(A, b’ E’ f)
% A b C d E f

&0
ISR
o, 1 !

3 Xl X/ 7 Y _J

n C d

) S W0

- 0]

Example

")

p1: (Ay) = (Agy)

Do [0L,]=70

L,

€3~
P3: (A3,C3) = (A2,023)
p4: [(A43C4)L4] = T[(A3,C3)

\

L;

—@

—The board:

AX
~ =

AH

AL},

Co7 7

AL)

p7: (A7.c7) = (Ag.Cq7)
p8: [(A89C8)L4] = n(A7,C7)

pd

L4 [po: (Ag.) = P[(Ag. c4):L, (Ag, cg):Ls]

¢ = 09, A9
P1o: 0=0
p]l: [()Lend] - ﬂ:()

Summary

* Graph coloring abstraction: Houston we have a problem
* Puzzle abstraction

* From a program to a collection of puzzles

* Solve puzzles

* From solved puzzles to assembly code

Solving type 1 puzzles

* Approach proposed: complete one area at a time

* For each area:

* Pad a puzzle with size-1 X- and Z-pieces
until the area of puzzle pieces == board

mm|nsive

/
Board with 1 pre-assigned piece / _ /
Padding

e Solve the puzzle

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+ * Rule = how to complete an area
Statement -> Rule | Condition * Rule composed by
Condition -> (Rule : Statement) pattern:

x what needs to be already filled
S ()R (match/not-match an area)

Rule ->

X X

N[X<| #N

2 Y2 e Arule rsucceedsin an area g iff

Area a

T, LT, i. rmatchesa
Z Z o e .
— ii. piecesof the strategy of r
nllGaE are available

— . strategy:
— J_ SE J) E2ES g i what type of pieces to add and where
HH

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+ Puzzle solver success
Statement -> Rule | Condition * A program succeeds iff
Condition -> (Rule : Statement) all statements succeeds

x A rulersucceedsin an area g iff

Rule ->

i. rmatchesa
z f||z]z ii. pieces of the strategy of r are available

X X
Y4 Y4

I x X T * r succeeds or x Vol xTx

Z Z Z Z Y Z ()
X X X

7|z - | - Y YI|Y

X
X
aRlE ‘Y A=ty e A condition (r : s) succeeds iff
X
Y
Y
Z
X
Z\|Z

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+
Statement -> Ru
Condition -> (Ru

Rule ->

e | Condition
e : Statement)

X

X

N[x| N

X
—
X
a

X
Y
T—
Y
Y4
——
X
Z\|Z

Puzzle solver execution
o For each statement s, ..., sn

** For each area a such that
the pattern of si matches a

J Apply sito a

 If s/ fails,
terminate
and report failure

sl

Program execution: an example

* A puzzle solver 1. s1 matches al only

X

X

Z

X =
s2 z '.
X | K
I
| B
e Puzzle

2. Apply sl to al succeeds
Y) and returns this puzzle

1 az E 3. s2 matches a2 only

R8

9 4. Applys2 toa2

X

K

Q

B. Applysecond rule of s2: success

A. Applyfirst rule of s2: fails
‘ v \ r Puzzle solved!
Z

Program execution: another example

* A puzzle solver 1. s1 matches al only
2. Applysltoal

(a sk) X Y A. Apply first rule of s1: success
sl s2 al a2 a3

| X3| hJ Xp| [X2] |Y1 | |Y2
e Puzzle

al a2 a3

X1] [X2 X3 Yi| |Y2
' DJ 3. s2 matches a2 and a3

al a2 a3

al a2 a3 4. Apply 52 to az | x3| x1||V1 ‘ \

| Hy: HVL Puzzle solved!
5. Apply s2 to a3

Program execution: yet another example

* A puzzle solver

X n

(x
sl

e Puzzle

al

a2

X

a3

=

o

=i

Y1

Y2

Finding the right puzzle solver
is the key!

1. s1 matches al only

2. Applysltoal

A. Apply first rule of s1: success
_:311 a2 a3

X1 EI | X3 Yi| [Y2

3. s2 matches a2 and a3

4. Apply s2 to a2: fail

No 1-size x pieces,
we used them all in s1

Solution to solve type 1 puzzles

1‘ X \ 2‘ ’ 3‘) j ‘[Ix] Theorem:atype-1 areais solvable
il— L iff this program succeeds

% 1T 8 . .

(-] () Waltg, ...

| \) o ‘ | did we just solve a NP problem

X
Z
Z | Z
X [[] []
z in polynomial time?
2(X -1x o BE) Register allocation:
SNES y "LLZ)/ complete all areas
(=)
L2 J 2 112121/ Simplified problem solved:
X
Z|Z

o xTx]alxTx) complete one area
at a time

1
X

X
X
X

A~

1

)
JEN

—_
> N
< N
" N H N " BN
-<
_<
-<
N | X
|><

Am

Solution to solve type 1 puzzles: complexity

Corollary 3.
Spill-free register allocation with pre-coloring

for an elementary program P and K registers
is solvable in O(|P| x K) time

For one instruction in P:

* Application of arule to an area: O(1)

* A puzzle solver O(1) rules on each area of a board

e Execution of a puzzle solver on a board with K areas takes O(K) time

Solving type O puzzles

Board Kinds of Pieces
0 K-1

@)

s
> Z

- — — —

i X X
) X]
2 * - (2]

Type-2

o

=5

Solving type O puzzles: algorithm

oPlace all Y-pieces on the board

oPlace all X- and Z-pieces on the board

Spilling

* If the algorithm to solve a puzzles fails
i.e., the need for registers exceeds the number of available registers
=> spill

e Observation: translating a program into its elementary form
creates families of variables, one per original variable
* To spill:
* Choose a variable v to spill from the original program

* Spill all variables in the elementary form
that belong to the same family of v

Summary

* Graph coloring abstraction: Houston we have a problem
* Puzzle abstraction

* From a program to a collection of puzzles

* Solve puzzles

* From solved puzzles to assembly code

From solved puzzles to assembly code

Ll A=
P Po:
branch L,, Ly e
AY
./ p5: L
P2 X 3
L/ AL=-+ @
. The board: ————————
c= Pe- R L]
p3: ¢c=AL AX BX pO L
jump L, py: = p A Po:
\ Jump Ly AH|AL| [BH|BL 1 =5
P4: 7
\
Ly joinL,y, Ly

Py: Pii
e=c, A [——>e
P10
jump L g p2
p
L Ay =* 3
P (A =(Agp) po: [O:L;]1=m()
Py (AL, AgLsl=nap [T ———@

€23~ p
P3: (A3,¢3) = (Ag,c03) Ce7 = ALg 4
P4: [(Agcq):Ly] = m(As,c3) p7: (Aq.09) = (Ag:C67)

pg: [(AS’CS)L4] = TE(A7,C7)

pg: (Ag, C9) = (D[(A4, C4):L2, (AS’ C8)L3]
* = Cg, A9

P10: 0=0

p] l: [():Lcnd] = 7[()

t Generated code run time
A
C Equivalent quality
Today and last Wed. ——B -~ D __ _of graph coloring
*-------- E
... in significantly
less time!
ldeal = X

Compilation time

Thank youl!

