
Enabling Deep Voltage Scaling in Delay Sensitive
L1 Caches

Chao Yan Russ Joseph
Electrical Engineering and Computer Science

Northwestern University
Evanston, Illinois, 60208-0834 USA

Email: {cya410, rjoseph}@eecs.northwestern.edu

Abstract—Voltage scaling is one of the most effective tech-
niques for providing power savings on a chip-wide basis. However,
reducing supply voltage in the presence of process variation intro-
duces significant reliability challenges for large SRAM arrays. In
this work, we demonstrate that the emergence of SRAM failures
in delay sensitive L1 caches presents significant impediments to
voltage scaling. We show that increases in the L1 cache latency
would have a detrimental impact on a processor’s performance
and power consumption at aggressively scaled voltages. We
propose techniques for L1 instruction/data caches to enable deep
voltage scaling without compromising the L1 cache latency. For
the data cache, we employ fault-free windows to adaptively hold
the likely accessed data using the fault-free words within each
cache line. For the instruction cache, we avoid the addresses that
map to defective words by relocating basic blocks. During high
voltage operation, both L1 caches have full capability to support
high-performance. During low voltage operation, our schemes
reduce Vccmin below 400mV. Compared to a conventional cache
with a Vccmin of 760mV, we reduce the energy per instruction
by 64%.

I. INTRODUCTION

While dynamic voltage frequency scaling (DVFS) remains
an effective technique for trading off energy and performance,
its effective scope can be severely limited by SRAM relia-
bility. While CMOS logic within a processor core is capable
of operating in the near threshold regime and can provide
optimal energy operation, the SRAM cells that comprise
cache structures cannot. Due to parameter variations, SRAM
reliability degrades rapidly as the supply voltage decreases.
This effectively creates a critical operating voltage known
as Vccmin, beyond which reliable operation of the SRAM
arrays cannot be guaranteed. The implications of Vccmin are
widespread. If the logic and L1 caches within a core are
confined to a single voltage domain, this places a bound on
the lowest operating voltage for the processor and may prevent
DVFS from being extended to the optimal voltage level for
some workloads. While it may be possible to further reduce
core voltage by providing independent voltage domains for the
L1 caches, this introduces overhead in the form of additional
voltage regulators and possibly level converters [1]. Even still,
scaling benefits are confined to the logic.

Previous approaches using spatial/information redundancy
or trading off the cache capacity have been applied to enhance
the SRAM reliability. While those approaches may be satis-
factory in L2 or L3 caches that are not latency sensitive, they
are problematic in L1 caches where the access path is part of
a critical performance loop for the entire design.

In this work, we introduce novel techniques for managing
L1 data and L1 instruction caches that allow deep voltage
scaling without compromising access latency. For each of the
L1 caches we tailor an approach to suit the predominant nature
of the access. For the L1 data cache we take advantage of
spatial locality within a logical cache block to remap the
most likely accessed data into the fault-free words within
each physical frame. For the L1 instruction cache, we take
advantage of the sequential nature of fetch and control flow
to relocate basic blocks. Both of these techniques offer very
high fault coverage without impacting critical paths. Moreover
these approaches require little hardware overhead and do not
affect high voltage operating modes. Overall, we show that it
would be possible to scale the core voltage to 400mV in a
45nm technology node with 64% percent reduction in energy
per instruction over a conventional cache with a Vccmin of
760mV.

The remainder of this paper is organized as follows.
Section II introduces the impact of process variations on con-
ventional SRAM cells and our model for failure probability. In
Section III, we discuss the prior work on reducing the variation
impact. Section IV presents the proposed schemes in detail.
In Section V, we introduce the experimental methodology.
Section VI evaluates our schemes with design analysis of area,
latency and leakage power. We also present the simulation
based results for performance and energy consumption. Sec-
tion VII concludes this paper.

II. BACKGROUND: UNDERSTANDING IMPACT OF
VARIATION

A. SRAM cell failures

Figure 1 shows a conventional 6T SRAM cell. The cell
consists of two cross coupled inverters ‘I0’ and ‘I1’ that form
a bi-stable circuit allowing the storage of either ‘0’ or ‘1’.
The storage nodes ‘n0’ and ‘n1’ are connected with bitlines
through two pass transistors ‘T0’ and ‘T1’. A wordline select
signal (WL) is applied to the pass transistors during read/write
operations.

Read: both bitlines are precharged to VCC. Then the wordline
select signal turns on the pass transistors. After which, node
‘n0’ discharges the bitline ‘BL’ through transistors ‘N0’ and
‘T0’. A sense amplifier is activated to amplify the small
differential voltage across the bitlines. When the time given
for discharging the ‘BL’ is insufficient, the differential voltage
developed across the bitlines is too small to be identified by the

n1

WL

BL
I0

T0

"0"

"1"

N0 N1

P0

n0

VCC

GNDGND

T1

~BL
I1

P1

Fig. 1: Conventional 6T SRAM cell.

sense amplifier, leading to an access time failure. In addition,
when the voltage noise rising on node ‘n0’ becomes larger
than the switching point of the inverter ‘I1’, the stored value
is flipped during a read operation, leading to a read failure.

Write: bitlines are driven to the desired value. Then the
wordline select signal turns on the pass transistors. After
which, the write value drives into the cell and flips the cell
state. Since the pass transistor ‘T1’ must discharge node ‘n1’ in
order to toggle the content of the cell, ‘T1’ must be overpower
the pull-up transistor ‘P1’. Failing to toggle the cell content
during a write operation leads to a write failure.

Standby: a cell may lose its state due to a voltage drop, which
leads to a hold failure.

B. Impact of supply voltage and failure modeling

To guarantee the reliability of SRAM cells, certain noise
margins must be met at all process corners [2]. At high
supply voltage, the operating margins are high enough to
ensure reliable operation. However, reducing supply voltage
leads to decreased noise margins. This decrease, coupled with
manufacturing induced process variations, introduces signifi-
cant reliability challenges to SRAM arrays. This presents the
biggest impediment to lowering Vccmin. In particular, intra-die
Random Dopant Fluctuation (RDF) is primarily responsible for
SRAM cell failures. The RDF randomly impacts the number
and the location of dopant atoms in transistors, leading to
different Vth on neighbouring transistors, which are supposed
to be matched in the original design. These random variations
are modelled as independent random variables with a Gaussian
distribution [3]. The failure probability (Pfail) is determined
as a union of individual failure events.

The Pfail is found to be a function of supply voltage,
temperature and transistor size. Figure 2 shows an example
of Pfail over VCC for a 6T SRAM cell in 65nm technology
(from [4]). The Pfail rises exponentially as VCC reduces in
steps with DVFS. It is evident that a die that contains even
a single cell failure must be discarded. Hence, the Pfail is
the key for determining the chip yield. We assume as in [2],
[4] that an acceptable manufacturing yield requires 999 out of
every 1000 dies to be fault-free. For a 32KB cache, Vccmin
must be above 760mV to avoid sacrificing chip yield. Figure

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Supply Voltage (V)

1e0

1e-3

1e-6

1e-9

1e-12

P
r
o
b
a
b
i
l
i
t
y

o
f

F
a
i
l
u
r
e 32KB Cache

 Vccmin

32KB Cache
32B block
4B word
1 bit

Fig. 2: Probability of failure for SRAM structures at different
granularities [4].

2 also shows the Pfail of a 4B word and a 32B cache block.
Since a cache block consists of many cells and the failure of
any one of these cells could render the cache block defective,
the Pfail of a cache block is significantly higher than that of
individual words or bits. Therefore, protecting caches at finer
granularity is necessary to handle the rapidly increasing Pfail

when voltage scales beyond 500mV.

III. RELATED WORK

In order to enhance the SRAM reliability, a cache designer
has many alternatives at the circuit, architectural, and software
levels. A common objective shared by the existing work is
to guarantee architecturally correct execution (ACE) [5]. At
the circuit level, the reliability can be improved via building
more robust SRAM cells. At the architectural level, a common
approach is to disable all of the defective cells at various
granularities. At the software level, defective cells can be iso-
lated by carefully controlling the address allocation of useful
data. In this section we show that the existing schemes have
either limited capability or prohibitive overheads for protecting
L1 caches at aggressively scaled voltages. We expect our
proposals to overcome those drawbacks and enable voltage
scaling beyond 400mV.

A. SRAM cell enhancement

At the circuit level, the most intuitive way to improve
reliability is to change the basic design of the cell. Upsizing
the devices improves the stability of the traditional 6T based
SRAM cells. The Vt variations can be reduced by 30% via
doubling the channel width [3]. Variations on SRAM cells
can also be mitigated using novel topologies like 8T cell [6],
10T cell [7] or ST cell [8]. These designs deliver better low
voltage reliability at the cost of a 30% to 100% area overhead.
Therefore, the cell enhancement approaches are appropriate
only for small array structures like register files. In contrast,
our proposals are more area efficient at protecting large array
structures like caches, where increasing cell area would lead
to either decrease in overall capacity and/or increase in access
time.

B. Variation aware architecture

At the architecture level, defective portions of a cache
are isolated at the cost of redundant cells or reduced cache
capacity.

Redundancy based approaches use redundant space for
enhancing the SRAM reliability. Spare rows/columns are
the typical redundancy employed for yield saving [9] and
reliability enhancement [10]. In these schemes, redundant
rows/columns are added to SRAM arrays for replacing de-
fective rows/columns. The cache remains the same capacity,
but the amount of available redundancy limits the capability
of fault coverage. Thus, the redundant rows/columns are only
capable of tolerating a small number of failures.

Error detection/correction code (EDC/ECC) is another form
of redundancy for fault tolerance. It has proven to be effective
at tolerating infrequent transient faults. However, caches need
to be armed with multi-bit ECC to work under high defect
density. ECC/EDC requires extra storage for the check bits as
well as high latency decoders for error detection/correction.
Kim et al. [11] proposed 2D ECC to provide scalable multi-
bit error protection for SRAM arrays. While this scheme has
a low cost in check bits, it requires updating the column code
after each write and multiple cycles for correcting errors. It
leads to high power and delay overhead. Recent work attempts
to reduce the ECC overhead using variable strength ECC
[12] or performing error detection/correction at a finer scale
[13]. However, with aggressive voltage scaling, multi-bit errors
become increasingly likely and quickly overwhelm the capa-
bility of ECC. Unlike the redundancy based approaches, our
proposals are capable of tolerating very high Pfail (≥ 1e−2),
while having small overhead on area and latency.

Resizing based approaches trade-off cache capacity for bet-
ter reliability. A typical solution is to disable defective
lines/rows/ways using gated-vdd or remapping. The gated-vdd
scheme [14] cuts off the supply voltage of the defective way.
It also turns off the decoders, precharge circuits and sense
amplifiers to eliminate the static power. On the other hand,
the remapping schemes ([15], [16]) remap the defective way
to a neighbouring fault-free way by altering the way index.
Disabling at cache line level gracefully degrades cache capac-
ity and recovers decent proportions of a cache at moderate
failure rates (Pfail ≤ 1e−3) [17]. However, it is not sufficient
at aggressively scaled voltages where almost every cache line
is expected to be faulty.

Disabling defective cells at smaller granularities avoids the
excessive loss of cache capacity when dealing with high defect
densities. Wikerson et al. [4] proposed two word level fault
tolerant mechanisms. Word-disable combines two consecutive
cache lines to form a fault-free line. Bit-fix uses a quarter
of the cache towards repairing defective cells. These two
schemes reduce Vccmin to 500mV in 65nm technology, while
sacrificing cache capacity by 50% and 25% respectively.

Of fine grained defect-aware caches, the word substitution
based techniques are particularly important. A graph based
algorithm is used to flexibly group a sacrificial cache line with
one or more cache lines. The cache lines within a group are
collision free in the respective defective word locations. In this
way, defective words of one line can be substituted with fault-
free words of the sacrificial line. Examples include ZerehCache

[18], Archipelago cache [19] and Macho cache [20]. These
techniques attempt to reduce Vccmin to 400mV. However,
additional multiplexing and associated logic for Mux-control
are required in the critical path. It introduces extra latency
to the cache access. Since the hit latency of L1 caches are
particularly important for performance, the word substitution
schemes are mostly suitable for protecting L2 caches.

Tayyeb et al. [2] introduce a Fault Buffer Array (FBA) that
stores defective words in a small word-location-tagged cache.
Accesses to the faulty words are redirected to the FBA. The
faulty words that miss the FBA are dealt like normal cache
misses. These methods are proven to be energy efficient at
moderate defect densities (Pfail ≤ 1e−3). However, the FBA
requires expensive content addressable tag array. It makes the
size of FBA a serious limitation at high defeat rate. Similarly,
Sasan et al. [21] propose an Inquisitive Defect Cache (IDC)
that maps in-use defective words to an auxiliary set-associative
cache. Its effectiveness is constrained by the IDC size and the
feasible degree of associativity. In this work, the idea of simple
word disabling, where defective words that miss the cache are
handled like normal cache misses, is extended for an area,
delay and energy efficient solution. A new architecture that
explores the runtime spatial locality is proposed for L1 data
caches.

C. Software solutions

At the software level, compiler techniques are proposed to
minimize the hardware overhead of fault tolerance. Meixner
and Sorin [22] introduce I-Cache Detouring which keeps
the core from touching faulty cache sets by inserting an
unconditional jump right before each defective line. This
scheme is effective for tolerating hard faults in simple cores
where hardware resources are very limited. Nevertheless, a
software approach that is able to disable defective cells at word
granularity is highly desirable for achieving lower Vccmin.
This work propose a novel software based approach to protect
the L1 instruction cache by relocating program basic blocks.
Compared to I-Cache Detouring, it allows reliable operation
below 400mV (Pfail ≥ 1e−2) with minimum hardware
modifications.

IV. TWO FAULT TOLERANCE MECHANISMS

In this section, we describe two fault tolerance mecha-
nisms which permit reliable low voltage operation in L1 data
cache and L1 instruction cache respectively. The first mech-
anism, fault-free window (FFW), identifies defective words
and dynamically maps the most likely accesses into fault-
free words in each cache line. The second mechanism, basic
block relocation (BBR), identifies defective words and maps
program basic blocks into contiguous fault-free words. Both
mechanisms address SRAM cell failures in cache data arrays.
The tag arrays and other memory structures are implemented
using robust 8T cells [6] which allow the tag array of a
32KB cache to operate at 400mV. Since the tag array and
the extra structures for fault tolerance are much smaller than
the data array, using 8T cells would not incur high overhead
(see Section 6). The L1 caches are assumed to be addressed
at a 32-bit word level. We leverage Built-in Self-test (BIST) (
[4], [23]) to identify defective words at all system supported
DVFS operating points. BIST checks read/write functionality

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

De
ns

it
y

(%
)

(a).401.bzip2
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(b).429.mcf
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(c).456.hmmer
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(d).462.libquantum
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(e).basicmath
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

De
ns

it
y

(%
)

(f).qsort
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(g).patricia
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(h).dijkstra
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(i).crc32
spatial locality
reuse rate

0.0 0.2 0.4 0.6 0.8 1.0
Spatial Locality &

 Reuse Rate

0
10
20
30
40
50
60
70
80
90
100

(j).adpcm
spatial locality
reuse rate

Fig. 3: Normalized histogram of spatial locality and word reuse rate. The results are accumulated from 10000 representative
intervals for each application. Most applications exhibit poor spatial locality and/or high reuse rate.

of an SRAM array by writing test patterns and then evaluating
the read responses. Defective words are transferred to an off
chip storage and are recorded in fault maps ([2], [4]).

A. Fault-free window in data caches

1) Spatial locality and word reuse: The FFW based scheme
was motivated by the observation that the majority of applica-
tions exhibit low spatial locality and/or high word reuse rate.
This means that only a portion of the words in a cache block
are likely to be accessed repeatedly during a given program
interval. The goal of the FFW is to minimize the impact of
defective words by allowing cache lines to store those most
likely accesses using the available fault-free words.

Figure 3 shows the normalized histogram of the spatial
locality and the word reuse rate in data caches. To quantify
the spatial locality, we use the method proposed in [24]. Every
fixed interval of 10000 instructions during an application’s
representative 100 million instruction trace is examined. The
spatial locality is described as the ratio of data which the
application actually uses to the total cache line size. We also
show the word reuse rate, which is described as the ratio of
the repeated accesses on unique words to the sum of the word
accesses.

The results show that most applications exhibit poor spatial
locality and/or high reuse rate. For example, 429.mcf, 456.hm-
mer, basicmath, qsort, patricia and dijkstra have only 30% to
60% of the words being accessed during a program interval
and more than 80% of the accesses are repeated. Moreover,
401.bzip2, crc32 and adpcm have over 60% of the words
being accessed and more than 60% of accesses are repeated.
462.libquantum is the only exception that has high spatial
locality and low word reuse rate.

2) Fault-free window for capturing likely accesses: The
FFW is a mechanism that takes advantage of the low spatial
locality and high word reuse rate to dynamically capture the
active words within each logical cache block. When a physical

frame contains defective words, it can still hold a partial cache
block using the remaining fault-free words. When a cache
block arrives, contiguous words are scattered to fault-free word
entries in the physical frame. It logically forms a fault-free
window which is able to capture the likely accesses. Assuming
a write through cache, where accesses to the missing words
can be treated as normal cache misses. When the requested
words are not in the cache, it triggers a read request to the
next level in the memory hierarchy. After a miss penalty, the
corresponding block arrives at the cache. Then the content of
the fault-free window can be updated based on the observation
that an application is likely to reference the memory locations
that are close to the missing words in the near future.

Figure 4 shows the proposed cache architecture. The stored
pattern array (StoredPattern) stores valid bits of the cache
words. If there is a tag hit, the data arrays column MUX
selects the hitting cache way for data transaction. However, the
requested word may not be in the cache. In the StoredPattern
array, MUX1 selects the stored pattern of the hitting cache
way using matched way index. Subsequently, MUX2 selects
the valid bit of the requested word using the word offset. A hit
signal is generated when the address hits in the tag array and
the valid bit is 1. The fault map array (FMAP) stores defect
marks of the cache words. When a processor switches to low
voltage mode, the fault map which corresponds to the current
operating condition is loaded into FMAP. Fault maps can be
stored in main memory and loaded into FMAP using special
instructions or system calls [2]. The FMAP employs MUX3 to
select the fault pattern of the hitting cache way using matched
way index. Since contiguous logic words are scattered to fault-
free word entries in each physical frame, the word offsets are
altered based on the stored pattern and the fault pattern of
the hitting cache way. Word remapping logic is employed to
calculate the actual word offset before the data array’s column
MUX selects the requesting word.

In order to minimize cache misses, a fault-free window
should move along with the likely accesses in a cache block.

Remapping19 8

4

8 8

32

4 4

8

3

3

4

8 3

Word Hit

0

2

3

4

5

6

7

1

0

2

3

4

5

6

7

1

0

0

1

1

1

0

0

0

0

0

1

1

1

1

0

1

31 0112

Tag Row Index Word Offset 0 0

13

Tag Hit

Hit

Data Out

W
o
r
d

li
n

e
 D

r
iv

e
r

MUX3 Column MUX

MUX2

MUX1

5 4

=

Address Format

2

StoredPattern FaultPattern

0x1

0x3

R
o
w

 D
e
c
o
d

e
r

Marked in FMAP

Word

Word Offset’

Defective Words

Data ArrayTag Array StoredPattern
Array

FMAP
Array

Fault−free
Window

Word Offset

Logic

Fig. 4: Fault-free window based cache architecture. We also
show an example of computing the actual word offset. The
stored pattern ‘01111100’ indicates that the fault-free window
in the hitting cache way contains logic word 2 to 6. A word
offset ‘0x3’ points to the second word in the fault-free window.
It is mapped to the second fault-free word entry ‘0x1’ in the
physical frame. Therefore, the real word offset ‘0x1’ is sent
to data array’s column MUX to select the requesting word.

StoredPattern

0x5

0

2

3

4

5

6

7

1

0

0

1

1

1

0

0

0

0

2

3

4

5

6

7

1

0

0

1

1

1

0

0

0

Word Miss

0x5

Fault−free

Window

0

2

3

4

5

6

7

1

1

1

1

1

1

0

0

0

0

2

3

4

5

6

7

1

1

1

0

0

0

1

1

1

FaultPatternFaultPatternStoredPattern

Word Miss

Fig. 5: Updating fault-free windows.

The application’s spatial locality shows that if an application
references a word that misses the cache, it is likely to reference
the memory locations that are close to the missing word very
soon. Thus, a fault-free window could satisfy an application’s
access pattern by storing the words that are close to the missing
word. Figure 5 shows an example of updating the fault-free
window. When a cache block arrives at the cache for the first
time, it stores a default pattern. In the example the default
pattern is the first five contiguous words. There is no cache
miss until the application references word 5, 6 or 7. Suppose
referencing word 5 causes the first cache miss. After a miss
penalty the corresponding cache block comes from the lower
level cache, the fault-free window changes its stored pattern
and moves towards the missing word. In our design, we let
the missing word stand in the middle of the new fault-free

window. Updating the fault-free window is on the cache miss
path, which is not critical compared to the hit path. Moreover,
the missing word can be forwarded to CPU before updating
the fault free window. Therefore, it requires no extra access
latency.

B. Basic block relocation in instruction caches

1) Distribution of effective capacity: The BBR based
scheme was motivated by the observation that the remaining
fault-free words in the instruction cache are often sufficient
to capture the application’s working set during each program
interval. Note that this may not be true for applications with
large instruction working sets like commercial workloads,
but this is a valid assumption for the embedded benchmarks
evaluated in this paper. The goal of the BBR is to prevent the
core from touching defective words by remapping each basic
block to a group of contiguous fault-free words (known as a
fault-free chunk), which is capable of holding that basic block.

Figure 6 (a) plots the worst case distribution of the ef-
fective capacity of a 32KB instruction cache when executing
‘basicmath’ at 400mV. Suppose that the basic blocks can move
as needed and settle in the first available fault-free chunk.
We examine the distribution of the cache capacity for every
fixed interval of 1 million instructions in the application’s
representative 100 million instruction trace.

0 20 40 60 80 100
Program Intervals

0

2k

4k

6k

8k

10k

N
u
m
b
e
r

o
f

W
o
r
d
s

(a) Distribution of instruction cache capacity
Cannot hold

Reused

Used

Internal
fragmentation

Not used

Faulty

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >=20
Number of Instructions

0

100

200

300

400

500

O
c
c
u
r
r
e
n
c
e
s

(b) Basic blocks versus faulty free chunks
fault free
chunks

basic blocks
in 1 million
traces

Fig. 6: Worst case distribution of the instruction cache capacity.
Despite the presence of defective words, the instruction cache
still has enough fault-free words to capture the application’s
working set during each program interval.

Although the defective words make a significant portion
of the cache unavailable, the cache is still not fully utilized
mostly due to the application’s small memory footprint during
each interval. Certain fault-free chunks are being shared by
multiple basic blocks that are too large to be relocated to any
of the unused fault-free chunks. This sharing may introduce
more conflicts, but it only contributes to a small portion of the
cache accesses. Figure 6 (b) explains the degree of sharing by
comparing the distribution of the basic block size and the fault-
free chunk size. The basic blocks that contain 5 instructions are

the major causes of the sharing. Previous studies have reported
an average basic block size of 5 to 6 instructions for most
CPU intensive benchmarks [25], [26]. The basic blocks of this
typical size are not problematic since they could be moved
to larger fault-free chunks. After all, the available fault-free
chunks in the instruction cache are sufficient to capture the
application working set.

2) Basic block relocation for isolating defective words:
The key to the BBR is to pad the code such that a basic block
can be relocated to a proper fault free chunk. The padding
can be performed in many contexts — via static compilation,
Just-in-time (JIT) compilation or binary translation. In our
implementation of BBR, it is performed by the linker, which
avoids addresses that map to defective words when placing
instructions. Since software driven relocation needs direct
control over the location where instructions are placed in the
instruction cache, a direct mapped cache is required in low
voltage mode. In this work, we change the basic cache design
to support dynamic switching of cache operation between set-
associative and direct-mapped modes. The instruction cache
can be configured as set-associative during high voltage oper-
ation to permit high performance, and as direct-mapped during
low voltage operation to support BBR. Therefore, the hardware
has no overhead when high voltages preclude defects.

Cache Mode

2

2

3

1

32

Tag

Tag Array Data Array

Data Out

Hit

Offset

1

Row Index

M
U

X

M
U

X
M

U
X

Data Mux=

R
ow

 D
ec

od
er

(SA/DM)

1

Fig. 7: Cache architecture that supports dynamic switching
between set-associative mode (SA) and direct-mapped mode
(DM), similar to [27].

To implement direct-mapped accesses on top of a set
associative cache, least significant bits of the tag are used
to explicitly select a way in the selected set. This approach
is first proposed in the Dynamic Associative Cache (DAC)
[27], which uses shadow tags to track hypothetical cache
performance and dynamically switch between direct-mapped
and set-associative to reduce the power consumption. Unlike
DAC, the cache proposed here does not require shadow tags for
monitoring performance. When the processor switches to low
voltage mode, all cache contents are invalidated and the cache
is configured as direct-mapped. Since the cache stays direct-
mapped throughout the low voltage mode, the performance
impact of mode switch is ignorable. Figure 7 shows the
architecture of a 4-way set associative cache which supports
dynamic mode switching. The the least significant tag bits and

the index bits are combined to select the desired cache line in
the direct-mapped mode.

With hardware support, the instruction cache circuitry is
under direct software control. The linker is able to decide
where instructions are placed in the instruction cache by
managing the instruction addresses. Nevertheless, the program
code needs to be transformed before the basic blocks can move
freely. In our implementation, this job is done by the compiler,
which starts with the program source code and generates
object files. In this work, we evaluate an ARM system, but
in principle BBR can be applied to any ISA given appropriate
modifications to the binary.

BBR Code

fp, lr
sub sp, sp, #8
mov ip, r0

ldr r0, [pc, #40]
add fp, sp, #20
stm

r2, sp, #20add
r1, ipmov
r2, [sp, #4]str
r0, [r0]ldr
_vfprintbl

sp, sp, #8add
fp, lrpop

sp, sp, #16add
pc, lrmov

.word 0x0008b6f8
.
.
.

printf:
bb0: sub sp, sp, #16

fp, {r1, r2, r3}

bb1:

_vfprint:

_bb0:
printf:

sub sp, sp, #16
push
sub
mov
ldr
add
stm
b
.word

fp, lr
sp, sp, #8

ip, r0
r0, [pc, #8]
fp, sp, #20
fp, {r1, r2, r3}
_bb1
0x0008b6f8

r2, sp, #20add
r1, ipmov
r2, [sp, #4]str
r0, [r0]ldr
_vfprintbl

b _bb2

_bb1:

sp, sp, #8add
fp, lrpop
sp, sp, #16add
pc, lrmov

.

.

.

_bb2:

_vfprint:

(1) inserting
jumps

(2) breaking
basic blocks

(3) moving

literal pool

Original Code

push

Fig. 8: Code transformation that supports basic block reloca-
tion.

Figure 8 shows an example of the code transformation on
function ‘printf’ from the standard library. The compiler makes
three types of transformation to support BBR.

(1) Inserting jumps: the basic block ‘bb0’ is followed by a
succeeding basic block ‘bb1’. The program control flow may
transfer from ‘bb0’ to ‘bb1’ (fall through). If the compiler
inserts an unconditional jump to the end of basic block ‘bb0’,
the linker is able to relocate ‘bb0’ and maintains the program
control flow by changing the target address of the new jump
instruction.

(2) Breaking basic blocks: the basic block ‘bb0’ may be too
large to be relocated to any of the fault free chunks in the
instruction cache. If the compiler breaks ‘bb0’ into two smaller
basic blocks ‘ bb0’ and ‘ bb1’ by inserting an unconditional
jump, the instruction cache can hold these two basic blocks
using smaller fault free chunks.

(3) Moving literal pool: a load instruction with PC-relative
address is employed to read constant values from a literal pool.
The load instruction and the literal pool are required to be
within a memory page (4KB). To relocate a basic block that
contains such load instructions, the compiler needs to move
the corresponding literal pool to the end of the basic block.

The code transformation is applied to all of the program
components including the program code, standard libraries and
run time libraries.

After the code transformation, the linker reads the object
files and manages the instruction addresses according to fault
maps. It treats each basic block as a relocatable section and
controls their starting addresses by inserting gaps among basic
blocks. Moreover, it changes the target address of the jump
instruction at the end of each basic block to maintain the
program control flow. We use a simple and fast algorithm to
match basic blocks to fault free chunks. It maintains a global
pointer, which points to the current position in the fault map.
For a given basic block, it scans the fault map starting from
the current position and matches the basic block to the first
appropriate fault free chunk. Then it moves the pointer to the
end of that basic block and proceed to match the next basic
block. The matching algorithm loops around the instruction
cache and tries to utilize all of the fault free chunks in an
effort to hold as many basic blocks as possible. In such a way,
all of the defective words in the instruction cache are avoided.
Algorithm 1 shows pseudocode of the matching process. Note
that the BBR is valid only for an instance of the instruction
cache at a specific DVFS operating point. The caches using
BBR must be flushed when converting to a lower supply
voltage and hence higher Pfail.

Algorithm 1 Matching basic blocks to fault-free chunks.
Input:

BB: basic blocks

FMAP: fault map of the cache . one bit per word

memAddr: starting memory address

csize: number of words in the cache

Output:

bbMap: a map of basic block starting addresses

1: procedure MATCH(BB, FMAP , memAddr, csize)

2: initialize bbMap← empty map

3: foreach bb ∈ BB do

4: cacheAddr ← memAddr mod csize

. start scanning FMAP.

5: while the fault-free chunk starting at cacheAddr is smaller than bb size do

6: memAddr ← next word address in memory

7: cacheAddr ← memAddr mod csize

8: end while

. Assume each bb can find a fault-free chunk, the while loop would finish.

9: add mapping (bb, bbAddr) to bbMap

10: memAddr ← memAddr + bb size

11: end for

12: return bbMap

13: end procedure

V. METHODOLOGY

In order to evaluate our proposals, we model a micropro-
cessor system using the gem5 simulation infrastructure [28].
The simulated processor configuration is depicted in Table I.
The processor features a 2 way superscalar pipeline and 32KB
dedicated L1 caches with 32B blocks. It models embedded
microprocessors like ARM Cortex A9. The workload includes
4 SPEC2006 [29] benchmarks and 6 Mibench [30] benchmarks
compiled for ARM ISA. In the experiments, we mainly focus
on evaluating embedded applications. While applications with

greater live footprints are also included. A comprehensive
study of the limit of application live footprints is a part of
our future work.

DVFS is only applied to the core logic and L1 caches,
whereas the L2 cache is supplied with a separate fixed voltage.
To permit synchronized operation, frequency scaling is applied
to the L2 cache. Table II shows the DVFS configuration.
Our experiments are based on the Pfail in 45nm technology
(reported in [2]). The core frequencies are estimated assuming
20 FO4 delays per cycle. The FO4 delay is measured with
Hspice simulation on a FO4 inverter chain. The region of
interest lies between 560mV and 400mV, where Pfail rises
exponentially from 1e−4 to 1e−2. In this region, fault tolerance
becomes quite challenging since most of the coarse-grained
techniques cannot guarantee reliable operation.

(a) Core Configuration
Microarchitecture 2-way superscalar (gem5

arm-detailed)
Clock Speed 1.9GHz
Functional units 2 INT ALUs, 1 FP ALU, 1

INT MULT, 1 FP MULT
Physical Registers 128 INT, 128 FP
Reorder buffer 128 entries
Load/store queue 64 entries
Branch history table 4096 entries
Branch target buffer 512 entries, 8-way
(b) Memory hierarchy
L1 instruction cache 32kB, 4-way, 32B blocks,

LRU, 2 cycles
L1 data cache 32kb, 4-way, 32B blocks,

LRU, 2cycles, write through
Unified L2 cache 512kB, 8-way, 32B blocks,

LRU, 10 cycles, write back

TABLE I: Processor configuration

DVFS configuration

Core voltage
(mV)

Core frequency
(MHz)

Pfail

(from [2])
760 1607 0
560 1089 1e−4.0

520 958 1e−3.5

480 818 1e−3.0

440 638 1e−2.5

400 475 1e−2.0

TABLE II: DVFS configuration

For a 32KB cache, the supply voltage can be decreased
to 760mV without sacrificing the 99.9% target chip yield.
Therefore, we simulate a baseline cache with a Vccmin of
760mV to quantify the relative energy savings. In order to
understand the relative performance loss due to the fault
tolerance overheads on cache latency and capacity, we also

simulate an unrealistic baseline cache that has defect-free
operation without latency overhead and capacity loss at each
DVFS operating point.

Due to the random nature of SRAM failures, the exper-
iments are based on the Monte Carlo method. By repeating
simulations on random samples, the results represent common
cache accesses. To have statistically meaningful results, we
generate up to 1000 faultmaps for both instruction cache and
data cache at each DVFS operating point. The instruction cache
faultmaps are used to decide basic block placement at link
time. On the other hand, the data cache faultmaps are used to
guide the update of fault-free windows during the simulation.
For each simulation, we execute each program with reference
inputs by running to completion. With these faultmaps the
results achieve 95% confidence interval and 5% margin of
error.

We implemented the code transformation in LLVM 3.7.0
[31]. Except for the program code, it is also applied to the
standard library (libc) and the runtime library (compiler rt),
which are linked to every compiled program. The basic block
relocation is implemented in the linker. After code transforma-
tion, the linker manages basic block placements based on the
matching algorithms. The basic block relocation is controlled
using command line flags during the compiler invocation.
It has no impact on code generation unless it is explicitly
enabled.

Since FFW and BBR manage the data cache and the
instruction cache independently, combining these approaches
does not require extra effort. The combined FFW and BBR
approach is compared with a robust 8T-based cache (8T)
[6] and recently proposed architectural approaches including
Simple Word Disable (Simple-wdis) [2], Wilkerson’s word
disable (Wilkerson) [4], Fault Buffer Array (FBA) [2] and
Inquisitive Defect Cache (IDC) [21]. For all those schemes, the
data arrays are based on conventional 6T cells. The tag arrays
and other memory structures are implemented using robust 8T
cells. Finally, we leverage CACTI 6.5 [32] and MCPAT [33]
to estimate area, latency, static power and dynamic power in
45nm technology.

VI. RESULTS AND DISCUSSIONS

In this section, we present the experimental results and the
comparison of fault tolerance techniques for L1 caches. The
ultimate goal of the evaluation is to determine the effectiveness
of our approaches for promoting energy reduction and main-
taining acceptable performance. We analyze our scheme and
compare the results to a robust 8T-based cache and recently
proposed fine-grained techniques. We conduct both design
analysis on latency, area overhead, leakage power and sim-
ulation based analysis on performance and energy reduction.

A. Static comparison

In this section, we present the static comparison of area,
latency and static power. The area overhead is important
for choosing the fault tolerance approaches, especially for
area constrained cache designs as in the case of embedded
processors. On the other hand, latency and static power have
a direct impact on performance and energy consumption. That
impact is explained in the following two sections. Table III

summarizes the cache area, latency overhead and the static
power of each scheme in low voltage mode. We normalize
the area and static power to the conventional 6T based cache,
while showing the latency overhead as number of extra cycles.

Scheme Normalized
Area

Normalized
Static
Power

Latency
overhead

8T cache 128.0% 100.2% 1 cycle
FFW (dcache) 105.2% 106.4% 0 cycle
BBR (icache) 101.1% 100.1% 0 cycle

FBA (64 entries) 112.0% 106.1% 1 cycle
Wilkerson 103.4% 104.5% 1 cycle

IDC (64 entries) 113.7% 105.9% 1 cycle
Simple wdis 103.3% 103.6% 0 cycle

TABLE III: Static overheads

1) Area overhead: The area overhead of the FFW based
data cache comes from the extension of the tag array to
accommodate FMAP and StoredPattern (Figure 4). Since the
FFW only protects cache data arrays, tag arrays with FMAP
and StoredPattern are implemented using robust 8T cells.
Compared to conventional 6T cells, 8T cells increase the
memory cell area by 30% [34]. However, the area of the
remaining cache components like decoder, sense amplifier and
inter-bank wires may change along with the optimal cache
organization. We modify CACTI [32] to estimate the area.
The FFW increases the data cache area by 5.2% (1% tag,
4.2% FMAP and StoredPattern). On the other hand, the area
overhead of the BBR based instruction cache comes from the
implementation of the direct mapped mode on top of a set
associative cache (Figure 7). This requires extra multiplexers
to explicitly select the hit signal as well as the column index.
Moreover, the 8T-based cache tag array increases the memory
cell area. CACTI shows that the BBR increases the instruction
cache area by 1.1% (1% tag, 0.1% multiplexers)

2) Static power: In order to measure the static power, we
extend cache tag arrays with the extra structures for fault
tolerance. We also add a static power model for 8T cells.
The 8T cell has slightly higher leakage power because it has
one more leakage current path than the conventional 6T cell.
However, the two transistors on this extra leakage current path
have a stack effect that reduces the sub-threshold leakage a
bit [34]. As a result, the overall difference for leakage power
is relatively small (0.2%). As shown in Table III, the FFW
based data cache increases the static power by 6.4% compared
to the conventional 6T based cache. Although this value is
slightly higher than the other architectural approaches, the
FFW allows deeper voltage scaling and significantly higher
energy reduction for the entire processor (See Figure 12).
Assuming that static power scales linearly with the supply
voltage, the values scale uniformly and hold for all cache
organizations at each DVFS operating point. On the other hand,
the static power of the BBR based instruction cache depends
on the cache access mode. In direct-mapped mode, access to
all but one hitting cache way can be disabled. On the other
hand, in set-associative mode, regular access to all cache ways
is performed. In order to reduce the design complexity, we

abandon the logic for disabling the missing cache ways in our
design and use the static power of the set-associative mode
for the BBR based instruction cache. After all, the BBR based
instruction cache increases the static power by 0.1% compared
to the conventional 6T based caches.

3) Access latency: We evaluate the access latency of the
32KB FFW based data cache in 45nm technology. Figure 9
shows the timeline of each critical path in the data cache (see
Figure 4 for architectural organization). To normalize values
across technology nodes, the delays are given in FO4. The data
array, tag array, stored pattern and fault pattern are accessed in
parallel. Since the data array is much bigger than the remaining
three components, the cache access time is decided by data
array. In addition, because stored pattern and fault pattern are
the longest critical paths next to data array and their delays
(39.4) are smaller than the row address to column MUX delay
of the data array (42.2), the overall access latency remains the
same as a conventional 6T based cache. On the other hand, the
BBR based instruction cache only adds one MUX delay to the
tag array (Figure 7). Since the tag array and the data array are
accessed in parallel, there is no latency overhead compared to
the baseline 6T based cache.

Timeline (FO4)

Sense Amp

Bitline&
Sense Amp

Bitline&
Sense Amp

Decoder&
Wordline

Decoder&
Wordline

Decoder&
Wordline

Comparator

3.0 4.9

0.0 10.0 20.0 30.0 40.0 50.0

Word Remapping LogicMUX1

Word Remapping LogicMUX3

10.4 2.9 4.6 16.0

10.4 2.9 4.6 16.0

25.9 16.3

10.9

Decoder& Wordline Bitline& Sense AmpData Array

Tag Array

Stored Pattern

Fault Pattern

C
r
it

ic
a
l

P
a
th

s

Total = 42.2

Total = 39.4

Total = 39.4

Total = 18.8

Bitline&

Fig. 9: Timeline of each critical path in the FFW based data
cache.

B. Performance

In this section, we compare the performance of our scheme
to other techniques at low voltages ranging from 560mV
to 400mV. At each DVFS operating point, we measure the
program runtime for each simulation and calculate the average
runtime of all the simulations. We then normalize the average
runtime to the defect-free baseline cache. We also divide the
runtime values into three components using the measurement
approach proposed in [35].

Figure 10 shows the normalized runtime of different fault
tolerance mechanisms at interesting DVFS operating points.
While Wilkerson’s word disable cannot achieve 99.9% chip
yield below 480mV, we give it the benefit of the doubt by
applying simple word disable as a supplementary technique
(called Wilkerson+). Moreover, we evaluate optimistic im-
plementations of FBA and IDC by granting them 1024 entries
(called FBA+ and IDC+ respectively). We also give the 8T

400mV 440mV 480mV 520mV 560mV

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
r
m
a
l
i
z
e
d

R
u
n
t
i
m
e

useful computing time
instruction related stall time
data related stall time

Fig. 10: Normalized overall runtime.

based cache 1 extra cycle assuming that the 28% increased
area may cause the latency overhead in wire delay dominated
cache structures.

Before 480mV (Pfail = 1e−3), the performance is very
sensitive to the L1 latency. For example, IDC+, Wilkerson+,
FBA+ and 8T suffer more than 40% performance loss at
560mV (Pfail = 1e−4) mostly due to the 1 cycle extra latency
on L1 caches. On the other hand, Simple-wdis incurs only
5.9% performance loss since it has no latency overhead. The
small performance loss is because of the slightly increased
L2 accesses that are caused by defective words. Note that our
approach incurs slightly higher performance since the BBR
changes the default basic block placements. The L1 latency
continues to dominate the performance until the increased L2
cache accesses become a bigger problem.

After 480mV, as defective words become increasingly over-
whelming, the increased L2 cache accesses start dominating
the performance. Simple-wdis bears the brunt of the impact
and suffers severe performance loss. On the other hand, FBA+

and IDC+ start to achieve better performance than Simple-
wdis by dynamically reusing their substitution words. Since
the FBA+ and the IDC+ have 1024 entries, they are able to
achieve fair performance recovery in this region. In the real
design, the number of substitution words is much smaller than
1024 and may become a limitation at low voltage. Our scheme
achieves greater than 50% performance compared to FBA+,
which is the best among other architectural approaches. Nev-
ertheless, our efficiency comes at zero latency overhead and
lowest area overhead compared to other schemes.

Figure 11 shows the number of L2 cache accesses. Our
approach is the only architectural solution that maintains
acceptable increases in the l2 cache accesses at 400mV where
Pfail ≥ 1e−2. It further demonstrates why our schemes could
achieve the best performance — via effectively capturing the
most likely accesses in the data cache and proper basic block
placement in the instruction cache.

400mV 440mV 480mV 520mV 560mV

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s0

50

100

150

200

250

300

350

400
N
u
m
b
e
r

o
f

L
2

a
c
c
e
s
s
e
s

p
e
r

1
0
0
0

i
n
s
t
r
u
c
t
i
o
n
s

data
instruction

Fig. 11: Number of L2 accesses per 1000 instructions.

C. Energy reduction

In this section, we compare the processor energy consump-
tion between our scheme and other fault tolerance approaches.
We use energy per instruction (EPI) as the energy metric. The
EPI results are the geometric mean of EPI for all simulations
at each DVFS operating point. We normalized the EPI values
to the baseline cache with a Vccmin of 760mV.

Figure 12 show the normalized EPI of different fault
tolerance schemes at the interested DVFS operating points.
In order to calculate the energy consumption, we assume that
dynamic power scales quadratically with supply voltage and
linearly with frequency. We also assume that static power
scales linearly with supply voltage. We give an advantage to
FBA+ and IDC+ in our energy calculation by ignoring the
energy overhead of their 1024 entries.

400mV 440mV 480mV 520mV 560mV 760mV

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

F
F
W
+
B
B
R
8
T

F
B
A
+

W
i
l
k
e
r
s
o
n
+

I
D
C
+

S
i
m
p
l
e
-
w
d
i
s

B
a
s
e
l
i
n
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
o
r
m
a
l
i
z
e
d

E
P
I

Core Dynamic Energy
Core Static Energy
L2 Dynamic Energy
L2 Dynamic Energy

Fig. 12: Normalized overall EPI.

The FFW+BBR is the only architectural approach that

achieves sustained energy reduction as voltage is scaled all
the way down to 400mV. This is achieved due to the effective
reduction of the additional L2 accesses and the short execution
time which is due to the zero latency overhead. On one hand,
fewer L2 accesses expend less dyanmic energy on the L2
cache. Also, the core wastes less energy on waiting for useful
data. On the other hand, the short execution time saves the
static energy for both core and L2 cache.

At 400mV (Pfail = 1e−2), our schemes achieve better
energy reduction than any other architectural approaches. Our
L2 cache energy is very close to the 8T based cache, which
means our scheme can effectively minimize the impact of
defective words while tolerating the defect density as high
as 1e−2. Compared to a conventional 6T based cache with a
Vccmin of 760mV, our schemes reduce the EPI by 64%, which
is better than the energy reduction of 8T based cache (62%).
However, our energy reduction comes at significantly lower
area overhead (5.2% for data cache and 1.1% for instruction
cache) than the 8T based cache (28%).

VII. CONCLUSIONS

In this paper, we demonstrate that the L1 cache latency is
a critical parameter that affects microprocessor performance
and energy consumption at low voltage. We proposed a
hardware technique and a software technique respectively for
the data cache and the instruction cache. The Fault-free-
window scheme minimizes the impact of SRAM failures in
data caches by capturing the most likely accesses using the
available fault-free words. The Basic-block-relocation scheme
isolates defective words in instruction caches by managing
the basic block placement. We show that the combined Fault-
free window and Basic-block-relocation scheme allows reliable
cache operation and achieve sustained energy reduction beyond
400mV. Compared to an conventional 6T based cache with
Vccmin of 760mV, our scheme achieves 64% reduction in
energy per instruction. This energy reduction comes at zero
latency overhead and only 5.2% area overhead on data caches
and 1.1% area overhead on instruction caches.

ACKNOWLEDGEMENT

This work is supported by the National Science Foundation
under grant CCF-1116610.

REFERENCES

[1] G. Magklis, G. Semeraro, D. Albonesi, S. Dropsho, S. Dwarkadas, and
M. Scott, “Dynamic frequency and voltage scaling for a multiple-clock-
domain microprocessor,” Micro, IEEE, vol. 23, no. 6, pp. 62–68, Nov
2003.

[2] T. Mahmood and S. Kim, “Realizing near-true voltage scaling in
variation-sensitive l1 caches via fault buffers,” in Compilers, Architec-
tures and Synthesis for Embedded Systems (CASES), 2011 Proceedings
of the 14th International Conference on, Oct 2011, pp. 85–94.

[3] S. Mukhopadhyay, H. Mahmoodi, and K. Roy, “Modeling of failure
probability and statistical design of sram array for yield enhancement
in nanoscaled cmos,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 24, no. 12, pp. 1859–1880, Dec
2005.

[4] C. Wilkerson, H. Gao, A. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off cache capacity for reliability to enable low
voltage operation,” in Computer Architecture, 2008. ISCA ’08. 35th
International Symposium on, June 2008, pp. 203–214.

[5] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin, “A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 36. Washington, DC, USA:
IEEE Computer Society, 2003, pp. 29–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=956417.956570

[6] L. Chang, R. Montoye, Y. Nakamura, K. Batson, R. Eickemeyer,
R. Dennard, W. Haensch, and D. Jamsek, “An 8t-sram for variability
tolerance and low-voltage operation in high-performance caches,” Solid-
State Circuits, IEEE Journal of, vol. 43, no. 4, pp. 956–963, April 2008.

[7] S. Jain, K. Santhosh, M. Pattanaik, and B. Raj, “A 10-t sram cell with
inbuilt charge sharing for dynamic power reduction,” in Advances in
Technology and Engineering (ICATE), 2013 International Conference
on, Jan 2013, pp. 1–6.

[8] J. Kulkarni, K. Kim, and K. Roy, “A 160 mv, fully differential, robust
schmitt trigger based sub-threshold sram,” in Low Power Electronics
and Design (ISLPED), 2007 ACM/IEEE International Symposium on,
Aug 2007, pp. 171–176.

[9] S. Schuster, “Multiple word/bit line redundancy for semiconductor
memories,” Solid-State Circuits, IEEE Journal of, 1978.

[10] F. Bower, P. Shealy, S. Ozev, and D. Sorin, “Tolerating hard faults in
microprocessor array structures,” in Dependable Systems and Networks,
2004 International Conference on, June 2004, pp. 51–60.

[11] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit
error tolerant caches using two-dimensional error coding,” in Microar-
chitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International
Symposium on, Dec 2007, pp. 197–209.

[12] A. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and S.-
L. Lu, “Energy-efficient cache design using variable-strength error-
correcting codes,” in Computer Architecture (ISCA), 2011 38th Annual
International Symposium on, June 2011, pp. 461–471.

[13] Z. Chishti, A. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu,
“Improving cache lifetime reliability at ultra-low voltages,” in Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, Dec 2009, pp. 89–99.

[14] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, “Yield-
aware cache architectures,” in Microarchitecture, 2006. MICRO-39. 39th
Annual IEEE/ACM International Symposium on, Dec 2006, pp. 15–25.

[15] A. Agarwal, B. Paul, H. Mahmoodi, A. Datta, and K. Roy, “A process-
tolerant cache architecture for improved yield in nanoscale technolo-
gies,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on, vol. 13, no. 1, pp. 27–38, Jan 2005.

[16] H. Lee, S. Cho, and B. Childers, “Performance of graceful degradation
for cache faults,” in VLSI, 2007. ISVLSI ’07. IEEE Computer Society
Annual Symposium on, March 2007, pp. 409–415.

[17] T. Mahmood and S. Kim, “Fine-grained fault tolerance for process
variation-aware caches,” in VLSI (ISVLSI), 2010 IEEE Computer Society
Annual Symposium on, July 2010, pp. 46–51.

[18] A. Ansari, S. Gupta, S. Feng, and S. Mahlke, “Zerehcache: Armoring
cache architectures in high defect density technologies,” in Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, Dec 2009, pp. 100–110.

[19] A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Archipelago: A poly-
morphic cache design for enabling robust near-threshold operation,” in
High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on, Feb 2011, pp. 539–550.

[20] T. Mahmood, S. Kim, and S. Hong, “Macho: A failure model-oriented
adaptive cache architecture to enable near-threshold voltage scaling,”
in High Performance Computer Architecture (HPCA2013), 2013 IEEE
19th International Symposium on, Feb 2013, pp. 532–541.

[21] A. Sasan, H. Homayoun, A. Eltawil, and F. Kurdahi, “Inquisitive defect
cache: A means of combating manufacturing induced process variation,”
Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 19, no. 9, pp. 1597–1609, Sept 2011.

[22] A. Meixner and D. Sorin, “Detouring: Translating software to circum-
vent hard faults in simple cores,” in Dependable Systems and Networks
With FTCS and DCC, 2008. DSN 2008. IEEE International Conference
on, June 2008, pp. 80–89.

[23] M. Nicolaidis, “Theory of transparent bist for rams,” Computers, IEEE
Transactions on, vol. 45, no. 10, pp. 1141–1156, Oct 1996.

[24] R. Murphy and P. Kogge, “On the memory access patterns of su-
percomputer applications: Benchmark selection and its implications,”
Computers, IEEE Transactions on, vol. 56, no. 7, pp. 937–945, July
2007.

[25] J. Huang and D. Lilja, “Exploiting basic block value locality with block
reuse,” in High-Performance Computer Architecture, 1999. Proceed-
ings. Fifth International Symposium On, Jan 1999, pp. 106–114.

[26] J. E. Miller and A. Agarwal, “Software-based instruction
caching for embedded processors,” SIGPLAN Not., vol. 41,
no. 11, pp. 293–302, Oct. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1168918.1168894

[27] K. Dayalan, M. Ozsoy, and D. Ponomarev, “Dynamic associative
caches: Reducing dynamic energy of first level caches,” in Computer
Design (ICCD), 2014 32nd IEEE International Conference on, Oct
2014, pp. 118–124.

[28] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[29] C. D. Spradling, “Spec cpu2006 benchmark tools,” SIGARCH Comput.
Archit. News, vol. 35, no. 1, pp. 130–134, Mar. 2007. [Online].
Available: http://doi.acm.org/10.1145/1241601.1241625

[30] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop, ser. WWC ’01.
Washington, DC, USA: IEEE Computer Society, 2001, pp. 3–14.
[Online]. Available: http://dx.doi.org/10.1109/WWC.2001.15

[31] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[32] N. Muralimanohar and R. Balasubramonian, “Cacti 6.0: A tool to
model large caches.” Tech. Rep: HP Laboratories, Apr 2009. [Online].
Available: http://www.hpl.hp.com/techreports/2009/HPL-2009-85.html

[33] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42. New
York, NY, USA: ACM, 2009, pp. 469–480. [Online]. Available:
http://doi.acm.org/10.1145/1669112.1669172

[34] Y. B. Kim, Y.-B. Kim, F. Lombardi, and Y. J. Lee, “A low power 8t
sram cell design technique for cnfet,” in SoC Design Conference, 2008.
ISOCC ’08. International, vol. 01, Nov 2008, pp. I–176–I–179.

[35] S. Eggers, J. Emer, H. Leby, J. Lo, R. Stamm, and D. Tullsen, “Si-
multaneous multithreading: a platform for next-generation processors,”
Micro, IEEE, vol. 17, no. 5, pp. 12–19, Sep 1997.

