
Exploring Circuit Timing-aware Languages and Compilation

Giang Hoang Robert Bruce Findler Russ Joseph
Electrical Engineering and Computer Science

Northwestern University
{gho705,robby,rjoseph}@eecs.northwestern.edu

Abstract
By adjusting the design of the ISA and enabling circuit timing-
sensitive optimizations in a compiler, we can more effectively ex-
ploit timing speculation. While there has been growing interest in
systems that leverage circuit-level timing speculation to improve
the performance and power-efficiency of processors, most of the
innovation has been at the microarchitectural level. We make the
observation that some code sequences place greater demand on cir-
cuit timing deadlines than others. Furthermore, by selectively re-
placing these codes with instruction sequences which are semanti-
cally equivalent but reduce activity on timing critical circuit paths,
we can trigger fewer timing errors and hence reduce recovery costs.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, compilers, optimization;
C.0 [General]: Hardware/software interfaces

General Terms Design, Languages, Performance

Keywords timing speculation, compiler, ISA design

1. Introduction
While we can expect Moore’s Law to continue to provide increases
in transistor density, we know that frequency scaling will not pro-
vide the same performance gains that it traditionally has. Power and
thermal concerns place first-order constraints that drastically curb
frequency. Challenges in semiconductor manufacturing, device re-
liability, design complexity all play increasingly critical roles in
limiting frequency gains. Together these factors have redirected in-
dustry toward a future where chip-multiprocessors featuring an in-
creasingly large number of simple cores will be more common. At
the same time, Amdahl’s law and some recent studies [14] remind
us that single-thread performance cannot be neglected. We will still
need to extract some gains from clock frequency.

Timing speculative architectures present an increasingly popu-
lar research direction which aims at some of the technology chal-
lenges to boost clock frequency and extract more performance from
meager power budgets [6, 8, 9, 11, 17, 18, 23]. Systems that sup-
port timing speculation abandon the traditional worst-case design
assumptions about circuit timing constraints and clock-frequency.
They instead expect timing faults to occasionally appear during
runtime and rely on runtime hardware mechanism to detect and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’11, March 5–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0266-1/11/03. . . $10.00

recover from the errors. The error recovery ensures correctness and
in exchange the system can operate at a greater clock-frequency
or decreased supply voltage, yielding improved overall instruc-
tion throughput and energy-efficiency. Previous work has explored
many ways to judiciously trade-off error rate for clock-frequency
and power [23]. In particular, some recent efforts have shown
the benefits for from-the-ground-up support for timing specula-
tion [9, 17]. By considering gate-level timing characteristics and
how frequently each path is exercised, circuits can be optimized
to improve their error rate curves and improve their suitability for
timing speculation. While these proposals view the design of tim-
ing speculative systems more holistically, they still focus almost
exclusively on innovation below the ISA. They do not consider the
role that other layers of the system stack may have on influenc-
ing timing errors and hence cannot exploit the capabilities of lan-
guage design, compilers, binary optimizers, or system software to
improve performance.

Given the promise of timing speculation and the prevailing fo-
cus downward to the lower portions of the system stack, improve-
ments in code generation offer enticing possibilities. In particu-
lar, a compiler which considers how code selection and instruc-
tion scheduling influence timing errors could reduce the degree to
which timing sensitive paths are exercised in a way analogous to
techniques aimed at the circuit-level [9, 17]. By generating bina-
ries specifically targeted for timing speculation, a timing specula-
tion aware compiler will be able to significantly reduce incidence of
timing errors. This will allow systems to operate at more aggressive
clock frequencies and extend the reach of timing speculation.

In this paper, we take steps toward building systems that are
holistically designed for timing speculation. We make the obser-
vation that the sequence of instructions in an application binary
can have significant impact on timing error rate and introduce code
transformations and ISA extensions that improve the efficacy of
timing speculation while preserving program semantics. Specifi-
cally, computations that risk activating critical paths can often be
replaced with those that do not, at either no cost or a small in-
crease in instruction count. In particular, simple loop optimizations
targeted specifically for timing speculative designs can have dra-
matic effects in increasing clock frequency for timing speculative
architectures. Given that recovering from a timing error incurs a
minimum penalty of a pipeline flush, and potentially more if check-
points are involved, this is often a significant gain.

We evaluate the potential benefits of timing-aware code by
executing code with several different types of optimizations on a
complete gate-level timing model for a simple Alpha processor.
This paper makes the following contributions:

• We introduce the concept of timing speculation-aware code
generation and evaluate a number of simple yet effective code
transformations that reduce timing error rate and boost overall
performance.

• We evaluate a number of low cost extensions to the microarchi-
tecture and ISA that allow for even more flexibility in avoiding
critical paths during code generation.

The remainder of the paper is structured as follows: In Section 2,
we walk through an example that illustrates how compilers can
enhance timing speculation. Then, we describe a set of program and
architecture optimizations in Section 3. In Section 4, we present
an evaluation of our code transformations on a detailed processor
model. Section 5 discusses related work. Finally, Sections 6 and 7
discuss some limitations in this our work and conclude.

2. Overview
To get a sense of how compiler optimizations, the design of the
ISA, and the design of the programming language can all come
together to make timing speculation more effective, this section
explores how a compiler can generate code for the simplest loop
possible in order to maximize the performance gains that timing
speculation offers.

Consider this C code that counts from 0 up to 127.

d e f i n e N 128
f o r (i n t x =0; x<N; x ++)

/∗ empty loop body ∗ / ;

With the exception of the or instruction, a typical compiler would
generate this code for that loop:1

main :
addq $31 , $31 , $1

$L1 :
or $31 , $31 , $31 # nop
addq $1 , 1 , $1
cmple $1 , 1 2 7 , $2
bne $2 , $L1

The or operation serves as a nop (register 31 is always zero)
corresponding to the empty loop body, but also transitions the
inputs and internal nodes in the ALU so that different iterations
of the loop are less likely to create happy timing coincidences.

Running this program at 2.2x2 of the processor’s normal fre-
quency causes nearly all of the instructions in the program to fail,
making the program finish at 1.28x the time of the original pro-
gram.3 Although this program is an efficient implementation of
the original C program on an ordinary processor, it demonstrates
a number of choices that could be improved to target an architec-
ture with timing speculation.

As a first step to improving the program, consider the use of
the cmple instruction. Since less than comparison logic at best en-
tails several levels of logic and at worst is implemented via sub-
traction, this instruction generally requires a long time to complete.
The loop termination condition for this program could have been

1 Technically, a naive compiler would likely generate worse code than this
code and a sophisticated compiler would probably notice that the loop has
no effect on the computation and thus eliminate it. Nevertheless, if the
loop’s body had some interesting computation, a sophisticated compiler
would likely generate code like the given code to implement the loop’s
iteration.
2 We acknowledge that many practical constraints might prevent one from
operating at such an extreme frequency in a real system. Since our example
loop is very small and simple, it does not exercise the most critical paths
in the processor. Running the simulation at 2.2x frequency helps better
demonstrate the failure behavior of this simple loop benchmark as well as
the effectiveness of our code transformation.
3 Our precise model and the associated cost of failure are discussed in
Section 4.

implemented via an equality check, however, which would behave
much better with the higher frequency.

Unfortunately, to compile the given code into code that uses an
equality check requires a fair amount of sophistication in the com-
piler. While such compilers do exist, a simpler, more robust idea
is to merely change the form of the looping construct in the pro-
gramming language. That is, if programming language supported a
looping construct like this one:4

d e f i n e N 128
f o r (i n t x i n 0 . . . N)

/∗ empty loop body ∗ / ;

then the compiler is free to generate a loop termination that better
supports timing speculation.

So, rewriting the cmple to cmpeq yields this program:

main :
addq $31 , $31 , $1

$L1 :
or $31 , $31 , $31 # nop
addq $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
beq $2 , $L1

It still has a lot of failures, but the cmpeq instruction no longer fails,
so the program runs significantly faster than the previous version,
taking 0.86x the time of the original program.

We can further improve the code if we augment standard com-
piler optimizations with timing speculation smarts. One such opti-
mization, loop unrolling, duplicates the loop body in order to get
better pipeline behavior and to expose opportunities for other opti-
mizations that cross iterations of a loop. In addition to that, we can
also take advantage of a more efficient increment operation once
the loop body has been duplicated. Specifically, in even iterations
of the loop, we know that adding one to the index operation can
be implemented with or, a much faster operation. Usually, in an
ALU, or and addition are implemented separately, where or could
be computed using an array of OR gates, while an addition op-
eration is implemented with a high performance adder. While the
adder is limited by a potentially long carry chain, an or operation
is very fast because the result bits can be computed in parallel.

Making these transformations to our example yields this:

main :
addq $31 , $31 , $1

$L1 :
or $31 , $31 , $31 # nop
or $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
or $31 , $31 , $31 # nop
addq $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
beq $2 , $L1

$L2 :

which clocks in at 0.81x the time of the original program. Applying
the loop unrolling optimization alone, i.e., still using the addq in-
struction to increment the loop results in negligible gains. (Our pro-
cessor model predicts branches are always taken, so the unrolling
improves the pipeline behavior, but these savings are swamped by
the recovery costs for timing errors.)

Unfortunately, more aggressive loop unrolling does not help us
improve performance of the loop index computation when using a
standard ISA because implementing the increment operation in the

4 Using iterators and generators à la Python or Racket [7]

newly exposed cases would require multiple logical operations and
thus multiple cycles.

Instead, we introduce the brinc instruction, short for “broken
increment”. Its operands are just like the addq instruction, but it
only performs the addition in the lowest 4 bits of the operand.
For the remaining bits, the first operand is just carried forward to
the result. Thus, when adding a big number to a small one which
does not create a carry bit from the lower 4 bits, brinc behaves
just like addq, making brinc a good candidate for use in an index
computation in an unrolled loop.5

Exploiting that in our example produces this program:

main :
addq $31 , $31 , $1

$L1 :
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
or $31 , $31 , $31 # nop
addq $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
beq $2 , $L1

$L2 :

which completes in 0.74x the time of the original program. This
time, performing the optimization without the timing speculation
enhancements (unrolling without adding brinc) improves the per-
formance over the original somewhat (to 0.82x), but still represents
a slowdown as compared to the simpler unrolling with the or.

At this point, most of the failing instructions are the branch
instructions, due to the arithmetic they execute to compute the
target address from the current PC. A backward branch with beq
involves subtracting the PC with an offset, which usually results
in a long carry chain. The compiler can generate a bne instruction
instead of the final beq instruction, turning a subtraction into an
addition, which is more likely to complete at the higher frequency
and thus better exploit timing speculation. We call this optimization
“branch rerouting”.

Applying branch rerouting to our code yields this program

main :
addq $31 , $31 , $1
lda $3 , 8 2 0 0 ($31)

$L1 :
or $31 , $31 , $31 # nop

5 One might think that when adding a small number to a large number, the
delay of the operation is proportional to the length of the carry chain. That
is not always the case because the the delay of the current addition depends
not only on the current input values but also on the state of intermediate
logic gates that were set by the previous addition. In particular, if a previous
addition induces a long carry chain but the current one does not have any
carries, the intermediate logic gates representing the propagate and generate
signals must change to hold the correct values for the current addition. For
example, with an 8-bit Kogge-Stone adder, the delay for the addition of 1 to
11111100, which does not have any carries, can vary greatly depending on
the previous inputs. If the previous operation is adding 1 to 11111111, the
delay of this current addition can be three times as long as if the previous
addition is adding 1 to 11111110.

br inc $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
or $31 , $31 , $31 # nop
addq $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
jmp $31 , ($3)

$L2 :

which runs in 0.76x the time of the original program. Interestingly,
branch rerouting alone actually slows the program down slightly
when we omit the brinc instructions, clocking in a 0.83x the time
of the original program.

Finally, if the compiler can prove that the loop index variable
is not mutated and that the loop has a number of iterations that is
an even multiple of 46, it can remove the intermediate compare and
branch instructions in the unrolled version, making our example run
much faster. Of course, most of the speedup here comes from the
fact that the compiler can eliminate most of the loop itself and thus
this speedup will happen only when the loop body is very simple
(e.g., initializing an array or similar).

Making that transformation here produces this code

main :
addq $31 , $31 , $1
lda $3 , 8 2 0 0 ($31)

$L1 :
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
or $31 , $31 , $31 # nop
br inc $1 , 1 , $1
or $31 , $31 , $31 # nop
addq $1 , 1 , $1
cmpeq $1 , 1 2 8 , $2
bne $2 , $L2
jmp $31 , ($3)

$L2 :

which runs at 0.37x the time of the original loop.
In short, combining conventional compiler optimizations and

judiciously chosen changes to the programming language and the
ISA yields results that take advantage of timing speculation much
effectively than possible without them.

3. Code transformations
In addition to the transformations given in Section 2, there are a
number of other speculation-specific enhancements that compilers
can take advantage of.

3.1 NOP Padding
When a timing error occurs in execution units, it has two immediate
consequences on the instructions in the pipeline. First, it produces

6 In theory, the compiler can generate a loop header that runs a small number
of iterations to guarantee that the main body of the loop is always an even
multiple of 4.

IF ID EX MEM WB

IF ID EX MEM WB

cmple $2, $3, $5

beq $5, $L2

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

cmple $2, $3, $5

nop

beq $5, $L2

Figure 1. Pipeline timing diagram for two code sequences with
RAW register dependencies. For the first sequence (above) the
cmple instruction completes its execution but cannot forward its
result to the following beq leading to a timing error for the branch.
For the second sequence (below), a NOP has been inserted between
the two instructions, padding the timing error. Now the result is
forwarded a cycle later from a pipeline register. The padded version
of this code eliminates timing errors on the forwarding paths.

an incorrect result for the instruction slotted to that execution unit
which must be corrected. Under some error recovery mechanisms,
this may require replay and has the likely effect of delaying other
instructions in the pipeline. Second, errant results are forwarded
to dependent instructions elsewhere in the pipeline. To limit the
impact of timing errors, both effects need to be addressed.

By padding the instruction sequence with NOPs, we can miti-
gate the later concern – incorrect forwarded results with no hard-
ware modifications. However, with some small microarchitectural
improvements, we can extend pipeline control logic to improve the
pipeline error recovery as well. Figure 1 shows a code sequence
with a RAW register dependence. At a frequency scaling factor
of 2.15x, the clock cycle would be sufficient for the execution
hardware to produce the result and capture the value in the stage
pipeline registers but due to the time necessary to pass through
forwarding logic, it would violate the setup time needed to suc-
cessfully forward the value to the dependent instruction. As seen in
Figure 1, after inserting the NOP, the result is no longer forwarded
directly from the execution unit in the EX stage, it instead is for-
warded from a pipeline register in the MEM stage. Consequently,
all input values arrive at pipeline registers in sufficient time and no
timing errors occur.

If the frequency factor is increased to 2.2x then a simple NOP
operation is no longer sufficient. Instead, the compare operation
itself cannot produce a result. Under timing speculative architec-
tures that apply stage-level checking granularity (e.g. Razor [6]),
the pipeline would likely have to recompute the compare operation
and then replay the subsequent instructions, a potentially signif-
icant recovery penalty. If on the other hand, the microarchitecture
could recognize cases where replay was not necessary, it would sig-
nificantly decrease the error recovery penalty. One way to achieve
this would be to add a special NOP operation which we call PAD
to the ISA that tells the hardware that replay is unnecessary. The
compiler could then insert this PAD instruction in cases where it
can statically determine that replay is unnecessary. Figure 2 shows
how the hardware to support this might be incorporated into recov-
ery control logic. The key elements are the PAD detection logic and
the AND gate which suppress the flush signal.

R
az

or
 F

F

R
az

or
 F

F

Pad

Detect

error

recover

bubble

flush

Pipeline Logic

Figure 2. Control logic needed to support the PAD operation.
The outline shows the modifications to the original Razor control
mechanism [6].

3.2 Broken Operations
Many of the operations in a standard ISA have hidden addition
operations as part of their function. For example, computing the
effective address of a load involves an addition of an offset to a
register and, in some cases, these additions are amenable to brinc.

Consider this snippet of a C program implementing a game with
a small number of players. Each player tracks which of the other
players are adjacent to in a neighbors struct:

d e f i n e s e t i n t

/ / r e c o r d i n g (as a s e t o f b o o l e a n s)
/ / who i s i n t h e ne ighborhood
/ / o f a g i v e n p l a y e r
t y p e d e f s t r u c t {

s e t l e f t ;
s e t up ;
s e t r i g h t ;
s e t down ;

} n e i g h b o r s ;

Using this data structure we can write a function that iterates
over all of the neighbors structs and determines the set of players
that are adjacent to at least one other player (i.e., the players that
are not hiding).

i n t a l l v i s (n e i g h b o r s ∗ns , i n t s i z e) {
i n t i ;
s e t r =0 ;
f o r (i =0 ; i<s i z e ; i ++)

r |= (ns [i] . l e f t |
ns [i] . up |
ns [i] . r i g h t |
ns [i] . down) ;

r e t u r n r ;
}

When we compile this code, we get this loop.7

$L5 :
l d l $1 , 0 ($16)
l d l $2 , 4 ($16)
l d l $3 , 8 ($16)
l d l $4 , 1 2 ($16)
addl $5 , 1 , $5
b i s $0 , $1 , $0

7 Indeed, gcc -O2 produces a loop almost identical to this one when given
the above function, but with the operations in a slightly different order.

b i s $0 , $2 , $0
b i s $0 , $3 , $0
b i s $0 , $4 , $0
cmpeq $5 , $17 , $2
addl $31 , $1 , $0
lda $16 , 1 6 ($16)
beq $2 , $L5

If we can arrange the neighbor array such that it begins at a virtual
address that is a multiple of 16, then we know that all of the
effective address computations in the ldl instructions are safe for
use with brinc.

3.3 Multi-instruction Code Substitution
In some cases, it may be possible to replace a multi-instruction
sequence with an equivalent set of instructions (i.e., that produce
an equivalent result), but place less stress on critical path struc-
tures. Consider the following two-instruction sequence that per-
forms multiplication by a constant factor of 6. Note that this code
was generated by a circuit timing agnostic compiler (gcc-4.2):

s8subq $2 , $2 , $4
subq $4 , $2 , $4

The first instruction, s8subq, scales r2 by 8 and then subtracts
r2 from that result (r4 ← 8 × r2 - r2 = 7 × r2). The second
instruction performs one more subtraction to produce the result r2
× 6. By performing constant multiplication with shifts and add/sub
instructions, the compiler can produce multiplies that may be faster
than some true dedicated multiplier components. Unfortunately,
this code begins to generate timing errors at 1.18x of the base
frequency when a small or medium value is present in r2 register.
This is due to the way that the subq sensitizes the adder carry
chain. Note that an instruction sequence like this inside an inner
loop would severely limit frequency scaling.

However, the above instruction sequence is not the only combi-
nation of shifts and arithmetic instructions that can produce r2× 6.
We could instead produce the same result using:

addq $2 , $2 , $4
s4addq $2 , $4 , $4

The key benefit of this alternate sequence is that it places much
less stress on critical path circuits in the ALU and can tolerate
significantly higher clock frequencies.

4. Evaluation
In this section, we describe our processor model and application
workload. We then present experimental results and evaluate the
code optimizations presented in Section 2 and 3.

4.1 Models and Methodology
We evaluate the potential of code optimization for timing spec-
ulative architectures using the following benchmarks: bitcount,
dijkstra, and strsearch from MiBench [12], and a sequential
version of integer sort (is) from NAS benchmark suite [2]. In-
stead of directly implementing these code optimizations in a com-
piler backend, we apply the code transformations by hand. We com-
pile the benchmarks with gcc-4.2 with the -O2 optimization level
and hand tune the assembly code with our techniques before as-
sembling into binary.

We construct a Verilog processor model for a simple in-order
five-stage Alpha pipeline. Alpha is an example of a clean, classic
RISC architecture, and a simple in-order pipeline is representive of
some low power-embedded processors. Our processor implements
the vast majority of user-mode integer instructions and supports all

forwarding paths. We synthesize the processor model using Syn-
opsys Design Compiler with the FreePDK 45nm gate library [25]
and target the design for a 350MHz clock speed suitable for a low-
power embedded processor. The optimization effort is set to “high”
to produce a design as balanced as possible. The critical paths in
this design include the integer ALU, some forwarding paths, and
NextPC logic. We do not implement floating-point data paths.

We use the M5 simulator [3] to fast-forward the benchmarks to
the start of the main execution loop, then transfer the register and
memory states to our gate-level Verilog model. The detailed gate-
level simulation allows us to evaluate all of our code transforma-
tions and generate error rates that reflect the gate-level transitions
inside a real design. Due to the extremely long run-times associated
with gate-level simulation, we reduced the size of the input sets. We
acknowledge that this may have some impact on data working set
size and memory stall time. However, it would not have an impact
on factors like instruction mix and control flow which would be
more closely related to the optimizations proposed in this paper.

We model a Razor-like per stage dynamic error detection and
recovery mechanism. We model a five cycle error recovery penalty
which would be appropriate for a shallow in-order pipeline. How-
ever, we believe that many of the techniques presented in this pa-
per would also be applicable to architectures which support differ-
ent checking granularities and correction strategies with alternative
recovery latencies. In architectures that feature more punitive re-
covery latencies, many of our techniques would have a more pro-
nounced benefit.

Our modeled design features an 8KB instruction L1, an 8KB
data L1 cache, and a 256 KB unified L2 cache. We do not model
timing errors in SRAM structures including the caches and register
file. There has been a large amount of recent work on technology-
aware cache designs that support overclocking, counter the effects
of parameter variation, and tolerate ultra-low voltage scaling [20,
26]. We believe that some of these techniques could be applied to
bolster the caches in our design. In addition, the techniques that we
apply are orthogonal to any improvements in cache and register file
design.

4.2 Experimental Results
We apply three of the proposed code optimizations: branch rerout-
ing, nop padding, and, loop unrolling w/ brinc conversion. To eval-
uate the impact that modifying the ISA can have on timing spec-
ulation, we synthesize execution hardware which implements the
brinc operation described in Section 2. This operation is intended
to accelerate addition with small values. We incorporate the addi-
tional hardware into our baseline design. We apply all optimiza-
tions to each benchmark, with two exceptions. First, we were un-
able to apply brinc conversion in the bitcountbenchmark because
most of the dominant loops were not suitable for unrolling. Second,
for is, we did not identify enough candidates for selective nop
padding. Even when the frequency is doubled, most of the faults
observed in the pipeline are due to backward branch address calcu-
lation, for which our nop operation does not help. For nop padding,
we use two methods of insertion. A naive method blindly inserts
nop after any instruction that uses the 64 bit adder. This method is
very simple, but it doubles the CPI for those instructions padded
even when they are not affected by timing speculation. A better
method is to compile the application and profile the application
with timing speculation to find out the most frequent failing in-
structions and selectively pad only those instructions with nops.

Figure 3 presents the normalized execution times for all four
of our benchmarks as we scale the clock frequency. The individ-
ual sub-figures demonstrate that timing speculation performs well
on baseline code. For the is benchmark, the performance is maxi-
mized at around double the frequency. For the others, the baseline

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized frequency

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

no opt

br rerouting

nop

brinc

best opt

best no opt

(a) integer sort (is)

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized frequency

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

no opt

br rerouting

nop

selective nop

brinc

best opt

best no opt

(b) strsearch

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized frequency

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

no opt

br rerouting

nop

selective nop

best opt

best no opt

(c) bitcount

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized frequency

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

no opt

br rerouting

nop

selective nop

brinc

best opt

best no opt

(d) dijkstra

Figure 3. Normalized execution time for is, strsearch, bitcount, and dijkstra; showing the baseline performance and with three
code optimizations: branch-rerouting, nop-padding, and loop unrolling plus brinc conversion. For nop-padding we examine two varieties:
nop - which applies nop padding following any instruction capable of stressing critical path circuits versus selective nop, which inserts nops
more judiciously.

achieves peak performance around a frequency of 1.3x the base-
line clock (although dijkstra reaches its best performance at both
points). While this result confirms some of the benefits of timing
speculation these figures more importantly show that by specifi-
cally optimizing code for timing speculation, the performance can
be significantly boosted. Collectively the code optimizations can
shift the optimum frequency upwards and elevate performance.
However, it is clear from these figures that not all the code opti-
mizations are successful in every case. Branch rerouting is clearly
the most consistent as it is capable of increasing the optimum fre-
quency and noticeably improving performance over the baseline in
three of the four benchmarks.

As shown in Figures 3(a) and 3(b), compiler optimizations offer
the most promising gains for is and strsearch. For those bench-
marks, branch rerouting is extremely effective and is capable of re-

ducing execution time by 37% and 35% respectively. In both cases,
at higher frequencies a large number of errors in the baseline code
can be attributed to calculating PC-relative targets in the backwards
branches within inner loops. By eliminating these errors, the opti-
mized code can effectively reshape the error rate curve and tolerate
higher frequencies. This effect is especially pronounced in Figure
3(b) because the error rates for non-optimized code increase very
rapidly at higher frequencies.

For the remaining benchmarks, bitcount and dijkstra, there
are performance gains from some of the optimizations, but the over-
all impact is not as strong. In these two cases, the small perfor-
mance gains stem from very different reasons. For bitcount, the
error rates become very large for high frequencies. More impor-
tantly, the high error rates can be attributed to instructions which
we cannot directly address with our current techniques. This leads

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized Frequency

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

ra
te

no opt

br rerouting

nop

brinc

(a) integer sort (is)

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized Frequency

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

ra
te

no opt

br rerouting

nop

selective nop

brinc

(b) strsearch

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized Frequency

10
-2

10
-1

10
0

E
rr

o
r

ra
te

no opt

br rerouting

nop

selective nop

(c) bitcount

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized Frequency

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

ra
te

no opt

br rerouting

nop

selective nop

brinc

(d) dijkstra

Figure 4. Error rates for the same runs as shown in Figure 3

to limited efficacy. In the case of dijkstra, the baseline code
achieves excellent performance under extreme frequency scaling.
Consequently, it is very difficult for the timing speculative opti-
mizations to contribute additional performance gains.

While branch rerouting works well overall, the remaining
techniques have more irregular success. These large differences
show that proper selection of nop pad locations is essential.
The non-selective nop padding consistently achieves poor perfor-
mance while the selective nop padding achieves some small wins
in bitcountand dijkstra. In contrast, as Figure 3(d) shows,
the indiscriminate nop padding severely hurts performance for
dijkstra. This is a benchmark which scales well with frequency,
so by definition, there should be few places to apply padding. Once
added, the superfluous nops significantly increase runtime.

4.3 Error Rates
In many cases, the execution time graphs follow a shape like a re-
verse sawtooth, slowly improving and then suddenly jumping back
up. This behavior is due to the way timing errors suddenly appear at
particular clock frequencies. Specifically, consider Figure 4, which
shows the error count as a function of the clock frequency. In gen-
eral, there are several plateaus as various thresholds are crossed,
which trigger waves of failures. Comparing these graphs with those

in Figure 3, the points where the execution time jumps back up
correspond to the beginning of the plateaus. This is where a new
class of instructions has failed, inducing a sudden jump in error
rate. After that point, the execution time gradually decreases along
the plateau of the error rate curves, because no new instructions are
failing while frequency is decreasing.

The error rate curves in Figure 4 demonstrate how code op-
timizations can reshape the error rate curve. Furthermore, they
help to explain why some of the optimizations perform better than
others. First, branch rerouting is capable of maintaining a domi-
nant error rate (i.e. a curve which is no worse than any of the
other optimizations) throughout the frequency scaling window for
is and bitcount as well as large portions of strsearch and
dijkstra. In particular, there are some frequency ranges for is
and strsearch where branch rerouting maintains two or three
orders of magnitude lower error rates than the unoptimized code.
This is a dramatic difference, which shows the potential for circuit
timing aware compilation. Referring back to Figures 3(a) and 3(b),
these also correspond to frequency ranges where branch rerouting
offers superior performance.

Secondly, the two versions of nop padding follow very similar
error rate curves as the frequency scales. The indiscriminant nop
padding keeps the error rate slightly lower, but there are no large

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized frequency

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
er

ro
rs

other inst

adder-based inst

control flow inst

(a)

1.0 1.05 1.11 1.18 1.25 1.33 1.43 1.54 1.67 1.82 2.0
Normalized frequency

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 n
u

m
b

er
 o

f
er

ro
rs

other inst

adder-based inst

control flow inst

(b)

Figure 5. Failure counts categorized by type of failing instruction
for the original strsearch benchmark and the strsearch bench-
mark with the jump rerouting optimization

gaps between the two. This suggests that the selective nop padding
is not too selective i.e. it is not missing many opportunities which
are exploited by the indiscriminant padding. In addition, there is a
small window (1.1x-1.33x frequency scaling factor) in strsearch
where nop padding does better than the other techniques. Unfortu-
nately, this does not translate into large performance gains as wit-
nessed in Figure 3. This is because the penalties of superfluous nops
outweigh of most of the gains offered by the useful nops. Another
way to view this is to say that the degree of nop padding is too
high for this part of the error rate curve. In short, nop padding can
help reduce error rates in some instances, but it needs to be very
selective.

We choose to investigate further the behavior of the branch
rerouting technique, the most effective in reducing timing errors.
We examine the number of timing errors for strsearch before and
after branch rerouting is applied. Each error is classified into one
of the three categories. Adder-based instructions are arithmetic in-
structions that rely mainly on the 64-bit adder. These include addi-
tions, subtractions, scale-and-add operations. Control flow instruc-
tions include conditional branches as well as direct-address jumps.
Instructions that do not fit into these two categories are classified

as “others”. Figure 5(a) shows the error counts for the strsearch
benchmark, broken down by the type of instruction that fails. The
graph shows that 1.33x of the original frequency is the critical point
for conditional branches. Beyond that point, a majority of failures
are due to conditional branches, and these failures hinder further
frequency increase.

Figure 5(b) shows the error count for the same program, but af-
ter the branch rerouting optimization has been applied. The condi-
tional branches have been replaced by direct-address jumps. These
direct address jumps load the next address directly from a register
rather than computing the next address using an adder. Therefore,
the delay of a direct-address jump is much shorter than a condi-
tional jump, allowing the processor to operate with very small num-
ber of control flow failures until the frequency reaches 2x. At 2x the
normal frequency, these direct-address jumps start failing, resulting
in massive number of errors due to control flow instructions. These
errors put a limit on frequency scaling, however, we can see that
the lower latency of direct-address jump already allows significant
improvement in frequency scaling of the processor compared to the
usual conditional branch.

4.4 Processor Model Discussion
The high frequency that we are able to achieve with our proces-
sor model does raise some questions. To make sure that our pro-
cessor model is reasonable, we analyze the path distribution of
our design and compare it with other freely available designs. Fig-
ure 6(a) shows the distribution of all paths in our CPU model and
an OpenRISC 1200 core. The OpenRISC 1200 is a simple in-order
pipelined IP core, which is very close to the design of our proces-
sor model. We synthesized the OpenRISC 1200 with the same gate
library and target it for 250MHz frequency. The synthesized gate-
level model is used for comparison with our design. We wrote a
script which enumerates all paths in the synthesized design to cre-
ate a path distribution histogram.

The figure shows that the path distribution of our processor
model skews more towards the center, meaning that our processor
has many paths with medium length. The OpenRISC, being an
optimized design, has a majority of path lengths closer to the
critical path. This explains why we were able to experiment with
higher frequency than what we would expect to achieve with a
normal processor. However, the fact that our processor model is not
as optimized as the OpenRISC 1200 core does not disqualify the
merit of this work. The path distribution of OpenRISC 1200 shows
that there is still a large gap between the critical path length and the
length of the majority of paths in the core (less than 5% the total
number of paths has length greater than 75% of the longest path).
We believe that the even though the distribution of paths are not
the same, the bottleneck in the designs are the same, which are the
adder, nextPC logic. Therefore, our compiler techniques will have
positive impacts on a processor such as OpenRISC 1200, although
the frequency achieved will not be as high.

Figure 6(b) shows a comparison of our processor model versus
a synthesized OpenSPARC T1 ALU. The OpenSPARC T1 ALU
also has a majority of paths distributed to the medium length path,
which is not too different from our design. This shows that even
though our processor design is not as optimized as OpenRISC 1200
core, it is still reasonable to merit the results of our work.

5. Related Work
In this section, we discuss the proposed techniques in relation to
previous work.

0.
0

0.
05 0.

1
0.

15 0.
2

0.
25 0.

3
0.

35 0.
4

0.
45 0.

5
0.

55 0.
6

0.
65 0.

7
0.

75 0.
8

0.
85 0.

9
0.

95 1.
0

Normalized path lengths

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

N
o

rm
al

iz
ed

 p
at

h
 c

o
u

n
ts

our cpu model

OpenRISC 1200

(a) Our CPU model vs. OpenRISC 1200

0.
0

0.
05 0.

1
0.

15 0.
2

0.
25 0.

3
0.

35 0.
4

0.
45 0.

5
0.

55 0.
6

0.
65 0.

7
0.

75 0.
8

0.
85 0.

9
0.

95 1.
0

Normalized path lengths

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o

rm
al

iz
ed

 p
at

h
 c

o
u

n
ts

our cpu model

sparc_exu_alu

(b) Our CPU model vs. OpenSPARC ALU

Figure 6. Path distributions comparison between our CPU model
and other existing models.

5.1 Improving hard fault robustness with the compiler and
system software

In recent years, a number of researchers have examined software
support to improve system resiliency in the presence of hard faults.
These proposals have considered optimizations at the compiler or
hypervisor level that either directly prevent architecturally incorrect
results from being written to committed state or serve as an assist to
hardware which maintains this invariant. The code transformation
techniques examined in this work fall into the later category.

Meixner and Sorin introduce detouring [19], a software solu-
tion which applies code transformations to avoid use of faulty pro-
cessor components. The authors target this technique for multi-
core designs which feature many cores with narrow and shallow
pipelines, lacking component-level redundancy. Through a series
of code transformations and substitutions applied inside a compiler
or binary translator, application software is modified to maintain
correct functionality given the presence of known hardware faults.
Overall, this technique obtains good fault coverage with zero hard-
ware cost. Consequently, this approach has no performance impact
on fault-free cores and may squeeze some performance out of par-

tially functional cores that would otherwise have to be decommis-
sioned.

Gupta et al. [10], Hazelwood et al. [13], and Reddi et al.
[27] apply compiler transformations to reduce stress on the power
delivery system. The overall goal is to reduce the likelihood of
instruction execution patterns [16] that could lead to excitations in
the RLC networks which connect the on-chip circuits with the off-
chip power supply. In so doing, the system avoids severe droops
and ringing on the PWR/GND that would take the circuits out of
safe operating range and potentially lead to errors.

System software level has also been focus of investigation for
hard-fault detection and recovery mechanisms. In particular, migra-
tion and emulation capable virtualization software has been pro-
posed as one means to help reclaim performance from from par-
tially functional cores in a CMP [15]. Recent work has also pro-
posed system-software guided detection of hard faults during pro-
cessor lifetime [5, 28]. We focus our work at the compiler level
and evaluate static code optimization. However, a binary translator
or JIT compiler in a level of system software (e.g. virtual machine
monitor) may be able to offer many of the same capabilities for
generating timing-aware code.

5.2 Hardware support for timing speculation and hard fault
resilience

Recent work has examined hardware solutions capable of (i) in-
creasingly the utility of processors under marginal operating con-
ditions, (ii) tolerating hard faults in a single core through demap-
ping and redundancy, and (iii) boosting throughput in CMPs with
faulty-cores.

First, there has been increasing interest in hardware that can
extract additional performance out of real silicon and eliminate de-
pendence on worst-case design margins [1, 6]. Razor introduced a
timing speculative microarchitecture that included dynamic detec-
tion and recovery for timing errors [6]. Key innovations included
the concept of normal computation tolerating a small non-zero er-
ror rate, design of double sampling state elements to detect tim-
ing violations, and a low-complexity recovery mechanism based
on counter-flow pipelining. In exchange for a small non-zero er-
ror rate, Razor designs are capable of significantly reduced supply
voltage and can yield dramatic power savings.

Recent trends in silicon manufacturing and processor design
complexity have fueled continued interest in architectures that can
tolerate timing errors [8, 9, 11, 17, 18, 23]. There have been sev-
eral important innovations in timing speculative architectures. The
Circuit-level Timing Speculation scheme [18] speeds up critical
blocks such as adder, rename and issue logic by implementing a
faster approximation version of each unit. The approximated re-
sults are checked in the next cycle using fully implemented blocks
and recovery is possible by reissuing the instruction. Paceline in-
troduced dynamic error detection and correction suitable for ag-
gressive out-of-order processors using a dual core leader-checker
strategy and checkpoint-based recovery [8]. The EVAL framework
applies microarchitectural techniques and run-time control tech-
niques to influence the error rate curve via high-dimensional adap-
tation [23]. This work demonstrated the idea that error rate curves
could be manipulated to tradeoff error rate versus power and pro-
cessor frequency. Gupta et al. developed a micro-architecture ca-
pable of globally adapting voltage and frequency to address pro-
cess, voltage, temperature (PVT), variations [11]. The fine-grained,
high-frequency variations that they tackle necessitate local recov-
ery mechanisms which they introduce. Blueshift applies a ground-
up based design strategy to maximize the potential of timing spec-
ulation [9]. The approach includes gate-level optimizations to de-
crease the delay of the most frequently sensitized paths at the ex-
pense of less frequently utilized paths. Also taking the ground-up

design approach, Kahng et al. proposes a power-aware slack redis-
tribution algorithm that allows the processor to fail more gracefully
and extends the range over which voltage/reliability tradeoff is pos-
sible [17].

The second category, includes fine-grained techniques that iso-
late faulty subcomponents and restrict computation to functional
portions of the core. Bower et al. describe microarchitectural
self-repair techniques that tolerate failures in a variety of array
structures. Srinivasan et al. demonstrate that microarchitectural
redundancy can significantly improve mean time to failure under
a variety of lifetime wear mechanisms. Rescue applies very fine-
grained logic-level fault-isolation techniques as well as de-mapping
of faulty components and leverage of functionally redundant re-
sources to obtain high-fault coverage [24]. As a whole, these tech-
niques target primarily stuck-at-faults and are aimed well-below
the ISA. In this paper, we consider joint extensions to the ISA and
microarchitecture that create more opportunities for functional iso-
lation and limited duplication of execution hardware. This is useful
in cases where the faster hardware can be used to avoid timing
faults.

Finally, many techniques attempt to improve the performance
of multi-core systems with one or more cores that have some
permanent component failures. A common insight is that when a
given core has lost functionality due to failure, the lost function-
ality can be provided by some set of remaining cores. Core Can-
nibalization [22] leverages cross-core redundancy at the granular-
ity of a pipeline stage. A special interconnect between neighbor-
ing cores allows them to share functional resources and bypass
faulty components. Powell et al. examined more coarse-grained
hardware driven core salvaging for CMPs [21]. They advocate use
of hardware mechanisms to save and transfer state. This permits
computational migration in the presence of failure as an alternative
to fine-grained resource sharing. In this work, we focus on core-
level timing faults. We believe that in some cases thread migra-
tion and cross pipeline resource sharing may offer additional ways
to reduce timing violations especially when considering parameter
variations [4]. In particular, compile-time knowledge may be use-
ful determining how to schedule these operations. This maybe an
interesting avenue for future work.

6. Limitations and Future Work
Process variations will be an increasingly significant problem for
future processor generations. Prominent process variations could
affect our compiler techniques adversely. The variations of path
lengths from core to core make the performance of these technique
less predictable. First, the difference between a fast path and an
equivalent slow path will vary, making the improvement from our
techniques more pronounced in one core while less significant in
others. It will become harder to decide an optimal set of techniques
for each benchmark. We acknowledge that this is a problem but do
not address this issue in this work. It will be one of the focuses of
our future work.

Our results show that branch rerouting consistently improve per-
formance on all benchmarks. There is not a clear winner, however,
among the rest of the techniques. This calls for a methodology to
decide where and what techniques should be applied to obtain max-
imum benefits. We have not addressed this issue in this paper. This
is an important item for future work. It will likely involve repeated
profile-guided transformations using a compiler.

The introduction of BRINC breaks the ISA abstraction and pos-
sibly has consequences with regard to software compatibility. How-
ever, we believe that to improve performance, this is a worthwhile
tradeoff. With shrinking process technology, future processors will
be more likely to be affected by process variations and hard faults.

To address these problems effectively, the solutions should involve
many layers of the system from software down to the gate level.

7. Conclusion
Timing speculation is a promising technique to further improve
single-thread performance. In this paper, we have demonstrated that
to unleash more potential of timing speculation, we should involve
the design at multiple levels from gate level, micro-architectural
level, the ISA, the compiler and all the way up to programming
language. In particular, we have proposed and demonstrated a few
simple compiler transformation techniques that improve code re-
silience under timing errors. These techniques use simple compiler
transformation to replace long delay operations with faster ones,
and reduce the number of timing errors significantly. Although the
performance of these techniques varies depending on the bench-
mark, there is always one that outperforms baseline timing specu-
lation by up to 15%.

Acknowledgments
We would like to thank anonymous reviewers and Antonio Gonza-
lez for their helpful comments. This work is in part supported by
NSF CAREER CCF-0644332 and NSF CNS-0720820.

References
[1] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge. Opportunities and

challenges for better than worst-case design. In Proceedings of the
2005 Asia and South Pacific Design Automation Conference, page 7.
ACM, 2005.

[2] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,
R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, et al. The
NAS parallel benchmarks. International Journal of High Performance
Computing Applications, 5(3):63, 1991.

[3] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi,
and S. K. Reinhardt. The m5 simulator: Modeling networked sys-
tems. IEEE Micro, 26:52–60, 2006. ISSN 0272-1732. doi:
http://doi.ieeecomputersociety.org/10.1109/MM.2006.82.

[4] S. Borkar et al. Parameter variations and impact on circuits and
microarchitecture. In Proceedings of the 40th Design Automation
Conference (DAC-40), 2003.

[5] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. Software-
based online detection of hardware defects mechanisms, architectural
support, and evaluation. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 97–108. IEEE
Computer Society, 2007.

[6] D. Ernst et al. Razor: A low-power pipeline based on circuit-level
timing speculation. In The 36th International Symposium on Microar-
chitecture (MICRO-36), November 2003.

[7] M. Flatt and PLT. Reference: Racket.
http://www.racket-lang.org/tr1/.

[8] B. Greskamp and J. Torrellas. Paceline: Improving single-thread
performance in nanoscale cmps through core overclocking. In Pro-
ceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques, PACT ’07, pages 213–224,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-
7695-2944-5. doi: http://dx.doi.org/10.1109/PACT.2007.52. URL
http://dx.doi.org/10.1109/PACT.2007.52.

[9] B. Greskamp, L. Wan, U. Karpuzcu, J. Cook, J. Torrellas, D. Chen,
and C. Zilles. BlueShift: Designing Processors for Timing Speculation
from the Ground Up. In IEEE 15th International Symposium on High
Performance Computer Architecture, 2009. HPCA 2009, pages 213–
224, 2009.

[10] M. Gupta, K. Rangan, M. Smith, G. Wei, and D. Brooks. Towards a
software approach to mitigate voltage emergencies. In Proceedings
of the 2007 international symposium on Low power electronics and
design, page 128. ACM, 2007.

[11] M. Gupta, J. Rivers, P. Bose, G. Wei, and D. Brooks. Tribeca: design
for PVT variations with local recovery and fine-grained adaptation. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pages 435–446. ACM, 2009.

[12] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In IEEE 4th annual Workshop on Workload Charac-
terization, 2001.

[13] K. Hazelwood and D. Brooks. Eliminating voltage emergencies via
microarchitectural voltage control feedback and dynamic optimiza-
tion. In Proceedings of the International Symposium on Low Power
Electronics and Design (ISLPED), August 2004.

[14] M. Hill and M. Marty. Amdahl’s law in the multicore era. Computer,
41(7):33–38, 2008.

[15] R. Joseph. Exploring salvage techniques for multi-core architec-
tures. In Workshop on High Performance Computing Reliability Issues
(HPCRI) 2005. Citeseer, 2005.

[16] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to
eliminate voltage emergencies in high performance processors. In
Proceedings of the 9th International Symposium on High Performance
Computer Architecture (HPCA-9), February 2003.

[17] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing a Processor
From the Ground Up to Allow Voltage/Reliability Tradeoffs. In
IEEE 16th International Symposium on High Performance Computer
Architecture, 2010. HPCA 2010, 2010.

[18] T. Liu and S.-L. Lu. Performance improvement with circuit-
level speculation. In Proceedings of the 33rd annual ACM/IEEE
international symposium on Microarchitecture, MICRO 33, pages
348–355, New York, NY, USA, 2000. ACM. ISBN 1-58113-
196-8. doi: http://doi.acm.org/10.1145/360128.360166. URL
http://doi.acm.org/10.1145/360128.360166.

[19] A. Meixner and D. Sorin. Detouring: Translating software to circum-
vent hard faults in simple cores. In IEEE International Conference on
Dependable Systems and Networks With FTCS and DCC, 2008. DSN
2008, pages 80–89, 2008.

[20] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. Yield-aware
cache architectures. In roceedings of the 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO-39), December
2006.

[21] M. Powell, A. Biswas, S. Gupta, and S. Mukherjee. Architectural
core salvaging in a multi-core processor for hard-error tolerance. In
Proceedings of the 36th annual international symposium on Computer
architecture, pages 93–104. ACM, 2009.

[22] B. Romanescu and D. Sorin. Core cannibalization architecture: im-
proving lifetime chip performance for multicore processors in the
presence of hard faults. In Proceedings of the 17th international con-
ference on Parallel architectures and compilation techniques, pages
43–51. ACM, 2008.

[23] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas. EVAL: Utilizing
processors with variation-induced timing errors. In Proceedings of the
2008 41st IEEE/ACM International Symposium on Microarchitecture-
Volume, 2008.

[24] E. Schuchman and T. N. Vijaykumar. Rescue: A microarchitecture for
testability and defect tolerance. In Proceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA-32), June
2005.

[25] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis,
P. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, et al. Freepdk: An
open-source variation-aware design kit. 2007.

[26] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu. Trading off cache capacity for reliability to enable low
voltage operation. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 203–214,
Washington, DC, USA, 2008. IEEE Computer Society. ISBN 978-
0-7695-3174-8. doi: http://dx.doi.org/10.1109/ISCA.2008.22. URL
http://dx.doi.org/10.1109/ISCA.2008.22.

[27] V. J. Reddi, S. Campanoni, M. S. Gupta, K. Hazelwood, M. D. Smith,
G.-Y. Wei, and D. Brooks. Eliminating Voltage Emergencies via
Software-Guided Code Transformations. Transactions on Architecture
and Code Optimization (TACO), 7(2), 2010.

[28] S. Sastry Hari, M. Li, P. Ramachandran, B. Choi, and S. Adve.
mSWAT: low-cost hardware fault detection and diagnosis for multi-
core systems. In Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 122–132. ACM, 2009.

