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Abstract—We consider a proportional sharing mechanism for
allocating spectrum to secondary users. Each user bids for a
portion of the received power at a measurement point and
receives a share that is proportional to its bid while paying a
charge equal to the bid. The users then transmit over a common
band treating all interference as noise. Under this mechanism,
we model the secondary users as players is a bidding game.
The players’ interaction in this game is complicated due to the
interference among them. We characterize the existence of a Nash
equilibrium for both price taking and price anticipating users.

I. INTRODUCTION

There has been a growing interest in exploring new ap-
proaches for more efficiently allocating wireless spectrum.
One general class of such approaches is based on using
markets to enable a spectrum owner (i.e., a primary license
holder) to temporarily lease spectrum access to secondary
users during periods when the owner does not need to fully
utilize the spectrum, e.g. [1]–[7]. Such leasing could also
be facilitated by a spectrum broker as in [8], [9].1 When
there are many “small” secondary users, it may be desirable
to allow multiple secondary users to access the spectrum
simultaneously.2 Here, we consider one such model introduced
in [2], where this is accomplished by allocating transmission
power to each secondary user and having each secondary user
spread their power over the spectrum band as in a CDMA-
based network. The allocated power is assumed to satisfy an
“interference constraint,” which specifies that the total received
power at a fixed measurement point is no greater than a given
value. For example, this measurement point could correspond
to an access point of the spectrum owner in which case
the constraint limits the “interference power” received at the
access point.3

The problem facing the spectrum owner is allocating a
divisible resource (the total power at the measurement point)
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1Alternatives to market-based approaches for secondary spectrum usage

have also attracted much interest, such as approaches based on spectrum
sensing, e.g. [10], [11].

2The problem of allocating the entire spectrum band to one large user is
much easier and could be done for example by a simple second-price auction.

3Of course, this is not the only way to allocate spectrum usage. For example,
an alternative would be to divide the band up into smaller sub-bands and
allocate each sub-band to a single secondary user (e.g., see [3], [4], [7]).
For a single location this leads to a simpler allocation; however when done
over multiple locations it can lead to combinatorial problems similar to those
studied for dynamic channel assignment [12].

among multiple secondary users. We assume that the spec-
trum owner desires to allocate all of the available spectrum.
Additionally, the spectrum owner would also like to allocate
more spectrum usage to secondary users that value it greater,
but is not assumed to have any knowledge of these valuations.
Finally, assuming that this allocation is to be done frequently,
it is desirable for the allocation procedure to have low com-
munication overhead and low complexity.4

In [2] a “power auction” was studied for meeting these
goals. In this auction, each secondary user submits a one
dimensional bid to the spectrum owner, who also submits a
reserve bid β. Each secondary user then receives an allocation
of the interference power that is proportional to its bid.
Additionally, each secondary user pays an amount for its
allocation that is equal to its allocated power multiplied by
a fixed “power price” announced by the spectrum owner. In
[2], this auction was analyzed via game theory, and it was
shown that there exists power prices for which the resulting
game has a Nash equilibrium. The efficiency of the equilibrium
allocation was characterized in several asymptotic regimes.

There are several shortcomings of this mechanism: (i)
achieving a good allocation requires the spectrum owner to
determine the correct interference price before the auction is
started, (ii) due to the reserve bid, it may not be possible to
achieve an allocation that uses all of the interference power;
and (iii) a user’s bid is not directly related to the price that
she pays.5

Here, we consider an alternative mechanism, which seeks
to overcome some of these shortcoming. This mechanism is
based on the proportional allocation mechanism studied for
allocating capacity in a wired network in [13], [14]. It differs
from the power auction in that there is no reserve bid and the
payment of a user is equal to its bid. In [13] this mechanism
was studied for “price taking” users in a wire-line network,
i.e. users that did not anticipate the effect of their bid on the
resulting resource price. In [14], this mechanism was studied
for “price anticipating” users. In both of these cases it was

4In particular, this may preclude the use of certain “optimal” auction
mechanisms such as the Vickery-Clarke-Groves mechanism.

5An alternative “SINR auction” was also studied in [2] in which the
users paid a price per received signal-to-interference-plus-noise ratio (SINR).
This had better properties with regard to point (ii), but also had the other
shortcomings and additionally required the users to truthfully report their
SINR to the spectrum owner.



shown that a Nash equilibrium exists and the efficiency of
this equilibrium was characterized. However, the setting here
differs from the wire-line setting in [13], [14] in that the users
interfere with each other. In such a setting it is not clear that a
Nash equilibrium will exist and what properties it will have. In
this paper, we provide an answer to the first of these questions
and give conditions under which this mechanism has a Nash
equilibrium for both price taking and price anticipating users.

II. MODEL

We consider the following simple model based on [2]. There
are K secondary users who wish to access a common spectrum
band. To do this, each user i may purchase a share of the
received power qi at a given measurement point, where the
total received power at the measurement point is constrained
to satisfy

∑K

i=1 qi = P, for a given constant P > 0. Each
user then transmits over the spectrum band by spreading their
share of the power evenly across the band. We assume that
each user treats all interference from the other users as noise.
Additionally, for simplicity, we make the (more restrictive)
assumption that all users are communicating to receivers that
are co-located with the measurement point. In this case, each
user’s performance can be viewed as a function of their SINR
at the measurement point, given by6

γi =
qi

no +
∑

j 6=i qi
, (1)

where n0 denotes the total noise power. Specifically, we
model user i’s performance via a utility function Ui(γi) which
satisfies the following standard assumptions: (i) Ui(γi) is
increasing, continuously differentiable, and strictly concave in
γi and (ii) as γi → ∞, U ′

i(γi) → 0.7
We consider the following proportional sharing mechanism.

Each secondary user submits a bid wi ≥ 0, which can be
viewed as the total amount the user is willing to pay. The
spectrum owner then allocates to each user an amount of
received power proportional to that user’s bid, so that the total
power budget is utilized (unless all of the agents bid zero
in which case no power is allocated). This results in agent i
receiving a power allocation of

qi =
wi

∑

j wj

P, (2)

assuming that at least one wi > 0. Equivalently, we can view
agent i as receiving an allocation of qi = wi

β
, where

β =

∑

j wj

P
(3)

is the effective price per unit power charged to each agent. As
pointed out in [14], this can be viewed as a type of market
clearing mechanism, i.e. it sets a price so that the total supply
meets demand.

6Note, here we are assuming that the spectrum owner is not transmitting
or equivalently that any power used by the spectrum owner uses is included
in the background noise power.

7We use the standard notation U ′

i to denote the derivate of Ui with respect
to its argument.

III. COMPETITIVE EQUILIBRIUM

We now consider a model with price taking users who do
not consider the effect of their bid on the price as in (3). In
such a model, for a fixed price β each secondary user i would
seek to choose a bid wi ≥ 0 to maximize their surplus Πi

given by their utility (Ui(γi)) minus their cost (wi). Using
(1), (2) and (3), this can be written as:

Πi(wi,w−i, β) = Ui

(

wi

βno +
∑

j 6=i wj

)

− wi, (4)

where w−i denotes the vector of bids of all secondary users
except user i. In other words, the secondary users are playing
a game Gβ , with payoffs Πi(wi,wi) and strategies wi.

Note that even though a user does not anticipate its effect
on the price, the users are still strategically coupled due to
the interference. This is different from the capacity allocation
game studied in [13], [14], in which price taking users are
faced with only a single-user decision problem.

Lemma 1: For any price β > 0, Gβ has a pure strategy
Nash equilibrium.

Proof: From the assumed properties of Ui, it follows that
there exists a w̄i ≥ 0 so that for all wi > w̄i

Ui

(

wi

βn0

)

< wi. (5)

A player will never choose a bid wi > w̄i, since this would
result in a negative pay-off, regardless of the other players’
actions. Hence, even though each player can choose any bid
wi ≥ 0, we can think of each player as choosing a bid from the
convex strategy set [0, w̄i]. Furthermore, it can be seen that Πi

is concave and continuous in wi. These properties show that
Gβ is a concave game and so a pure strategy Nash equilibrium
exists. [15]

We define a pair (w, µ) with w ≥ 0 and µ > 0 to be a
competitive equilibrium if (i) w is a Nash equilibrium of Gβ

and (ii) the price β clears the market, i.e.,

β =

∑

i wi

P
. (6)

Since for any β the game has a Nash equilibrium, it is clear
that there exist games for which a competitive equilibrium
exists, i.e., we can always choose P so that (6) is tight. A
more general question is whether such an equilibrium exists
for any P . A sufficient condition for this is given next

Lemma 2: If there exists a continuous function w(β) :
R+ 7→ R

K
+ so that for every β, w(β) is a Nash Equilibrium

of Gβ , then a competitive equilibrium always exists.
Proof: Assume that the continuous function w(β) exists

and define the corresponding continuous function s(β) :

R+ 7→ R+ by s(β) =
∑

i
wi(β)

β
. To prove the existence of

a competitive equilibrium, we show that s(β) can take any
positive value for a suitable choice of β (and thus can be
made equal to any given value of P ).

First note that as β → ∞, for each user i, the w̄i which
satisfies (5) can not be increasing and so it must be that
wi(β)

β
→ 0 for each user i. Hence, s(β) → 0 as β → ∞.



Next we show that given any M > 0 we can choose β small
enough so that s(β) > M . First note that for a small enough
β, at a Nash equilibrium at least one user must be bidding a
positive amount. Let this be user i (where i may vary with β).
Then from the first order optimality conditions, this user’s bid
must satisfy

wi = gi



βn0 +
∑

j 6=i

wj







βn0 +
∑

j 6=i

wj



 ,

where gi(x) = (U ′)−1(x). And so,

s(β) = gi



βn0 +
∑

j 6=i

wj





(

n0 +

∑

j 6=i wj

β

)

+

∑

j 6=i wj

β
.

From the assumptions on Ui(x), gi(x) → ∞ as x → 0.
Hence, there must exist a constant δ > 0 and β1 > 0 so that

min
i

gi(βn0 + δ)n0 > M (7)

for all β < β1. Likewise, there exists a β2 > 0 so that
δ

β
> M (8)

for all β < β2. Consider some β < min(β1, β2). Then either
∑

j 6=i wj ≤ δ or
∑

j 6=i wj > δ. In the first case from (7), we
have s(β) > M while in the second case, using (8) we have
the same result. Hence, by an appropriate choice of β, we can
make s(β) take on any desired value.

The requirement in this lemma is essentially that the Nash
equilibria of Gβ be continuous with respect to changes in the
parameter β. To see that this requirement can be met, consider
a game in which each player’s utility function is given by
Ui(γi) = log(1 + γi). Agent i’s bid in a Nash equilibria of
this game must satisfy

wi = (1− βn0 −
∑

j 6=i

wj)
+.

Hence, it follows that one choice for w(β) is to set wi(β) =
(1−βn0)

+

K
for each user i. The corresponding s(β) is then

s(β) = ( 1
β
− n0)

+.

IV. PRICE ANTICIPATING USERS

Next, motivated by [14], we consider a model in which
the users are price anticipating. In other words, each user
anticipates their effect on the price as in equation (3) when
choosing their bid. We let GPA denote the resulting game. In
this game, each user again chooses any bid wi ≥ 0, only now
each user’s pay-off is given by:

Πi(wi,w−i) =

{

Ui (γi(wi,w−i))− wi, if wi > 0

Ui(0) if wi = 0

where

γi(wi,w−i) =
wiP

n0

∑

j wj +
∑

k 6=i wkP
.

Note that this pay-off function may be discontinuous at
wi = 0 and so GPA is not a concave game and thus a
different approach is required to show that this game has a
Nash equilibria. We do this in the following theorem by using
a “modified” utility function as in [14]. However, compared
to [14], we need to use a different modification of the utility
function here.

Lemma 3: Suppose that K > 1. Then there exists a Nash
equilibrium w

∗ of GPA, if and only if w
∗ has at least two

non-zero components and is also a Nash equilibrium of a game
G̃β in which there is a fixed price β =

∑
w∗

i

P
and each user i

chooses wi ≥ 0 to maximize Ũi(wi,w−i) − wi, where Ũi is
the following modified utility function:

Ũi(wi,w−i) = Ui(γi(wi,w−i)) ·

∑

j 6=i wj(1 +
n0

P
)

βn0 +
∑

j 6=i wj

. (9)

Proof: (sketch) First we note that if w
∗ does not have

at least two non-zero components, it can not be a Nash
equilibrium for GPA. Given that at least two components of w∗

are non-zero, then each agent’s pay-off in GPA is a continuous
and concave function of wi, and so any point w∗ that satisfies
the following first order optimality conditions for each user i
will be a Nash equilibrium:

U ′
i (γi(wi,w−i)) ·

(
∑

j 6=i wj)(P + n0)P
(

win0 + (P + n0)
∑

j 6=i wj

)2 = 1,

if wi > 0,

U ′
i(0) ·

(
∑

j 6=i wj)(P + n0)P
(

(P + n0)
∑

j 6=i wj

)2 ≤ 1,

if wi = 0.

Next note that for any β > 0, G̃β is a concave game and so
any w

∗ that satisfies the corresponding first order optimality
conditions for G̃β will be a Nash equilibrium of that game. The
result then follows from comparing these conditions using the
relation β =

∑
w∗

i

P
.

The previous lemma provides a characterization of a Nash
equilibrium to GPA if one exists, but does not guarantee its
existence. To study this existence question, we will consider
a different modified game G̃PA(ε) for a given (small) ε > 0.
In this game there are K+1 players. Again, K of the players
represent the K secondary users. Each agent maximizes the
modified utility function in (9) minus a bid wi that satisfies
wi ≥

Pε
K

. Additionally, there is another “price setting” player
0 who selects a value of β ≥ ε to maximize the pay-off

Π0(β,w) = −

(∑

wi

P
− β

)2

.

Note that this price setting player receives its maximum pay-
off when β is equal to the “correct” price

∑
wi

P
.

It can be seen that for any ε > 0, G̃PA(ε) is a concave
game and thus will have a Nash equilibrium. Furthermore,
by construction at such an equilibrium, β will be set to the



correct market clearing price. Given the equilibrium choice
of β, the remaining K users’ bids will also be a equilibrium
the game G̃β with the restriction that their choice of bids
must be no smaller than Pε

K
. The reason for this restriction

is to avoid the discontinuities in the game near zero. If the
inequality wi ≥ Pε

K
is not tight for any user i, it follows

from the concavity of the pay-offs, that the resulting strategy
choices would also be a Nash equilibrium for G̃beta without
this restriction on the strategy choices. Thus from Lemma 3,
these would also be a equilibrium for GPA. The key difficulty
in proving that GPA always has a Nash equilibrium is to argue
that as ε → 0, the limiting strategies to G̃PA(ε) are also “well-
behaved,” even in the case where these inequalities are tight.
To be more precise, we will consider a sequence of games
G̃PA(ε) as ε → 0. The next lemma shows that provided the
strategy choices from this sequence have well defined limits,
then these limiting strategies are indeed well-behaved.

Lemma 4: For each ε, let (w(ε), β(ε)) be a sequence of
equilibrium strategies to G̃PA(ε). If as ε → 0, (w(ε), β(ε)) →
(w(0), β(0)) then GPA has a Nash equilibrium.

Proof: First, suppose that β(0) > 0. Then since β(ε) =∑
i
wi(ε)

P
for all ε > 0, it follows that at least one component

of w(0) is non-zero. Moreover, we next argue that in this case
at least two components of w(0) must be non-zero. Assume
that this is not true, i.e., that w(0) has only one non-zero
component. Let user i be the corresponding agent. Then taking
the limit of the left-hand side of the first order optimality
condition for user i as ε → 0 yields

U ′
i (γi(wi,w−i)) ·

∑

j 6=i wj)(P + n0)P

(win0 + (P + n0)
∑

j 6=i wj)2
→ 0.

This contradicts it being optimal for user i to set wi(ε) > 0
for ε small enough. This shows that if β(0) > 0 at least two-
terms in the w(0) sequence will be non-negative and so we
do not have to worry about the non-linearities in the pay-offs.
It follows that w(0) will satisfy the conditions of Lemma 3
in G̃β(0) and thus also be a Nash equilibrium for GPA.

Next we consider the case where β(0) = 0. In this case it
must also be that

∑

i wi(0) = 0. Moreover, as ε → 0, we have

lim
ε→0

β(ε)
∑

i wi(ε)
= P,

i.e., both β(ε) and
∑

i wi(ε) must go to zero at the same rate.
Additionally, we are only interested in such sequences where
for every ε, there is at least one user i for which wi(ε) =

εP
K

,
since otherwise, as discussed above, for the given ε we have
already found an equilibrium to GPA. Given this, we consider
the following two cases:

Case 1: β(ε) = Θ(ε), in which case it must be that wj(ε) =
Θ(ε) for all j.8 Again, we consider the limit of the left-hand
side of the first order condition for user i as ε → 0. In this case,
it can be seen that this limit is unbounded, which contradicts

8Here, we use the notation f(x) = Θ(g(x)) to denote that f(x)
g(x)

→ M >

0 as x → 0.

this being an equilibrium for small enough ε. Hence, this case
can not occur.

Case 2: β(ε) = ω(ε).9 As noted above, there must be at
least one user i for which wi(ε) =

εP
K

. It follows that for this
user, it must be that

∑

j 6=i wj = Θ(β(ε)). Again, taking the
limit of the left-hand side of the first order condition for that
user as ε → 0, it can be seen that the limit is unbounded.
Hence, this case can not occur either.

From the above discussion, these two cases exhaust all
possibilities when β(0) = 0 and so it follows that it must
be that β(0) > 0 completing the proof.

V. CONCLUSIONS

We considered a proportional sharing mechanism for allo-
cating interference power to secondary spectrum users. Our
focus was on the existence of Nash equilibria for both price
taking and price anticipating users. In addition to the existence
of such equilibria, the performance of these in terms of total
utility is also of interest. Also, here we focused on the case
where the receivers of all the secondary users were co-located.
Relaxing this assumption would also be of interest.

REFERENCES

[1] J.M. Peha, “Approaches to spectrum sharing,” IEEE Communications
Magazine, vol. 43, no. 2, pp. 10-12, Feb. 2005.

[2] J. Huang, R. Berry and M. L. Honig, ”Auction-based Spectrum Sharing,”
ACM Mobile Networks and Applications Journal, vol. 11, no. 3, June
2006.

[3] J. Bae, E. Beigman, RA. Berry, ML. Honig, and R. Vohra, “Sequential
bandwidth and power auctions for distributed spectrum sharing,” IEEE
JSAC, vol. 26, no. 7, Sept. 2008.

[4] Y. Yuan, et al., “Allocating dynamic time-spectrum blocks in cognitive
radio networks,” In Proceedings of MobiHoc ’07, Sept., 2007.

[5] A. Al Daoud, M. Alanyali, and D. Starobinski, “Secondary pricing of
spectrum in cellular CDMA networks,” in IEEE DySPAN, 2007.

[6] J. Zhu and K.J.R. Liu, “Dynamic Spectrum Sharing: A Game Theoretical
Overview,” IEEE Communications Magazine, Vol. 45, No.5, May 2007.

[7] S.H. Chun and R. La, “Auction Mechanism for Spectrum Allocation and
Profit Sharing,” in GameNets, 2009.

[8] M. M. Buddhikot, P. Kolodzy, S. Miller, K. Ryan, and J. Evans,
“Dimsumnet: New directions in wireless networking using coordinated
dynamic spectrum access,” in IEEE WoWMoM05, June 2005.

[9] N. Mandayam, “Cognitive algorithms and architectures for open access to
spectrum,” in The Conference on the Economics, Technology and Policy
of Unlicensed Spectrum, East Lansing, MI, 2005.

[10] Q. Zhao, L. Tong, A. Swami and Y. Chen, “Decentralized cognitive
MAC for opportunistic spectrum access in ad hoc networks: A POMDP
framework,” IEEE JSAC, vol. 25, no. 3, April 2007.

[11] D. Cabric, S.M. Mishra, and R.W. Brodersen, “Implementation issues
in spectrum sensing for cognitive radios,” in Proc. 38th. Asilomar Conf.
Signals Systems, Computers, 2004.

[12] K.N. Ramachandran, E.M. Belding, K.C. Almeroth, M.M. Buddhikot,
“Interference-Aware Channel Assignment in Multi-Radio Wireless Mesh
Networks,” Proc. of IEEE INFOCOM, Barcelona, Spain, April 2006.

[13] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 9, pp. 33-37, 1997.

[14] R. Johari and J.N. Tsitsiklis, “Efficiency Loss in a Network Resource
Allocation Game,” Mathematics of Operations Research, vol. 29, no. 3,
pp/ 407-435, 2004.

[15] J.B. Rosen, “Existence and Uniqueness of Equilibrium Points for
Concave N-Person Games,” Econometrica, Vol. 33, No. 3, pp. 520-534,
July, 1965.

9Here, f(x) = ω(g(x)) denotes that g(x)
f(x)

→ 0 as x → 0.


