
Identifying and Predicting Timing-Critical Instructions to
Boost Timing Speculation

Jing Xin and Russ Joseph
Department of EECS

Northwestern University
jingxin2011@u.northwestern.edu rjoseph@eecs.northwestern.edu

ABSTRACT
Circuit-level timing speculation has been proposed as a

technique to reduce dependence on design margins and elim-
inating power/performance overheads. Recent work has pro-
posed microarchitectural methods to dynamically detect and
recover from timing errors in processor logic. To a large ex-
tent existing work has relied on statistical error models and
has not evaluated potential disparity of error rates at the
level of static instructions. In this paper, we analyze gate-
level hardware models for an execution pipeline and demon-
strate pronounced locality in instruction-level error rates due
to value locality and data dependences. We propose timing
error prediction to dynamically anticipate timing errors at
the instruction-level and error padding techniques to avoid
the full recovery cost of timing errors. We show that with
simple prediction strategies our mechanism can reduce 80%
of the performance penalty incurred by error recovery on av-
erage. This allows us to alleviate some limitations of tim-
ing speculation and improves energy-efficiency by 21% when
compared to baseline timing speculation techniques using the
same dynamic adaptive tuning mechanism.

Categories and Subject Descriptors
C.1.0 [Computer Systems Organization]: Processor

Architectures; B.8 [Hardware]: Performance and Reliability

General Terms
Design, performance

Keywords
Pipeline, timing speculation, power management

1 Introduction
The traditional CMOS design paradigm applies a worst-

case design methodology assuming that all circuit paths must
obey timing constraints. Conventional optimizations speed
up critical paths through gate sizing and vt selection to im-
prove frequency while sacrificing power. Often optimizations

This work was supported by NSF CAREER CCF-0644332
and NSF CSR-0720820.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’11, December 3-7, 2011, Porto Alegre, Brazil
Copyright 2011 ACM 978-1-4503-1053-6/11/12 ...$10.00.

turn a blind eye to path activity because under the design
paradigm all critical paths are of equal importance – any one
of them could produce a timing violation. Consequently, the
impact on the power budget for accelerating an infrequently
used long path might be the same as a commonly used criti-
cal path. Furthermore, designers also introduce guardbands
to overcome circuit-level sensitivities to environmental tem-
perature, supply voltage noise, and process variation, which
also add a non-negligible energy overhead to the system.

In recent years, researchers have shown a growing inter-
est in circuit-level timing speculation [7] as a means to gar-
ner more performance from and boost energy-efficiency of
the system. Under a better-than-worst-case (BTWC) design
paradigm, designers reduce safety margins and relax set-up
time constraints with the expectation that timing errors will
occasionally appear in the system [3,7]. The designer includes
detection and recovery mechanisms so that errors can be dy-
namically flagged. The processor initiates a recovery mecha-
nism to prevent the errors from affecting architecturally vis-
ible state. Execution is allowed to resume once recovery is
complete. These techniques can be used to either dynami-
cally lower the operating voltage to reduce power consump-
tion or raise the operating frequency to improve instruction
throughput. Recent work has sought to reshape error rates
through dynamic management of the processor [35] or design
time optimizations of logic [13,21].

Much of existing work assumes timing errors are strong
functions of voltage/thermal conditions but independent of
dataflow within the program or true gate-level transitions
within the pipeline logic. We believe this to be a missed
opportunity because dynamic instruction sequence and pro-
gram values can have a dramatic impact on timing error rate.
Recent work supports this notion. Li et al. [23] showed
that trace based analysis can successfully diagnose permanent
hardware stuck at faults within a pipeline, hinting at impor-
tant reproducibility at the instruction level which we believe
would also be true with timing faults. More recently, Hoang
et al. [10] demonstrated that some very simple code trans-
formations can have significant impact on reducing timing
error rates. In related work, Sartori and Kumar showed that
various compiler optimizations can impact error rates [36].
While these efforts show a connection between static code
sequences and illustrate that code generation can have an
impact on circuit-level timing issues, they do not directly ex-
amine dynamic timing error patterns nor suggest how hard-
ware might identify links between timing errors and dynamic
code sequences.

In this work, we advocate a closer examination of how in-



0.30.40.50.60.70.80.91.0
Vdd

0.0

0.2

0.4

0.6

0.8

1.0

Di
sa

bl
ed

Bl
oc

ks
(

(a) SRAM

0.00.20.40.60.81.0
Latency

0

20

40

60

80

100

Ti
m

in
g

Er
ro

rs
(

basicmath
random

(b) Logic

0.500.550.600.650.700.750.800.850.900.95
Vdd

0

20

40

60

80

100

Ti
m

in
g

Er
ro

rP
en

al
ty

(

basicmath Logic
basicmath SRAM

(c) SRAM v.s. Logic
Figure 1: Timing Speculation in SRAM and Logic

dividual instruction sequences stimulate timing paths in ex-
ecution logic. We perform gate-level simulations to explore
timing error locality in static instructions whose data usage
patterns sensitize delay fault paths. We then evaluate simple
mechanisms that predict instructions likely to produce tim-
ing errors in the pipeline and make preparations to reduce
the recovery cost. This allows the processor to operate at
more aggressively scaled voltages and hence consume signif-
icantly less power. This paper makes the following primary
contributions:

• We introduce the concept of timing error locality in
which static instructions exhibit consistent error gener-
ation patterns over a period of program execution.

• We explore a wide range of timing error prediction
strategies to efficiently identify timing-critical instruc-
tions (instructions that tend to have timing errors)
based on timing error locality.

• We propose an error padding mechanism to isolate tim-
ing errors from the rest of the processor pipeline. This
reduces the number of timing errors that require full
pipeline error recovery.

Our results show that, error prediction based on timing
error locality can effectively identify more than 80% of the
timing-critical instructions. By combining prediction with
an error padding mechanism, our techniques improve power
efficiency by 21% compared to baseline timing speculation
using the same adaptive tuning mechanism.

This paper is organized as follows: Section 2 discusses chal-
lenges in timing speculative architectures which motivate this
work, and Section 3 introduces timing error locality in exe-
cution pipelines. Section 4 describes dynamic timing error
prediction and error padding mechanisms, and Section 5 dis-
cusses three adaptive voltage tuning algorithms to maximize
energy efficiency for our error padding system. Section 6
describes our simulation setup, and Section 7 evaluates the
efficiency of our predictors as well as tuning algorithms. Sec-
tion 8 describes our work with relation to other research, and
finally Section 9 concludes.

2 Background and Motivation
While timing speculation has been shown to be an effective

means to improve energy-efficiency or performance in the face
of manufacturing and environmental variation, there are still
a number of obstacles that may prevent it from achieving its
full potential. For memory dominated structures, the SRAM
array lookups have significantly more regularity and allow for
dynamic partitioning and resizing which may allow them to
improve performance in an energy-efficient manner by sac-
rificing capacity [30]. There has been a significant amount
of work in adapting SRAM structures for use in both low-
voltage modes and severe parameter variation [25,30,31]. In

contrast, logic dominated structures in the processor back-
end, most notably execution units, would be difficult to accel-
erate without significant impact to the power budget. While
there has been some recent work in logic optimization for
timing speculative designs [1, 13], speeding up critical logic
paths often applies aggressive gate sizing and vt assignment.
This could incur significant energy costs in complex execu-
tion units which contain a large number of critical paths.
Furthermore, many of the long critical paths in execution
logic cannot be avoided through standard manipulations like
superpipelining because they are essential to important per-
formance loops [6].

Figure 1 shows timing speculation for a representative
SRAM structure (cache) and logic structure (execution unit).
Figure 1(a) shows how cache blocks can be disabled to permit
voltage scaling for a 32KB cache with 64B block size. We can
scale to 60% nominal voltage with about 20% blocks disabled.
Figure 1(b) shows how the timing error rates increase when
we reduce clock latency. We studied execution unit while
running basicmath(MiBench [16]) and a random sequence of
inputs. Because timing error rates are heavily dependent on
input sequences, different applications may exercise critical
paths to varying degrees. This figure shows real applications
provide opportunities for further scaling. Figure 1(c) com-
pares the effects of applying dynamic voltage scaling (DVS)
to different component groups in a timing speculative pro-
cessor design running basicmath. The timing error penalty
is calculated by comparing the performance with an oracle
processor with no timing errors at all. The figure shows that
the error recovery penalty of logic dominates when VDD is
kept near to the nominal value. It is only at very aggressive
scaling points that SRAM timing errors overtake logic. While
the logic curves feature have non-zero error values just below
the nominal VDD, they have rather gentle slopes and may
permit voltage scaling over a rather wide range. The slopes
of these curves are very consistent with validated analytic
timing error models and empirical data [7, 40]. There are
some clear implications for timing speculative designs. First,
logic timing errors are likely to be encountered shortly after
the supply voltage is scaled, even though they may not be
initially prohibitive. Second, once SRAM timing errors be-
gin to appear, they quickly become prominent and will likely
prevent further voltage scaling. We focus on alleviating the
impact of logic timing errors because they are likely to be the
first obstacle under aggressive voltage scaling.

3 Timing Error Locality in Execution
Pipelines

In this section, we examine locality properties of timing
error rates by simulating execution logic at the gate-level. We
specifically evaluate timing error rates for individual static



System Logic Benchmark Latency (%) Error Rate (%) Static Insts
Num Critical Insts For

50% 90% 99% 100% errors

Alpha

ALU
basicmath 75.1 9.8 533 11 33 49 66

dijkstra 63.9 9.4 154 6 12 15 20

Shiftbr
basicmath 83.5 9.9 371 4 17 26 29

dijkstra 81.9 9.4 163 8 16 22 24

OpenRISC

ALU
basicmath 68.1 9.2 4571 2 4 56 104

dijkstra 68.1 9.8 2808 1 2 16 51

LSU
basicmath 56.2 8.5 3901 54 247 644 765

dijkstra 57.3 8.6 2199 34 149 550 563

Table 1: Analysis of Critical Instructions for Alpha and OpenRISC

instructions and show that most timing errors have temporal
locality during dynamic execution. As we will show, we can
exploit this locality to hide timing errors.

3.1 Error Rates for Static Instructions
The degree to which timing criticality occurs depends pri-

marily on sequencing of opcodes and operands. Timing faults
in combinational logic are well known to be a function of
an initialization vector which determines starting values for
internal nodes and a sensitizing vector which causes the re-
vealing transitions. Within the execution logic, timing errors
manifest when the instruction opcodes and operands produce
such a set of critical input vectors. Control flow, dependence
structure, and value locality can all influence the sequence of
opcodes/operands and have an impact on error rate. Con-
trol flow and data dependencies determine the sequencing of
operations given to the hardware, while the degree of value
locality determines which set of operands are used by the
instructions. Previous studies have shown that many static
instructions use a relatively narrow set of values [28]. The
degree of overlap that these values have with timing critical
vectors significantly impacts the error rate. If an instruction’s
frequently used values belong to the set of critical input vec-
tors, then this instruction is likely to have high error rates.

To understand the relationship between applications and
the timing faults they generate, we conduct a trace-driven
study of timing error rates using detailed gate-level Verilog
simulation of functional units as they execute instruction se-
quences from SPEC CPU [41] and MiBench [16] applications.
We designed integer execution units (ALU and shifter-branch
unit) for the Alpha ISA in Verilog, synthesized the design
to target a 45nm standard cell library [18], and performed
place and route to calculate interconnect delay. To explore
timing error patterns across different platforms, we also stud-
ied execution units, namely the ALU and LSU-Effective-
Address-Generator for the OpenRISC 1200 microprocessor
[22]. We cross-compile the benchmarks for those two systems
and picked representative instruction sequences to drive the
gate-level models and produce timing error traces.

Table 1 summarizes the timing error behavior for two
MiBench applications (basicmath and dijkstra). We model
the impact of dynamically scaling the supply voltage to an
operating point at which approximately 10% of the dynamic
instructions produce timing violations in both benchmarks
(we do not consider SRAM structures for this study). The
table shows the effective execution latency under this oper-
ating point normalized to the clock period. The table also
shows how many static instructions are needed to account for
50%, 90%, 99% and 100% of the dynamic timing errors. We
can clearly see that a small number of static instructions are
responsible for the overwhelming majority of timing errors.
For instance, for the Alpha ALU, half of all the timing errors
can be attributed to 11 and 6 static instructions respectively

for basicmath and dijkstra. This is a common phenomena
which we have observed in a wide range of benchmarks. We
term this small set of problematic instructions timing-critical
instructions in following discussion. For the ALU, tens of in-
structions would commonly be responsible for over 90% of
the timing errors. For the LSU-Effective-Address-Generator
in OpenRISC, the number of critical instructions is larger be-
cause the effective address generator hardware is smaller and
simpler than a full ALU. We need to scale to significantly
lower operating points to achieve the target 10% error rate.
At this point, many paths begin to fail.

To take a closer look at the timing-critical instructions and
their behavior, we analyzed basicmath in detail in Figure 2.
Figure 2(a) shows the nine most frequently executed static
instructions with non-zero timing errors rates. Among the
critical instructions 4/9 of them have almost 100% error rate.
A common characteristic of these four instructions is that
they have good value locality and their values frequently ex-
ercise critical paths. In other cases where an instruction has
poor value locality, it may generate timing errors more spo-
radically as the operands intersect and diverge from the the
critical timing vectors. Figure 2(b) provides a code snip-
pet with 2 timing-critical instructions labeled E and F. Fig-
ure 2(c) shows the behavior of these two selected instructions.
These instructions appear within the same basic block of the
printf_fp function and perform basic arithmetic and com-
parison. Although they have identical execution counts, they
have very different error rates. Figure 2(c) details the min-
imum required computational latencies for these instruction
over execution sequences 200 to 400. We observe that in-
struction E tends to exercise a set of operands that happen
to stress the critical paths more than instruction F. The struc-
ture of E’s critical path is such that it is highly independent
of the circuit state generated by the previous instruction. It
therefore exhibits a predictable and fairly constant latency.
For Instruction F, the stability of timing error rate is highly
dependent on the operating point (DVS scaling). When the
supply voltage allows an operational latency around 70% of
nominal (somewhere between the extremes) this instruction
will alternate between producing and not producing a timing
error. Notice that when viewed from a coarse enough gran-
ularity (i.e. sufficiently large windows), this instruction will
still have a stable average error rate.

Our analysis revealed stability and predictability of error
rates over time. Specifically, over relatively small time scales,
error rates for static instructions exhibit pronounced locality.
Instructions which are not in the timing critical set, have a
zero or near zero error rate and hence these error rates are
trivially stable. However, instructions which have moderate
to high error rates or generate irregular timing error patterns
also have relatively stable error rates. This is due to averag-
ing over many samples.



0x
12

00
66

31
c

su
bq

0x
12

00
48

a0
8

cm
plt

0x
12

00
21

b1
8

su
bl

0x
12

00
47

be
8

su
bl

0x
12

00
47

aa
8

cm
plt

0x
12

00
47

aa
4

su
bl

0x
12

00
48

41
0

su
bl

0x
12

00
06

32
4

su
bl

0x
12

00
06

30
4

ad
dq

0

500

1000

1500

2000

2500
N

um
be

ro
fO

cc
ur

re
nc

es
Error
No-Error

(a) Error Rates of Timing-Critical Insts

A 120047a94: lda s0,-24(s0)

B 120047a98: ldl t0,16(s0)

C 120047a9c: addq s3,t0,t0

D 120047aa0: ldl t1,96(fp)

E 120047aa4: subl t0,0x1,t0

F 120047aa8: cmplt t1,t0,t1

G 120047aac: bne <printf fp+0xf2c>

(b) Code Snippet with 2 Critical Insts
200 250 300 350 400

Execution Sequence

0.5

0.6

0.7

0.8

0.9

N
or

m
al

iz
ed

La
te

nc
y E(0x120047aa4): subl t0,0x1,t0

F(0x120047aa8): cmplt t1,t0,t1

(c) Latency for 2 Selected Insts
Figure 2: Analysis of Timing-Critical Insts for basicmath

3.2 Parameter Variation and Its Affect on Lo-
cality

0 20 40 60 80 100
Chip Index (Sorted by Average Latency)

0.65

0.75

0.85

0.95

N
or

m
al

iz
ed

La
te

nc
y

Figure 3: Latency Distribution for 100 Chips for the Selected
Instruction (0x12006631C) in basicmath

Parameter variation alters the error rate curves and mem-
bership in the criticality set, but in general have little impact
on the size of the set. Timing-critical sets should be con-
sistently small relative to the instruction working set for a
wide range of applications over several different generations
of our execution hardware model whenever total error rates
are small.

To examine the effect of parameter variation, we generate
100 instances of execution units using a random and system-
atic parameter variation model [8]. Then we run the same
basicmath simulation and record the latency of one most fre-
quently executed critical instruction (PC=0x12006631C). We
show the mean and standard deviation for all 100 samples in
Figure 3. We sort samples by mean error rates. Parameter
variation may affect path lengths, causing one near critical
path to become a true critical path in one chip, or speed-
ing it up so that it is less critical in another chip. However,
this will not change the timing locality and predictability of
timing errors for most hardware instances.

4 Dynamically Predicting Timing Errors

Ef
fe

ct
iv

e 
Er

ro
r R

at
e

reshaped
   original

decreased
voltage

reduction
error rate

−1VDD(a) EER

Ee
ne

rg
y 

pe
r I

ns
tru

ct
io

n

energy savings

−1VDD(b) EPI

Figure 4: Reshaped Effective Error Rate and Energy per In-
struction

By aggressively scaling the supply voltage, the number of
timing critical logic paths increases. Scaling below the crit-
ical voltage causes the error rate to spike and would lead to
massive slowdown because the aggregate recovery time is too
large to tolerate. Figure 4 conceptually shows the trend of
effective error rate (EER, errors which need to be recovered)
and energy per instruction (EPI) according to the decrease
of VDD (dashed lines).

We propose a novel approach to reshape the EER and EPI
curve by efficiently identifying instructions that are likely to
incur timing errors and isolating those errors through pre-
diction and pipeline scheduling. Figure 4(a) shows our tech-
nique can either operate at a lower voltage for a specified
EER or decrease the EER for a specified operating VDD;
Figure 4(b) shows how our technique can aid timing specula-
tion by further improving the EPI. This is achieved through
both reducing the recovery penalty and operating at lower
VDD.

In this section, we describe the mechanism of error predic-
tion and error padding. To explore the potential of identi-
fying instructions that tend to incur timing errors (items in
the critical instruction set), we examined a series of predic-
tion strategies. We then show how we can efficiently mask
the potential timing errors through pipeline scheduling.

4.1 Prediction Strategies
We adopt some frequently-used and easy-to-implement

prediction strategies to detect likely timing errors [9, 27, 29,
38]. These predictors apply the principle of temporal locality
for timing errors. Instructions which have produced errors in
the recent past are likely to produce errors in the future.

• Last Value (Last) A table of one-bit values indexed
by the low order address bits of the PC. When a timing
error occurs, the corresponding bit in the table is set.
Otherwise the table entry is cleared.

• Miss Distance Counter (MDC) A table of PC in-
dexed, resetting, zero-saturating counters. If an in-
struction commits without generating a timing error,
the counter is decremented. For instructions that com-
mit an error, the counter is reset to all ones. A timing
error is predicted any time the counter contains a non-
zero value. We evaluate two, three, and four bits for
the counters in our study (MDC2, MDC3 and MDC4).

• Saturating Counter (Sat) This a standard bimodal
predictor as typically used in branch prediction, we
evaluate only two-bit counters for this strategy.

• Most Recent Entry (MRE) A table of recently ex-
ecuted critical instructions are maintained in a cache-
like structure tagged by their PC addresses. Each tag
is associated with a two bit biased saturating counter.
Non-zero values indicate timing critical status. We ap-
ply a Least Recently Used (LRU) replacement policy
when the number of critical instructions (working set
size) is greater than the table size.

4.2 Hardware Implementation and Cost
The Last, MDC and Sat can be implemented with non-

tagged entries. They can be readily adapted into a directional
branch predictor with some potential for shared hardware re-
sources (e.g. the decoder). However, MRE is a tagged buffer



Branch?

Predictor
Choice
TablePC Local

Predictor
Global

CriticalErr
Predictor CriticalErr Prediction

Local Global
Global Hist

Branch Direction

Figure 5: Critical Instruction Predictor Integrated into Branch
Predictor

PC

Branch?

Predictor
Branch Branch Direction

1 0

0

Tag (64 bits) Counter2bit

CriticalErr Prediction

Figure 6: Tagged Critical Instruction Predictor

structure and would have to be implemented as a stand-alone
structure. We will compare the performance for a wide range
of sizes for these predictor strategies in Section 7.1. All of
the prediction strategies involve SRAM structures to hold in-
struction error rate history. We refer to these SRAM struc-
tures as timing criticality counter tables in following sections.

Figure 5 shows a generic non-tagged predictor integrated
with a standard two-level branch predictor. Since we can
share the decoding logic with local branch predictor, the
hardware cost of this scheme is limited to the bits used for
storing the counters (i.e. 2048 × 2 ' 4K bits for 2048-entry
2-bit counters) and modifications to the output path (e.g.
sense amps). The effective hardware cost of this prediction
mechanism would be on par with the local history table of
the branch predictor in our baseline design. A previous study
on the energy-efficiency of branch predictors [32] shows that
the hardware should increase the total processor power by
less than 2%. We include this overhead in our final results.

Figure 6 shows the design of a stand-alone MRE predictor.
It is not constrained by the structure of existing components
in the processor but cannot reuse any hardware. To support
MRE, we need to store the PC addresses for the critical in-
structions in the predictor. The hardware cost for a 32-entry
predictor is approximately 2K bits plus the logic needed for
decoding, tag comparison, and replacement. The use of PC
tags adds to the overall hardware costs and hence limits the
practical size of the predictor.

4.3 Masking Pipeline Timing Errors
After identifying instructions that are likely to produce

timing errors, we can perform a technique which we call er-
ror padding. Figure 7 shows timing error recovery in a eight
stage pipeline. Once an error is detected, a pipeline flush is
initiated and instructions are refetched to complete recovery.
Under error padding, we can avoid the full cost of recovery
(as shown in Figure 8) by anticipating timing errors at the
ID stage. We assume that all the instruction executions can
finish if we extend a cycle. This is realistic since the sup-
ply voltage is never scaled aggressively enough to make this
untrue. Since the prediction and update are not on the criti-
cal path, we assume there are no direct adverse performance
effects due to predictor access.

Figure 9 demonstrates how the error prediction and er-
ror padding can be integrated into an eight stage pipeline.
The prediction is made during the instruction decode (ID)
stage. If the instruction is flagged as critical, the scheduling
logic expects a one-cycle stall during execution. We do not
anticipate that this would add much complexity to pipeline
scheduling and control logic since we are essentially adding
hazard detection similar to existing mechanisms used to im-
plement load-use interlock. When this instruction advances

CLK CLK CLK

Bpred UnitNPC

ICache

CLK

Reg

CLK

ALU

Decode

CLK CLK

DCache

CLK

Reg

Instruction Fetch Decode/RF Execute
Memory/WB

Error Predictor Update

Error Predict

MULT/DIV

Figure 9: Simplified Logical Pipeline Structure Used to
Demonstrate Error Padding

to an execution stage, the upstream pipeline is stalled for a
cycle regardless of whether there is a true timing error or
not. In the event that there is a timing error, the stall limits
the recovery penalty since it effectively prevents any errant
values from being forwarded to upstream instructions. If no
timing error occurs then the performance is impacted by the
unnecessary single cycle stall, but there are no other effects.

During the writeback (WB) stage, the instructions that have
(or could have) generated timing error during their execution
are noted by the conventional timing speculation logic. The
writeback logic updates the timing criticality predictor dur-
ing the retirement of the instruction.

4.4 Predictor Performance Evaluation Met-
rics

For our critical instruction predictor, we incur the full cost
of error padding once a instruction is marked as critical re-
gardless of whether the instruction generates a timing error
or not. Consequently, there is a cost for aggressively mark-
ing instructions which have low error rates as critical (false
positive penalty). On the other hand, if the instruction is
not marked critical, instruction execution and any necessary
error detection/recovery work as they would in a standard
Razor-like pipeline. The recovery cost associated with misdi-
agnosing critical instructions as non-critical is the false neg-
ative penalty.

To evaluate the potential benefit of the timing error pre-
dictors, we adopt language and metrics used in evaluating
binary classifiers and diagnostic tests. Confidence estimators
based on the concept of binary classification have been ap-
plied in branch speculation control [14]. Here we examine
classes of prediction schemes that identify instructions which
are likely to produce timing errors. Relevant metrics for this
type of study include:

• Sensitivity: number of correctly predicted timing er-
rors relative to the number of dynamic instructions
identified as critical.

• Specificity: number of correctly predicted non faulting
dynamic instructions relative to the number of dynamic
instructions which do not produce timing errors.



EXflush flushIF1flushIF2flushIDflushRF

flushIF2 flushIF1flushID

IF1
EX*

IF1 IF2
IF1

ID
IF2

Time (in cycles)
In

st
ru

ct
io

ns IF2
IF2
ID MEM1 MEM2 WB

IF1
EX

ID
RF

RF
RF
ID

Pipeline flush completes
Razor detects fault, initiates flush toward IF

IF1

Figure 7: Pipeline Timing for Error Recovery (Razor [7])

stall

stall

IF1
EX*

IF1 IF2
IF1

Time (in cycles)

In
st

ru
ct

io
ns IF2

IF2
ID MEM1 MEM2 WB

IF1
EX

ID+
RF

RF
RF
ID

ID
IF2

MEM1
MEM1EX

RF EX
MEM2 WB
MEM1 MEM2 WB

ErrPad predicts critital, schedule stall
stall pipeline for a cycle

bubble

Figure 8: Pipeline Timing for a Correctly Predicted Timing
Error

• Positive Predictive Value (PPV): number of cor-
rectly predicted timing errors relative to the number of
critical predictions.

• Negative Predictive Value (NPV): number of cor-
rectly predicted non faulting dynamic instructions rel-
ative to the number of non critical predictions.

Predictors with high Sensitivity will detect most timing
errors; predictors with high Specificity will correctly identify
most non-critical dynamic instructions; predictors with high
PPV will have trust-able critical predictions; predictors with
high NPV will have trust-able non-critical predictions. Since
most of the instructions should be non-critical under the error
rate ranges relevant for our study, Specificity and NPV are
not as useful; their values could be high even if we do not
predict any timing errors. In following sections, we will focus
on Sensitivity and PPV to evaluate the performance and
efficiency of predictors.

5 Dynamic Voltage Tuning and Optimization
The frequency of timing errors depends partially on pro-

gram phase and consequently, the optimal operating voltage
changes during program execution. To maximize the benefits
of timing speculation, dynamic adaption mechanisms must
be used to actively tune the voltage during program phase
changes. Previous work has studied dynamic voltage scal-
ing (DVS) and dynamic voltage frequency scaling (DVFS)
on different tasks/applications [11] or under process vari-
ation [15, 26, 35]. Our goal for dynamic tuning is to find
the optimal operating voltage with low power consumption
while sacrificing minimum performance penalty. This is made
more challenging by error padding since the optimal operat-
ing voltage will depend on many factors including the raw
error rate and prediction accuracy. Instead of targeting some
small, fixed error rate [7], we are trying to find the operat-
ing point with minimum “energy-delay”. We examined three
basic tuning mechanisms:

Hill Climbing [33] is a general mathematical optimiza-
tion technique to search for some minimum (or maximum)
target. The controller starts from a relatively high VDD and
scales down. At the end of each interval it compares the cur-
rent energy-delay with that of previous interval, and decides
to scale up, down or retain its VDD. This mechanism is easy
to implement and reacts fast. It is however, important to cor-
rectly tune the basic parameters (control step, interval size,
etc.) because the controller could easily fall into oscillation,
or adapt too slowly to reach dynamically changing optimal
levels.

Sampling divides the execution to “sampling” and “run-
ning” periods. The controller sets some predefined voltages
during the “sampling” period, and selects the one with the
best energy-delay as operating voltage for the “running” pe-
riod. This method can be combined with dynamic phase
detection to automatically quit the running period and redo
sampling when there is a phase change. Sampling is easy

to implement as well, but exploration during the sampling
period may lower the efficiency of the system.

Fuzzy Controller [35] approaches have been used to per-
form dynamic optimization of complex systems. The con-
troller does some offline training to learn rules about optimal
voltages for different applications, and relies on the rules to
make choices. The training and rule generation should be
performed periodically. This mechanism is more complex to
implement and requires support from system software. In
addition, the performance of the fuzzy controller is highly
dependent on the quality of the training algorithm.

We discuss more implementation details for the above
mechanisms in Section 6. We compare the performance for
a wide range of sizes for these predictor strategies in Sec-
tion 7.3.

6 Experimental Setup
Processor Parameters

Frequency 1.0 GHz

Feature Size 45nm

Nominal VDD 1.0v

10% guardband

Pipeline 8 stages

Issue Width 2 inst, in-order

Functional Units 2 IntALU units

1 Shift/Branch unit

1 Ld/St Port

1 IntMult/Div

IntALU 2857 gates

Shifter/Branch 2160 gates

Branch Predictor Tournament

2-bit saturating counter

2048-entry local history

8192-entry global history

8192-entry choice table

L1 Inst Cache 32KB 8-way 64B blocks

L1 Data Cache 32KB 8-way 64B blocks

Table 2: Processor Parameters

Dynamic Tuning Mechanism

error recovery penalty 8 cycles

error padding cost 1 cycle

Vdd Regulator Delay 0.5µm

Predictor Power Penalty 2%

Tuning granularity 2%

Lowerbound VDD 60%

Performance Tolerance Limit 10%

Control interval 100K insts

Fast Forward 100 million insts

Short Simulation 10 million insts

Long Simulation 100 million insts

Hill Climbing threshold 1%

Sampling 10 sample intervals

90 running intervals

Fuzzy Controller 14 rules

training 1200 intervals

Table 3: Simulation Parameters

Our evaluation focuses on the impact that timing error



prediction and error padding have on a high-performance,
low-power embedded processor. We extend the M5 system
simulator [5] to model an eight stage in-order Alpha core
comparable to recent Intel Atom designs [17]. Table 2 lists
the microarchitectural configuration of the baseline processor
and simulation configurations.

We model timing errors in the execution pipeline by con-
structing a detailed gate-level model of logic in integer func-
tional units. Specifically, we create Verilog models for Al-
pha ALU and Shifter/Branch Unit execution hardware. The
models are complete enough to support virtually all user-
mode integer instructions with the noted exclusion of the
Alpha’s MVI SIMD instructions [39]. We synthesize the exe-
cution hardware using Synopsys Design Compiler [42] and
target the Nangate 45nm standard cell library [18]. To ac-
count for the circuit level impact of interconnect, we preform
place and route using Timberwolf( [37]) and then extract wire
delays. We annotate the ALU and Shifter/Branch designs
with the wire and gate loading delays. After constructing this
detailed gate-level model, we also implement a gate-level tim-
ing simulator in C++ and embed it into the M5 simulator [5].
On a per cycle basis, we drive the gate-level simulator with
program data values, allowing us to model the coupling be-
tween program control/data flow patterns and timing errors
in the execution units. Finally, we model delay due to dy-
namic voltage scaling by applying the Alpha Power Law [34].

Structure Type Repair Method

I-Cache Memory Resize

BranchPred Memory Razor

RegFile Memory Razor

IntALU Logic Razor

ShiftBr Logic Razor

Mult/Div Logic Razor

D-Cache Memory Resize

Table 4: Structures Modeled for Simulation

Our processor adopts Razor error detection and recovery
to apply circuit-level timing speculation [7]. The penalty to
recover from a timing error in an execution unit is eight cy-
cles. To model timing errors for SRAM structures, we apply
the parameter variation models in [20]. Due to overheads
we do not use Razor to recover from timing errors in large
SRAM structures. We instead implement resizing methods
to trade off the capacity for energy savings for I-Cache and D-
Cache [30]. We apply simple block-level resizing where blocks
are selectively mapped out in the I-Cache and D-Cache. For
smaller SRAM structures like the register file and the branch
predictor, we assume use of Razor [7] to tolerate timing er-
rors. Table 4 shows the representative structures we mod-
eled for the pipeline and their corresponding timing specula-
tion methods. We call the processor implemented with Razor
error-resilience and cache resizing Razor-Resize mechanism.
This will be used as a baseline comparison for error prediction
and error padding.

We choose to focus on logic dominated structures in the
processor back-end and do not directly address logic in the
processor front-end for two reasons. First, in power efficient
processors with low-issue widths and in-order execution, a
large number of critical paths are found in the execution
hardware [13]. Second, counterflow pipeline recovery used
in Razor-like designs is sensitive to the pipeline depth of tim-
ing errors. Front-end timing errors would result in fewer in-
structions being squashed and would incur lower recovery

penalties on average.
For the dynamic tuning mechanisms introduced in Sec-

tion 5, we assume hardware implementation cost is negli-
gible. We model a voltage regulator which has a VDD step
size of 20mV per 0.5µs. The parameters of the optimization
mechanisms are shown in Table 3. For Hill Climbing, we do
a voltage adjustment of one step up or down every interval
depending on the change in energy-delay (∆Energy−Delay);
for Sampling, we use 10 intervals to do the sampling (start
from middle value of VDD, and either increase voltage for
10 steps or decrease voltage for 10 steps depending on the
performance penalty for current interval. Sampling will also
stop if the performance penalty reaches the predefined limit),
and the controller will choose the VDD with the best energy-
delay for the next 90 intervals. For Fuzzy Controller, we run
1200 intervals to do the training and then formulate 14 rules
to predict the voltage according to its cycle count and timing
error stats. We assume the training is performed offline and
will not affect performance.

Benchmark Description

SPEC CPU2000 CINT

gcc C programming language compiler

gzip Compression

mcf Combinatorial optimization

parser Word processing

MiBench Embedded

basicmath Simple mathematical calculations

bitcount Bit counting functions

blowfish A keyed, symmetric block cipher

dijkstra Dijkstra’s algorithm

FFT Fast Fourier Transform

CRC32 Cyclic Redundancy Check

patricia Trie implementation

susan Smallest Univalue Segment Assimilating Nucleus

Table 5: Simulated Applications and Their Descriptions

We select four integer benchmarks from the SPEC
CPU2000 suite [41] and eight benchmarks from
MiBench [16]. The description of the benchmarks are
shown in Table 5. All applications are compiled for the
Alpha architecture using the gcc tool-chain with high
optimization levels. We believe that these benchmarks are
a good reflection of the workload for a general purpose
low-power processor.

7 Results
In this section, we will provide detailed comparison of the

predictor strategies introduced in Section 4.1, followed by the
efficiency evaluation of error prediction and error padding.
We compare the three widely used dynamic adaption algo-
rithms discussed in Section 5. We also examine the impact
of parameter variation on this approach.

7.1 Design Space for Timing Error Predictors
To understand how basic design parameters for timing er-

ror predictors affect prediction accuracy, we explore Last,
MDC2, MDC3, MDC4 and Sat predictors with size ranging from
32 to 2048 entries increasing by powers of two. Since the MRE

predictor needs to maintain PC addresses tags and hence has
higher per entry overhead, we evaluate sizes from 2 to 128
entries.

We collected instruction traces for each benchmark and
chose an operating point with ≈10% error rate to ensure that



102 103 104

Hardware Cost in Bits (logscaled)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

S
en

si
tiv

ity

Last
MDC2
MDC3
MDC4
Sat
MRE

(a) Sensitivity

102 103 104

Hardware Cost in Bits (logscaled)

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

P
P

V

Last
MDC2
MDC3
MDC4
Sat
MRE

(b) Positive Predictive Value (PPV)
Figure 10: Performance Comparison of Predictor Strategies as Function of Hardware Cost

the timing error rate is significant. For this experiment, we
perform gate-level timing simulation on just the execution
units. Figure 10 shows the predictor accuracy represented
by average Sensitivity and Positive Predictive Value (PPV )
across all the benchmarks. To get a reasonable compari-
son of predictor performance versus hardware cost, we plot
the performance versus hardware implementation cost in bits
(log-scaled).

From the figure we can see that not surprisingly, as the
size of the predictor increases, the Sensitivity and PPV of
each predictor type increases. However, after the predictor
sizes reach some point (e.g., 2K bits), the prediction accuracy
begins to saturate. From Figure 10(a) we can see for the same
hardware cost, MDC4 gives best accuracy in Sensitivity. This is
because MDC4 is the most cautious predictor, it will predict an
instruction to be timing-critical if it produced a timing error
in any of its 15 most recent executions. The tradeoff of this
pessimistic prediction mechanism is the increased number of
false positives. As shown in Figure 10(b), MDC4 has the lowest
PPV accuracy across all the predictors.

For all of the untagged predictors, the predictor table is
indexed by lower portion of the PC address. There will be
conflicts if two PC addresses fall into the same table index.
This is especially pertinent if one of them is always critical
and the other is not; the predictor may perform poorly on
both of them. For the tagged predictor (MRE), we can safely
avoid aliasing conflicts. Due to the limited table size it cannot
maintain all the critical instructions in the working set, so MRE

has the lowest Sensitivity as shown in Figure 10(a).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Positive Predictive Value (PPV)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Se
ns

itiv
ity

20

40

60

80

10
0

12
0

MDC2
MDC3

MDC4
Sat

MRE
Last

Figure 11: Penalty Analysis for Different Predictors. The lines
show the performance penalty of our techniques compared to
the performance penalty of Razor-like recovery.

.

Since false positive prediction penalty (an extra cycle
added for error padding) is less than the false negative pre-
diction penalty (pipeline flush involved for recovery), it is im-
portant to know the overall performance for those prediction
strategies. Recall that in our implementation, the penalty of
pipeline flush is eight cycles and the penalty of error padding
is one cycle. We combine Sensitivity and PPV of all predic-
tor instances and project their timing error penalty (in CPI)
compared to standard Razor-like recovery in Figure 11. We
assume a normalized CPI of one. In the figure, the lines show
the timing error penalties (including both error recovery and
error padding) compared to baseline Razor-like error recov-
ery. The ideal case is the upper-right corner where we have
100% accuracy on Sensitivity and PPV, and thus each true
timing error produces one cycle of stall. This effectively re-
duces the performance penalty to 12.5% of a baseline Razor
design. The line of 100% shows where the penalty of error
padding is equivalent to the penalty of the baseline Razor
design. If the PPV accuracy keeps reducing, the penalty for
error padding could be larger than standard Razor-like error
recovery.

From the figure we can see a large number of the pre-
dictors have 40% or less performance penalty compared to
the penalty of the baseline timing speculative design. MDC4

gives best performance (with less than 20% penalty) for the
largest size. This is because the penalty of false positive and
false negative is asymmetric. The penalty of failing to iden-
tify a timing error is much larger than the penalty of mis-
identifying a non-critical instruction as critical (eight cycles
versus one). Note that since MRE ensures high PPV accuracy,
it stays in a good position with performance penalty less than
the baseline.

Based on this study, we selected two candidate designs for
detailed simulation: an 2048-entry MDC2 predictor combined
with branch predictor and an 32-entry MRE stand-alone pre-
dictor.

7.2 Fixed Voltage Study
To evaluate the efficiency of error predictors in applications

independent of the voltage tuning, we set three fixed operat-
ing voltage conditions. We choose VDD to be 70%, 80% and
90% of nominal voltage (without margin), which we believe
covers a relatively large voltage scaling range. The baseline
comparison is a Razor-Resize system discussed in Section 6.

Figure 12 shows the Sensitivity of all the benchmarks (and
average value in last column) we evaluated. For 70% VDD,
MDC2 can correctly identify 86.5% of the timing errors on aver-
age, while MRE can detect 78.2% of them. But for 90% VDD,
MRE can identify 88.8% of the timing errors while MDC2 can
only detect 71.8%. MRE is limited by the tagged predictor size.



basicmath
bitcount

blowfish crc32
dijkstra fft gcc gzip mcf parser

patricia susan
average

0.2

0.4

0.6

0.8

1.0
S

en
si

tiv
ity

MDC 70 MRE 70 MDC 80 MRE 80 MDC 90 MRE 90

Figure 12: Predictor Sensitivity for Fixed Voltage Operation

basicmath
bitcount

blowfish crc32
dijkstra fft gcc gzip mcf parser

patricia susan
average

0.6

0.7

0.8

0.9

1.0

P
P

V

MDC 70 MRE 70 MDC 80 MRE 80 MDC 90 MRE 90

Figure 13: Predictor PPV for Fixed Voltage Operation

MDC2 has a large table size, but it may suffer from conflicts
in which multiple PC addresses interfere with each other and
produce misleading predictions. However, both techniques
show that on average over 70% of the timing errors are suc-
cessfully identified. This suggests that error padding could
effectively eliminate the recovery penalty.

Figure 13 shows the PPV results. Both techniques have
more than 90% confidence on their timing error prediction for
70% VDD case on average. For some benchmarks like fft,
there is lower accuracy because its error rates are extremely
small. This makes it harder to successfully identify the errors.

We compare the performance (CPI) of our mechanism with
Razor-Resize in Figure 14. The performance of MRE is simi-
lar to MDC2, so we just show the results of MDC2 to focus our
discussion. The performance penalty is normalized to a base-
line design which operates at a fixed maximum voltage and
has no timing errors at all. The last cluster shows that on
average our mechanism can reduce 13.5% performance loss
compared to the baseline design under 70% nominal VDD,
and 6.6% under 80% nominal VDD. For 90% nominal VDD,
since error rates are very small, the Razor-Resize and our
mechanism have penalties below 2%. On average our mech-
anism can reduce the performance penalty caused by timing
errors by over 80% compared to Razor-Resize.

Also Figure 14 shows that applications reveal different er-
ror tolerances and have large differences in performance un-
der different operating voltages. For example, bitcount has
almost no timing errors for 80% and 90% nominal VDD.
Even for 70% nominal VDD, the performance penalty re-
mains small. A counter example is patricia which has high
timing error rate even for 90% nominal VDD. This indicates
that dynamic voltage adaption is necessary to achieve best
energy efficiency. We turn to this in the next section.

7.3 Tuning Error Rates
To examine the impact of error prediction and padding un-

der adaptive voltage scaling, we implemented the Hill Climb-
ing, Sampling and Fuzzy Controller tuning mechanisms and

basicmath
bitcount

blowfish
crc32

dijkstra fft gcc
gzip mcf

parser

patric
ia

susan
average

0

20

40

60

80

100
N

or
m

al
iz

ed
E

ne
rg

y-
D

el
ay

Baseline HillClimbing Sampling FuzzyController

Figure 15: Comparison of Energy-Delay Optimization Algo-
rithms

compare their energy-delay with a error-free baseline system
operating at maximum voltage. The results of energy-delay
are shown in Figure 15. Here we can see all the mechanisms
achieve low energy-delay with average values less than 50%
compared to system with no timing speculation. However,
generally Hill Climbing cannot beat the other two mecha-
nisms due to slow adaption and oscillation. Sampling gives
promising results when one considers its relative simplicity.

basicmath
bitcount

blowfish
crc32

dijkstra fft gcc
gzip mcf

parser

patric
ia

susan
average

0

20

40

60

80

100

N
or

m
al

iz
ed

E
ne

rg
y-

D
el

ay

Razor-Resize ErrPad-MDC ErrPad-MRE

Figure 16: Comparison of Power Savings

To examine the performance of error padding to Razor-
Resize we focus by comparing it with Sampling. We show



basicmath
bitcount

blowfish crc32
dijkstra fft gcc gzip mcf parser

patricia susan
average

0.00

0.02

0.04

0.06

0.08

0.10
N

or
m

al
iz

ed
C

P
IP

en
al

ty 0.
15

0.
11

0.
13

0.
14

0.
14

0.
26

0.
34

0.
55

0.
17

0.
24

0.
47

Razor 70 ErrPad 70 Razor 80 ErrPad 80 Razor 90 ErrPad 90

Figure 14: Comparison of CPI

their energy-delay results in Figure 16. We use the same tun-
ing parameters for both Razor-Resize and our error padding
system. Generally error prediction and padding can gain
more power savings by scaling beyond the critical voltage
and masking the predicted timing errors. Consider gcc, both
of our predictors reduce energy-delay by approximately 21%
compared to Razor-Resize. We note that bitcount does
not generate many timing errors in execution stage (even
when aggressively scaling VDD). As a result our method
and Razor-Resize are comparable and the true bottleneck
becomes the SRAM structures. Another interesting bench-
mark is patricia; this application has highly variable timing
errors across a large range of PC addresses, so it is difficult to
scale operating voltage down due to the large penalty of error
recovery. However, our mechanism can reduce energy-delay
by 40% by dynamically masking the timing errors.

65

70

75

80

V
D

D

basicmath RazorResize ErrPad

60

65

70

75

80

V
D

D

dijkstra

0 100 200 300 400 500 600 700 800

Interval Index (x100K Instructions)

70

75

80

V
D

D

patricia

Figure 17: Operating Voltage of Dynamic Tuning According
to Time Intervals

Figure 17 shows how the voltage is tuned according to each
control interval for three representative benchmarks basic-

math, dijkstra and patricia. For basicmath we can see our
mechanism can sample a large range of voltages because the
error padding effectively reduces the timing error penalty and
allows the possibility of further scaling. It usually operates
at 10% lower voltages with the same tolerance on perfor-
mance penalty as Razor-Resize. For dijkstra both Razor-
Resize and error padding can scale to some relatively low level
voltage-levels so the effective difference is muted (∼5%). The
most striking example is patricia. This yields a dramatic
difference in operating voltages because this application has
a large number of timing critical operations. Because these
instructions are easily predicted with our method, we can

operate at a much lower voltage level and gain more power-
savings without adversely affecting performance.

7.4 The Impact of Parameter Variations
In Section 3.2 we discussed parameter variation and its

relationship with timing error locality. To show the effect
of parameter variation in a complete system, we generated
100 sample instances based on parameter variation models
described in previous work [8,20]. We implement both Razor-
Resize and error padding on these 100 sample chips and show
their power-performance results for basicmath in Figure 18.
The green line shows the “Energy-Efficient Frontier” which
is the ideal case for best power-performance trade-offs [4].
From the figure we can see although the parameter variation
changes the distribution of critical paths, it cannot change
the timing error locality of applications. We can still apply
error padding and achieve better energy efficiency by hiding
the cost of timing error recovery.

8 Discussion
Recent work has proposed better-than-worst-case (BTWC)

approaches to trade off error rate for power savings and/or
performance improvement [2, 3, 7, 12]. The fundamental idea
is to add modifications to the processor to dynamically detect
and recover from timing errors, allowing more freedom in
hardware implementation since worst-case design constraints
can be relaxed. In particular, with timing speculation the
processor can function at some small non-zero error rate with
lower voltage or higher frequency than traditional worst-case
designs. This can yield more efficient overall operation than
the traditional design methodologies.

Critical Voltage Wall
Timing speculation faces the limitations of the “critical

voltage wall” [19] that hinders overscaling the processor be-
yond some point. At the critical voltage, the number of paths
causing timing errors increases dramatically and the benefit
of operating at a lower voltage is negated by the penalty due
to error recovery. As a result, design-time and run-time op-
timizations have been proposed to extend the capabilities of
timing speculation [1, 13, 15, 35]. The EVAL [35] framework
applies microarchitectural techniques and run-time control
techniques to reshape the error rate curve using machine-
learning algorithms. Gupta et al. [15] proposed local re-
covery and fine-grained dynamic adaption to further maxi-
mize power-performance efficiency under process, voltage and
temperature variations. Blueshift [13] applies a ground-up
based design by optimizing the most-often violated timing
paths in order to maximize the potential of timing specula-
tion. Kahng et al. [1] proposed a ground-up design approach



0.88 0.90 0.92 0.94 0.96 0.98 1.00

Normalized Performance

0.35

0.40

0.45

0.50

0.55

0.60

0.65

N
or

m
al

iz
ed

Po
w

er

Energy-Efficient
Frontier

RazorResize
ErrPad

Figure 18: Power-performance under Process Variation

which applies slack redistribution and cell-resizing to reshape
the distribution of near-critical paths. Overall this approach
achieves significant power savings within target error rate.
Our work is orthogonal and can be applied in concert with
design-level optimization to reduce the impact of the “critical
voltage wall” and boost timing speculation.

Analytic Versus Simulation Driven Models
Most prior work applies analytic error models either de-

rived from empirical error rates [40] or extrapolated from
circuit-level simulation [13]. While detailed gate-level timing
models have been used in some studies [24], the simulation
slowdown is often prohibitively slow. In particular, it typ-
ically limits study to very small portions of the processor
design (e.g. a single execution unit). Our work used de-
tailed gate-level delay simulation coupled with conventional
microarchitectural simulation to provide analysis of timing
error locality at the granularity of static instructions. Sim-
ulation time is still a bottleneck for this research. We hope
that the knowledge that static instruction-level error rates
are non-uniform will encourage other researchers to develop
novel methodologies and models to accelerate simulation.

Static Versus Run-time Optimization
Very recently, there has been interest in adding compile-

time support for timing speculation [10, 36]. Hoang et al.
showed that instruction sequences can have significant impact
on timing error rates within a simple five stage processor [10].
They evaluated a few very simple code transformations that
significantly reduce the error rate. Sartori and Kumar in-
vestigated the impact of standard compiler optimizations on
timing errors in a family of out-of-order architectures [36].
They show that compiling specifically for error resilient ar-
chitectures can yield significant benefits through overscaling.
Recent work by Zandian et al. [43] also explores cross-layer
optimizations, namely application-specific path profiles, to
improve wearout monitoring.

Parameter Variation
Much of the previous work has examined timing specula-

tion as a means to overcoming circuit latency uncertainties
related to parameter variations [15, 35]. We do not focus di-
rectly on parameter variation in our work. The primary gains
we achieve come through exploiting differences in input sensi-
tive timing paths. Although as we show, timing error locality
is still a prominent and observable phenomena under param-
eter variation. This occurs for several reasons. First, pa-
rameter variations largely shift or reshape error curves. The
critical path that an instruction accesses is largely dominated
by its opcode and operand values. Process variation would

make some small changes in which instructions were critical
at a given operating voltage or alter the point at which the
instructions became critical. It would not likely change the
fact that a small number of instructions would be responsible
for most of the timing errors. Second, if parameter variation
did affect the error rate curves of two functional units in
different ways, this still would not be likely to have a huge
impact on our results. For relatively simple superscalar yet
in-order cores (such as the one we model in this work), static
instructions frequently execute on the same functional unit.
In this case, individual timing-critical instruction would be
no more difficult to predict than if there had been no varia-
tion. Finally, in designs where there was no strong binding
between static instructions and execution units, one could
imagine extending the predictor mechanism to make multi-
ple predictions, one for each execution unit. When scheduling
decisions are made either during or after slotting, the corre-
sponding prediction could be examined to appropriately pad
or not pad the instruction accordingly.

9 Conclusion
In this work, we examined error rate locality in processor

execution hardware using detailed gate-level simulation. We
find that static instructions have rather predictable and sta-
ble error rates (timing error locality). In particular, we find
that the majority of timing errors come from a small num-
ber of static instructions and these static instructions tend
to have stable error rates. Based on this insight we devel-
oped error prediction and error padding, a general pipeline
scheduling technique that can be used to reduce the recovery
cost in the event of predicted timing error.

We examined a wide range of mechanisms to dynamically
predict timing critical instructions. When combined with er-
ror padding, we can avoid the full cost of timing error recovery
in traditional better-then-worst-case (BTWC) design. Our
simulation shows that error prediction can successfully iden-
tify over 80% of the timing errors and reduce the performance
penalty caused by timing error recovery by 80% on average.
Because error rates are also a function of program phase and
other dynamic factors, we also implemented dynamic tuning
algorithms that optimizes the energy-delay while maintain
tolerable performance degradation level. With the dynamic
control mechanism we could achieved 21% improvement in
power efficiency compared to a baseline timing speculative
design with the same dynamic optimization mechanism.



10 Acknowledgments
We would like to thank anonymous reviewers for their help-

ful comments. This work was supported by NSF CAREER
CCF-0644332 and NSF CSR-0720820.

11 References

[1] R. K. Andrew Kahng, Seokhyeong Kang and J. Sartori.
Designing processors from the ground up to allow
voltage/reliability tradeoffs. In Proceedings of the 16th
International Symposium on High Performance Computer
Architecture (HPCA-16), ”Jan” 2010.

[2] T. Austin. Diva: A reliable substrate for deep submicron
microarchitecture design. In Proceedings of the 32nd Annual
Symposium on Microarchitecture (MICRO-32), November
1999.

[3] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge.
Opportunities and challenges for better than worst-case design.
In Proceedings of the 2005 Asia and South Pacific Design
Automation Conference, ASP-DAC ’05, pages 2–7, New York,
NY, USA, 2005. ACM.

[4] O. Azizi, A. Mahesri, B. Lee, S. Patel, and M. Horowitz.
Energy-performance tradeoffs in processor architecture and
circuit design: a marginal cost analysis. In ISCA 2010.
International Symposium on Computer Architecture, pages
26–36. ACM, 2010.

[5] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt.
Network-oriented full-system simulation using m5. In Sixth
Workshop on Computer Architecture Evaluation using
Commercial Workloads (CAECW), February 2003.

[6] E. Borch, S. Manne, J. Emer, and E. Tune. Loose loops sink
chips. In hpca, page 0299. Published by the IEEE Computer
Society, 2002.

[7] D. Ernst et al. Razor: A low-power pipeline based on
circuit-level timing speculation. In The 36th International
Symposium on Microarchitecture (MICRO-36), 2003.

[8] P. Friedberg, Y. Cao, J. Cain, R. Wang, J. Rabaey, and
C. Spanos. Modeling within-die spatial correlation effects for
process-design co-optimization. In Proc. of the 6th Int. Symp.
on Quality Electronic Design, 2005.

[9] F. Gabbay and A. Mendelson. Using value prediction to increase
the power of speculative execution hardware. ACM
Transactions on Computer Systems, Aug. 1998.

[10] R. B. F. Giang Hoang and R. Joseph. Exploring circuit
timing-aware languages and compilation. In Proceedings of the
16th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
2011), ”March” 2011.

[11] K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for
dynamic speed-setting of a low-power cpu. In Proceedings of the
1st annual international conference on Mobile computing and
networking, MobiCom ’95, New York, NY, USA, 1995.

[12] B. Greskamp and J. Torrellas. Paceline: Improving single-thread
performance in nanoscale CMPs through core overclocking. 2007.

[13] B. Greskamp, L. Wan, U. Karpuzcu, J. Cook, J. Torrellas,
D. Chen, and C. Zilles. BlueShift: Designing Processors for
Timing Speculation from the Ground Up. In IEEE 15th
International Symposium on High Performance Computer
Architecture, 2009. HPCA 2009, pages 213–224, 2009.

[14] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun.
Confidence estimation for speculation control. In Proceedings of
the 25th International Symposium on Computer Architecture,
pages 122–31, June 1998.

[15] M. Gupta, J. Rivers, P. Bose, G.-Y. Wei, and D. Brooks.
Tribeca: Design for pvt variations with local recovery and
fine-grained adaptation. In Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pages 435 –446, 2009.

[16] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown. MiBench: A free, commercially representative
embedded benchmark suite. In IEEE 4th annual Workshop on
Workload Characterization, 2001.

[17] T. Halfhill. Intel’s tiny atom. Microprocessor Report, 22(4):1,
2008.

[18] http://www.nangate.com. Nangate 45nm Cell Library.

[19] Janak H. Patel. CMOS process variations: A critical operation
point hypothesis. 2008.

[20] S. G. D. K. A. Bowman and J. D. Meindl. Impact of die-to-die

and within-die parameter fluctuations on the maximum clock
frequency distribution for gigascale integration. IEEE Journal
of Solid State Circuits, 37:183–190, Feb. 2002.

[21] A. Kahng, S. Kang, R. Kumar, and J. Sartori. Designing a
processor from the ground up to allow voltage/reliability
tradeoffs. In High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on, pages
1–11. IEEE, 2010.

[22] D. Lampret. Openrisc 1200 ip core specification, rev. 0.7. Sep,
6:9, 2001.

[23] M. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and
Y. Zhou. Trace-based microarchitecture-level diagnosis of
permanent hardware faults. In IEEE International Conference
on Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008, 2008.

[24] M. Li, P. Ramachandran, S. Sahoo, S. Hari, S. Adve, V. Adve,
and Y. Zhou. SWAT-Sim: Accurate Microarchitecture-Level
Fault Models. In Poster, GSRC Annual Symposium, volume 29,
2008.

[25] X. Liang, R. Canal, G. Wei, and D. Brooks. Process variation
tolerant 3T1D-based cache architectures. In Proceedings of the
40th Annual IEEE/ACM International Symposium on
Microarchitecture, 2007.

[26] X. Liang, G.-Y. Wei, and D. Brooks. Revival: A
variation-tolerant architecture using voltage interpolation and
variable latency. In Computer Architecture, 2008. ISCA ’08.
35th International Symposium on, pages 191 –202, 2008.

[27] M. Lipasti, C. B. Wilkerson, and J. P. Shen. Value locality and
load value prediction. In Proceedings of the 7th International
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VII), pages 138–47, Oct.
1996.

[28] M. H. Lipasti and J. P. Shen. The performance potential of
value and dependence prediction. In in EUROPAR-97, pages
1043–1052. Springer-Verlag, 1997.

[29] S. McFarling. Combining branch predictors. Tech. Note TN 36,
Digital Western Research Laboratory, June 1993.

[30] S. Mukhopadhyay, K. Kang, H. Mahmoodi, and K. Roy. Reliable
and self-repairing SRAM in nano-scale technologies using leakage
and delay monitoring. In Test Conference, 2005. Proceedings.
ITC 2005. IEEE International, pages 10–1135. IEEE, 2006.

[31] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou.
Yield-aware cache architectures. In roceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-39), December 2006.

[32] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan.
Power issues related to branch prediction. In High-Performance
Computer Architecture, 2002. Proceedings. Eighth
International Symposium on, pages 233–244. IEEE, 2002.

[33] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2 edition, 2003.

[34] T. Sakurai and A. Newton. Alpha-power law MOSFET model
and its applications to CMOS inverter. IEEE J. Solid-State
Circuits, 25(2):584–594, 1990.

[35] S. Sarangi, B. Greskamp, A. Tiwari, and J. Torrellas. EVAL:
Utilizing processors with variation-induced timing errors. In
Proceedings of the 2008 41st IEEE/ACM International
Symposium on Microarchitecture-Volume, 2008.

[36] J. Sartori and R. Kumar. A case for timing error resilience-aware
compilation. In Proceedings of the 7th Workshop on Silicon
Errors in Logic - System Effects (SELSE 2011), ”March” 2011.

[37] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf
placement and routing package. Solid-State Circuits, IEEE
Journal of, 20(2):510–522, 2002.

[38] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design
tradeoffs for the alpha ev8 conditional branch predictor. In in
29th Annual International Symposium on Computer
Architecture, pages 295–306, 2002.

[39] R. Sites. Alpha architecture reference manual. Digital Pr, 1998.

[40] R. Teodorescu, B. Greskamp, J. Nakano, S. Sarangi, A. Tiwari,
and J. Torrellas. Varius: A model of parameter variation and
resulting timing errors for microarchitects. IEEE Trans on
Semiconductor Manufacturing, 2008.

[41] The Standard Performance Evaluation Corporation, December
2000. http://www.spec.org.

[42] www.synopsys.com. Synopsys Design Compiler.

[43] B. Zandian and M. Annavaram. Cross-layer resilience using
wearout aware design flow. Dependable Systems and Networks,
International Conference on, 0:279–290, 2011.


