
322 Compilers: Assignment 1b
A Packrat Tiger Parser

For this assignment, you must:

• Build infrastructure for a Packrat parser (including memoization) as we did in class.

• Design a packrat parser for the Tiger language, with the exceptions in assignment 1a.

• Design a test case harness that consumes a file name file.tig as input. If the input is well-
formed, it should print out the matching expression tree (from the left-hand side of assign-
ment 1a); if the input is not well-formed, it should print out the string #illegal. Nothing
else should be printed out (ie, debugging output will be considered a failed test case).

• Produce a parser that runs under linux on one of the machines in the TLAB. (If this is a
hardship for you, please get in touch with me and we’ll see if we can work something out.)

• Hand in a .zip file containing two directories: 1a with your current set of test cases (the
ones from the previous assignment if you did not add to them or change them), and 1b
with your parser implementation. It should contain a script or executable file named parse
that runs your test harness.

Recommendations:

• Test the parser combinators carefully before starting the Tiger parser itself.

• Build the parser incrementally, testing carefully after each addition to the language (and
save all your test cases!).

• Avoid adding too many primitive parsers, intead use helper functions to set up common
parsing patterns. You will need at least

– knots,
– atoms (consider generalizing this one to support character ranges, not just characters),
– a parser that accepts any character (but there must be at least one character),
– alternation,
– sequencing,
– negation, and
– a parser that transforms the results of another parser (but doesn’t change the language

it accepts).

Build up other common parsing patters as helper functions using these basic parsers.

• The parser’s result should be a tree that matches the structure of the trees in the previous
assignment.
Use whatever implementation of trees you’d like, presumably one that matches your pro-
gramming language well. If you are using a class-based OO language, you probably want
one interface (or abstract class) for each non-terminal in that grammar, one concrete class
for each production, and one field for each piece of each production.
For example, you would have a dec interface with three classes that implement it, vardec,
varwithtypedec, and typedec. The vardec class would have two fields, a id and an exp.
The only method that these class would have is print that would simply print out the
expression tree (i.e., for vardec, it would print an open paren, print var, print a space, print
the identifier (via the identifier class’s print method), print a space, print the initialization
expression (as before via the print method, but this time the expression’s), and then print
the final close paren.


