Register Allocation, iii

Bringing in functions & using spilling & coalescing

Function Calls

;7 E(x) = let vy = g(x)
- in h(y+x) + y*5

(:£

(x <- eax) ;; save our argument

(call :qg) ;; call g with our argument
(y <- eax) ;; save g's result in y
(eax += x) ;; compute h's arg

(call :h) ;; call h

(y5 <- y) ;; compute y*5 in y5, i

(y5 *= 5) ;; compute y*5 in y5, ii
(eax += y5) ;; add h's res to y*5

(return)) ;; and we're done.

@0 0N RHRWN T

-

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

gen

0

(eax)

(eax ecx edx)
(eax)

(eax x)

(eax ecx edx)

(v)

(y3)

(eax y5)
(eax edi esi)

Gen & Kill

kill

0

(x)

(ebx ecx edx eax)
(¥)

(eax)

(ebx ecx edx eax)
(y3)

(y3)

(eax)

0

SVWEONOUAWN—

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

in
()
()
()
()
()
()
()
()
()
()

Liveness

out

0
0
0
0
0
0
0
0
0
0

@0 0N RHRWN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)

(eax += y5)

(return)

in

0

(eax)

(eax ecx edx)
(eax)

(eax x)

(eax ecx edx)

(v)

(y>)

(eax y5)
(eax edi esi)

Liveness

out

0
0
0
0
0
0
0
0
0
0

@0 0N RHRWN T

-

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)

(eax += y5)

(return)

in

0

(eax)

(eax ecx edx)
(eax)

(eax x)

(eax ecx edx)

(v)

(y3)

(eax y5)
(eax edi esi)

Liveness

out

(eax)

(eax ecx edx)
(eax)

(eax x)

(eax ecx edx)

(y)

(y3)

(eax y5)
(eax edi esi)

0

@0 0N RHRWN T

- £

(x <- eax)

(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

in

(eax)

(eax ecx edx)
(eax ecx edx)
(eax x)

(eax ecx edx x)
(eax ecx edx y)
(v)

(eax y5)

(eax edi esi y5)
(eax edi esi)

Liveness

out

(eax)

(eax ecx edx)
(eax)

(eax x)

(eax ecx edx)

(y)

(y3)

(eax y5)
(eax edi esi)

0

@YoM A WN T

- £

(x <- eax)

(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

in

(eax)

(eax ecx edx)
(eax ecx edx)
(eax x)

(eax ecx edx x)
(eax ecx edx y)
(v)

(eax y5)

(eax edi esi y5)
(eax edi esi)

Liveness

out

(eax ecx edx)
(eax ecx edx)
(eax x)

(eax ecx edx x)
(eax ecx edx y)
(¥)

(eax y5)

(eax edi esi y5)
(eax edi esi)

0

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

in

(eax ecx edx)
(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax y)

(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

Liveness

out

(eax ecx edx)
(eax ecx edx)
(eax x)

(eax ecx edx x)
(eax ecx edx y)
(¥)

(eax y5)

(eax edi esi y5)
(eax edi esi)

0

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

in

(eax ecx edx)
(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax y)

(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

Liveness

out

(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax y)

(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

0

10

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

in

(eax ecx edx)
(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax edi esi y)
(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

Liveness

out

(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax y)

(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

0

11

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

in

(eax ecx edx)
(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax edi esi y)
(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

Liveness

out

(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax edi esi y)
(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

0

12

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)
(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edi edx esi y)
(eax edi esi y)
(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

out

(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edx y)
(eax edi esi y)
(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

0

13

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)
(eax ecx edx)
(eax ecx edx x)
(eax ecx edx x)
(eax ecx edx x y)
(eax ecx edi edx esi y)
(eax edi esi y)
(eax edi esi y5)
(eax edi esi y5)
(eax edi esi)

out

(eax ecx edx)

(eax ecx edx x)

(eax ecx edx x)

(eax ecx edx x y)

(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

14

@YoM A WN T

: £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edx)

(eax ecx edx x)

(eax ecx edx x)

(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edx)

(eax ecx edx x)

(eax ecx edx x)

(eax ecx edx x y)

(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

15

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edx)

(eax ecx edx x)

(eax ecx edx x)

(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edx)

(eax ecx edx x)

(eax ecx edx x)

(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

16

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edx)

(eax ecx edx x)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edx)

(eax ecx edx x)

(eax ecx edx x)

(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

17

@YoM A WN T

: £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edx)

(eax ecx edx x)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edx)

(eax ecx edx x)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

18

@YoM A WN T

: £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5 <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edx)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edx)

(eax ecx edx x)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

19

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edx)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edx)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

20

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edi edx esi)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edx)

(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

21

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edx)

(eax ecx edi edx esi)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edi edx esi)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

22

@YoM A WN T

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS <-y)
(yS5 *= 5)
(eax += y5)
(return)

Liveness

in

(eax ecx edi edx esi)
(eax ecx edi edx esi)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

out

(eax ecx edi edx esi)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x)
(eax ecx edi edx esi x y)
(eax ecx edi edx esi y)
(eax edi esi y)

(eax edi esi y5)

(eax edi esi y5)

(eax edi esi)

0

23

-

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5> <- y)
(y5 *= 5)

(eax += y5)
(return)

Liveness

X Yy y5 eax ebx ecx edi edx esi

llif:i|i|

24

Before:

- £

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS <- y)
(yd> *= 3)

(eax += y)5)
(return)

Spilling y

After:

- £

(x <- eax)
(call :qg)

((mem ebp -4) <- eax)
(eax += x)

(call :h)

(y5 <- (mem ebp -4))
(yS> *= 3)

(eax += y)5)

(return)

36

-
(x <- eax)
(call :qg)

((mem ebp -4) <- eax)

(eax += x)

(call :h)
(y5 <- (mem ebp -4))
(yS> *= 5)

(eax += y5)
(return)

Spilling y

ebp x y5 eax ebx ecx edi edx esi

1

37

38

44

45

Spilling x

Before:

- £

(x <- eax)

(call :qg)

((mem ebp -4) <- eax)
(eax += x)

(call :h)

(y5 <- (mem ebp -4))
(yS> *= 5)

(eax += y5)

(return)

After:

.

((mem ebp -8) <- eax)
(call :qg)

((mem ebp -4) <- eax)
(sxO0 <- (mem ebp -8))
(eax += sx0)

(call :h)

(y5 <- (mem ebp -4))
(yd> *= 5)

(eax += y5)

(return)

Note that this time we introduce a sx0, but compare

its live range to x’s

46

- £

((mem ebp -8) <- eax)

(call :qg)

((mem ebp -4) <- eax)

(sx0 <- (mem ebp -8)
(eax += sx0)

(call :h)
(y5 <- (mem ebp -4))
(yd> *= 3)

(eax += y5)
(return)

Spilling x

)

sx0 y5 eax ebx ecx edi edx esi

[

47

-

(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5> <- y)
(y5 *= 5)

(eax += y5)
(return)

Live ranges

X Yy y5 eax ebx ecx edi edx esi

llif:i|i|

56

Live ranges

We spilled two variables that have relatively short live
ranges, but look at those long live ranges with no uses
of the variables that the callee save registers, i.e. edi
and es1i, have. We'd rather spill them.

57

Spilling callee saves

Unfortunately, it gets complicated to spill real registers.
Instead, a trick: we just make up new variables to hold
their values. Semantics of the program does not change,
but:

* Now the real registers now have short live ranges, and

* New temporaries are spillable

58

Adding new variables g-ans

Before: After:
. .
(x <- eax) (zl <- edi)
(call :qg) (z2 <- esi)
(y <- eax) (x <- eax)
(eax += x) (call :qg)
(call :h) (y <- eax)
(yS5 <- vy) (eax += x)
(yS5 *= 5) (call :h)
(eax += y5) (y5 <- y)
(return) (yS5 *= 5)
(eax += yb5)
(edi <- zl)
(esi <- z2)
(return)

Init new variables at beginning of fun, restore them
before returning or making a tail call.

Live

b

(zl <- edi)
(z2 <- esi)
(x <- eax)

(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5> <- y)
(yS> *= 5)
(eax += y5)
(edi <- zl)

(esi <- z2)
(return)

ranges with new variables

X Yy y5 zl z2 eax ebx ecx edi edx esi

Illllt:Ill

l

X

60

Before:

-

(z1l <- edi)
(z2 <- esi)
(x <- eax)
(call :qg)
(y <- eax)
(eax += x)
(call :h)
(yS> <- y)
(yS *= 5)
(eax += y5)
(edi <- zl)
(esi <- z2)
(return)

Spilling z| & z2

After:

.

((mem ebp -4) <-
((mem ebp -8) <-
(x <- eax)

(call :qg)

(y <- eax)

(eax += x)

(call :h)

(y5> <- y)

(yS> *= 5)

(eax += y5)

(edi <- (mem ebp
(esi <- (mem ebp
(return)

edi)
esi)

-4))
-8))

61

How to choose spills

* Pick variables with long live ranges and few uses to
spill (callee saves have this profile)

* In this case, we can spill z1 and z2 to save us from
spilling variables x and y that are frequently accessed

73

Finishing up register allocation

When you’ve spilled enough to successfully allocate the
program, count the number of spills and adjust esp at

the beginning of the function. (Recall calling convention.)

74

Calling convention reminder (see lecture03.txt)

(call s) = pushl $<new-label>
pushl %ebp
movl %esp, %ebp
Jmp <s>
<new-label>:

(return) = movl %ebp, %esp
popl Sebp
ret // pop & goto

(tail-call s) = movl %ebp, %esp
Jjmp <s>
(cleaned up version of
call followed by return)

75

Registers: allocated

(:£

(esp -= 8)

((mem ebp -4) <-
((mem ebp -8) <-
(esi <- eax)
(call :qg)

(edi <- eax)
(eax += es1i)

(call :h)
(ebx <- edi)
(ebx *= 5)

(eax += ebx)
(esi <- (mem ebp
(edi <- (mem ebp
(return))

esi)
edi)

-4))
-8))

76

Coalescing

If we seea (x <- y) instruction, we might be able to
just change all of the x's into y's

That’s called coalescing x and y

Lets use coalescing to remove y and y5 from our
example program

77

Coalescing example

((mem ebp -4) <-
((mem ebp -8) <-
(x <- eax)

(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y5> <-y)
(yS5 *= 5)

(eax += y5)

(edi <- (mem ebp
(esi <- (mem ebp
(return)

edi)
esi)

-4))
-8))

- £

((mem ebp -4) <-
((mem ebp -8) <-
(x <- eax)

(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y <- y)

(y *= 5)

(eax += y)

(edi <- (mem ebp
(esi <- (mem ebp
(return)

edi)
esi)

-4))
-8))

78

Live ranges before coalescing

o

((mem ebp -4) <-
((mem ebp -8) <-
(x <- eax)

(call :qg)

(y <- eax)

(eax += x)

(call :h)

(y5 <-vy)

(y5 *= 5)

(eax += y5)

(edi <- (mem ebp
(esi <- (mem ebp
(return)

edi)
esi)

-4))
-8))

X Yy Y5 eax ebx ecx edi edx esi

nlill

l

79

Live ranges after coalescing

- £

((mem ebp -4) <-
((mem ebp -8) <-
(x <- eax)

(call :qg)
(y <- eax)
(eax += x)
(call :h)
(y <-y)
(y *= 5)
(eax += y)

(edi <- (mem ebp
(esi <- (mem ebp
(return)

edi)
esi)

-4))
-8))

X y eax ebx ecx edi edx esi

IIl

X

80

Lets try to register allocate the coalesced graph

81

82

-3 E3

88

89

It worked that time, but this doesn’t always work

90

(r a
(r =z
(r 1
(r 2
(r 3
(r a
(r 4
(r 5
(r 6
(r 1
(r 2
(r 3
(r =z
(r 4
(r 5
(r 6
(r =z

<-
<-
<-
<-
<-

<-
<-
<-

+=
+=
< -_—

+=
+=

1)
r a)
1)
2)
3)
1)
4)
S5)
6)
1)
1)
1)
1)
1)
1)
1)
1)

Coalescing Problem

rlr2r3r4r 5r 6r ar z eax ebx ecx edi edx esi

91

92

3 O b e N
rrrrrr

Y B A bE bt B
rrrrrrr

i O B D e B B
rrrrrrrr

Y B A bE bt B
rrrrrrr

Y B A bE bt B
rrrrrrr

-

3 O b e N
rrrrrr

-

3 O b e N
rrrrrr

.

115

116

Now, we coalesce r, and r,

117

(r a
(r =z
(r 1
(r 2
(r 3
(r a
(r 4
(r 5
(r 6
(r 1
(r 2
(r 3
(r =z
(r 4
(r 5
(r 6
(r =z

<-
<-
<-
<-
<-

<-
<-
<-

+=
+=
< -_—

+=
+=

1)
r a)
1)
2)
3)
1)
4)
S5)
6)
1)
1)
1)
1)
1)
1)
1)
1)

Coalescing Problem

rlr2r3r4r 5r 6r ar z eax ebx ecx edi edx esi

118

(r =z
(r =z
(r 1
(r 2
(r 3
(r =z
(r 4
(r 5
(r 6
(r 1
(r 2
(r 3
(r =z
(r 4
(r 5
(r 6
(r =z

<-
<-
<-
<-
<-

<-
<-
<-

+=
+=
< -_—

+=
+=

1)
r z)
1)
2)
3)
1)
4)
S5)
6)
1)
1)
1)
1)
1)
1)
1)
1)

Coalescing Problem

rlr2r3r4r 5r 6r z eax ebx ecx edi edx esi

119

r_z

D U6 A b b
[o (. (. (. L

o

126

o

O B DN e bt
rrrrrrr

o

D U6 A b b
[o (. (. (. L

o

128

D U6 A b b
rrrrrr

r 2

Coalescing during graph coloring

Extend the interference graph with a new kind of edge,
called a move edge.

A move edge connects two nodes if there is a
(x <- y) instruction in the program

Combine two move-edge connected nodes into a single
node (at any step in the coloring algorithm), if:

* They don’t interfere
* The resulting node has fewer than 6 neighbors

This ensures the graph is colorable (if it was before)

142

Roadmap: putting it all together

143

Programming

There are a number of different modules to put
together

* A liveness library: gen & kill functions on instructions;
the in and out loop; going from liveness to
interference

* A graph library: creating graphs, creating nodes,
creating edges, removing nodes (and their edges),
iterating over edges and nodes

* An interference library: build a graph from the liveness
information

144

Programming

There are a number of different modules to put
together, cotd

* A coloring library: color a graph using the coloring
algorithm

* A spilling library: given a variable and a stack position,
rewrite the program to move the variable in and out
of the stack right as it is used

* The final translation: When you have a valid coloring,
rewrite the variables to use registers and insert the
esp adjustment, turning the L2 program into an LI
one.

145

Unit testing

The most underrated part of developing good software
is testing it well.

* Build simple (unit) tests for the api for each module, as
you design the API

* As you write the code, write a test for each different
case in the code together with the case itself

* Whenever you find a bug, always add a test case before
fixing the bug; make sure the test case fails so you
know you wrote it properly

147

