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I. INTRODUCTION

Achieving high spectral efficiencies in wireless networks requires the ability to mitigate and manage

the associated interference. This becomes especially important in networks where many transmitters and

receivers are randomly placed, so that in the absence of coordination a particular receiver is likely to

encounter significant interference from a neighboring transmitter. A challenge is then to provide a means

for coordination, which allocates available resources, or Degrees of Freedom (DoFs), at each transmitter

to avoid interference wherever possible.

In a wireless network DoFs generally refer to noninterfering modes of transmission, and can be

defined in frequency, space, and time. DoFs in frequency and time typically correspond to multiple non-

overlapping channels and time slots, respectively, and DoFs in space correspond to orthogonal spatial

beams. Resources then include available power and beams at each transmitter, and the objective of the

network operator is to allocate those resources among available DoFs to optimize an overall network

objective.

In principle, optimal resource allocation in a wireless network can be achieved if all active nodes mea-

sure all channel gains to all other nodes, and pass that information to a resource manager. After collecting

this information the resource manager would then determine allocations over all users, or transmitter-

receiver pairs, and announce those to the various transmitters. Of course, such a centralized scheme for

resource allocation requires excessive information exchange and overhead for most practical networks.

In addition, depending on the objective and specific resource constraints, the centralized optimization

problem can be non-convex with associated worst-case complexity that increases exponentially with the

number of users and DoFs.
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In this paper we discuss distributed resource allocation schemes in which each transmitter determines

its allocation autonomously, based on the exchange of interference prices. These schemes have been

primarily motivated by the commons model for spectrum sharing in which a user or service provider may

transmit in a designated band provided that they abide by certain rules (e.g., a standard such as 802.11)

[1]. An attractive property of these schemes is that they are scalable, i.e., the information exchange and

overhead can be adapted according to the size of the network.

To model user demands for service and associated priorities, we assume that each user is assigned

a utility function, which depends on a Quality of Service metric such as Signal-to-Interference-Plus-

Noise-Ratio (SINR) or rate. The network objective is then sum utility over all users. This objective is

flexible enough to accommodate a wide range of performance metrics through an appropriate assignment

of utility functions. Each interference price is associated with a particular receiver, and indicates the

marginal decrease in utility due to a marginal increase in interference associated with a particular DoF.

Given a set of interference prices from nearby receivers, a transmitter then selects resources according to

a best response, which maximizes its utility minus the total interference cost. Users then iterate between

price and resource allocation updates.

A basic assumption for this class of distributed resource allocation schemes is that the users cooperate

by following the rules for announcing prices and determining allocations. (For example, the pricing

protocol may be built into approved devices.) This is in contrast to a network of non-cooperative users

who may choose to deviate from the algorithm to increase their own utility. It is well known that such

deviations from an optimal allocation (i.e., that maximizes sum utility) may lead to a different allocation

(Nash equilibrium) for which most users are worse-off. This type of noncooperative behavior also arises

in the absence of information exchange, since a transmitter would then presumably optimize its own

resources ignoring the effects on neighboring receivers.

Applications of game theory to networking typically assume non-cooperative users, since those scenar-

ios fit naturally within game theoretic frameworks. For example, a game theoretic approach to autonomous

power control in cellular systems is discussed in [2], [3], [4]. Noncooperative adjustments of both power

and bandwidth (spreading) for an interference channel are studied in [5]. The motivation there is to use

game theory to model the underlying preferences of selfish users. In contrast, here we use game theory

as an engineering tool to design the preferences of each user (or agent) so that “selfish actions” (best

response updates in the resulting game) lead to desired cooperative behavior, i.e., convergence to an

optimal (utility-maximizing) allocation. An analytical difficulty, which also motivates the application of

game theory, is that the powers and beams can change substantially after each best response update.
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Hence we require different analytical tools from those typically used to analyze the convergence of

gradient-based algorithms, which make incremental adjustments at each iteration [6], [7].

We start with a network consisting of narrowband, Single-Input Single-Output (SISO) links, and state

some general conditions that guarantee convergence of the distributed pricing algorithm to a global

optimum. We then extend this discussion to Multi-Input Single-Output (MISO) and Multi-Input Multi-

Output (MIMO) channels. In general, a set of prices corresponding to all DoFs must be exchanged to

achieve the centralized optimal allocation. The corresponding solution is contrasted with that achieved

without information exchange (namely, iterative water-filling [8], [9]).

Finally, although the interference pricing schemes are discussed in the context of wireless peer-to-peer

networks, the approach can also be applied to cellular networks and Digital Subscriber Lines (DSLs).

Specifically, interference prices could be exchanged between neighboring cells to adjust power levels

and DoFs to mitigate other-cell interference (e. g., see [10]), or between modems within the same binder

(e. g., see [11]). Other extensions and limitations of distributed pricing are discussed in Section V.

II. PEER-TO-PEER SYSTEM MODEL

We consider a wireless system consisting of a number of transmitter-receiver pairs. These pairs could,

for example, be a base station and an associated mobile station in the downlink of a cellular system, or

nodes in an ad-hoc network randomly placed within a geographic region, as shown in Figure 1. We will

refer to each transmitter-receiver pair as a user. Each receiver is only interested in the signal from its

associated transmitter; the signals from all other transmitters constitute the interference, which is assumed

to be treated as noise. In addition to the interference, the receivers w.l.o.g. all experience the same level

of background noise.

The conditions of the wireless channel are reflected in random channel gains between each transmitter

and each receiver. We assume each node (receiver or transmitter) perfectly estimates all relevant channel

gains. In particular, each transmitter must know the cross-channel gains to neighboring receivers. In prac-

tice, these gains can be estimated if each node periodically sends a known pilot. (This may require some

degree of synchronization among the nodes.) Furthermore, we assume that channel conditions remain

constant for the duration of the resource allocation procedures discussed, corresponding to stationary

users.

Given K users (transmitter/receiver pairs), the signal at receiver k corresponding to a particular symbol
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interval is

yk = Hkkxk
︸ ︷︷ ︸

desired signal

+
∑

j 6=k

Hkjxj

︸ ︷︷ ︸

interference

+ nk
︸︷︷︸

noise

, (1)

where in general Hkj is a complex matrix representing the channel from transmitter j to receiver k, xk is

the transmitted signal vector from transmitter k, and nk is additive noise. Different assumptions concern-

ing the number of available sub-channels and antennas at each node can be represented by changing the

structure of the channel matrices. The simplest scenario corresponds to narrowband transmissions with

single-antenna terminals (SISO model) in which case the channels and transmitted signals are scalars,

i.e., Hkj = hkj and xk = xk,

A. Optimization Problem

The performance perceived by user k is assumed to be represented by a utility function uk(·). The

argument can, in principle, be any quality of service metric, such as received SINR, error rate, throughput,

or packet delay. Here we will assume that the utility depends on a set of SINRs over available DoFs.

For example, for the SISO model the SINR at receiver k is

SINRk =
|hkk|

2pk
∑

j 6=k|hkj |2pj + σ2
, (2)

where pk is the power of the transmit signal xk, and σ2 is the power of the background noise. A user can

therefore increase its SINR by increasing the transmit power, but this decreases the SINR for all other

users. Typically the transmit power pk is constrained to be no more than a maximum value Pk.

A prominent example of a utility function is log(1+SINRk), which corresponds to the Shannon capacity

of the channel, since the interference is treated as additive Gaussian noise. Other utility functions, which

have desirable properties, include log(SINRk), corresponding to the Shannon capacity at high SINRs,

and the “α-fair” utility function SINRα
k [12], which “flattens out” at high SINRs when α ≤ 1, and

therefore reflects an application that becomes insensitive to rate. In general, any sensible utility function

should be non-decreasing in the SINR; more stringent criteria must be satisfied by the utility functions

to prove convergence of the distributed pricing algorithms to be presented. Also, when a user transmits

over multiple (L > 1) DoFs, its utility function depends on the set of SINRs over the DoFs. For example,

the rate utility is given by uk(SINRk,1, · · · , SINRk,L) =
∑L

i=1
log(1 + SINRk,i) where SINRk,i is user

k’s SINR for the i-th DoF.
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Given an assignment of utility functions to users, the overall system objective is to maximize the

sum-utility across users. For the SISO model this can be posed as the following optimization problem:

max
p1,...,pK

K∑

k=1

uk(SINRk) s. t.: 0 ≤ pk ≤ Pk ∀k ∈ {1, . . . , K}. (3)

The properties of this optimization problem depend on the utility functions. In general this is a non-

concave problem, due to the interference, so it may have many multiple locally optimal solutions, making

the search for the global optimum a difficult task. However, as shown in [13] for the SISO model, for

many utilities of interest this can be transformed into a convex problem by applying a logarithmic change

of variables. Specifically, for a wide class of utility functions the objective in (3) is concave in terms of

the variables ek = ln(pk) and the constraint set is convex. In those cases, (3) has a unique local optimum,

which is also the global optimum, and can be solved using standard optimization techniques. A sufficient

condition for this to hold is given in terms of the coefficient of relative risk aversion of the individual

utility functions. This is a measure of the relative concavity of a utility functions used in economics and

is defined by

CRk(x) = −
u′′

k(x)x

u′
k(x)

,

where u′
k(x) and u′′

k(x) denote the first and second derivatives of the utility with respect to its argument.

For any concave utility CRk(x) ≥ 0, with equality when uk(·) is linear. As CRk(x) increases, the utility

function becomes “more concave”. This is illustrated in Figure 2, which shows examples of α-fair utility

functions. For these utilities, CRk(x) is a constant (independent of x). The sufficient condition needed to

transform (3) into a convex problem is that CRk(x) ≥ 1 for all feasible SINRs, i.e., the utilities must be

sufficiently concave [14]. This holds for logarithmic utilities, but not for the rate-utility log(1 + SINRk).

B. Utility Region and Nash Equilibrium

First consider a centralized solution to (3). A resource manager would have to collect the necessary

information about channel gains and utilities, solve the optimization problem, and then tell each user

how to allocate their powers over DoFs. In this manner, a locally optimal solution will be found (which

may be globally optimal if the problem can be transformed into a convex problem). The information

exchange overhead required for this resource allocation scheme, however, is likely to be prohibitive for

moderate-sized to large networks.

An alternative to the previous centralized solution is to allow each transmitter to adapt its own power

autonomously. An extreme example of such a distributed allocation scheme, which does not require any
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information exchange, is for each transmitter to choose its power allocation to maximize its own utility.

For the SISO model the SINR and utility increase with the transmit power. Hence the best response for

each user is to transmit with as much power as possible, i. e., pk = Pk, regardless of the other users’

behavior. If we interpret the users as players in a game where the strategy is the choice of transmit power

and the payoff is the resulting utility, then transmitting at full power will be a dominant strategy for each

player and so this outcome is the unique Nash equilibrium.

It is well known that a Nash equilibrium need not maximize the sum-utility (e. g., see [2], [9], [10],

[14], [15]). Indeed it may not even be Pareto optimal in which case it would be possible to improve all

of the players’ payoffs by choosing a different set of allocations. In the context of the SISO problem,

this means that a configuration in which some users transmit with reduced power can lead to an increase

in all users’ utilities. The set of Pareto optimal outcomes can be visualized as boundary points of the

utility region, i.e., the set of all possible individual utilities that can be achieved for some feasible power

allocation. For example, the union of all combinations of log(1 + SINRk)-utilities is the achievable rate

region. When a Nash equilibrium is not Pareto optimal, it lies strictly in the interior of this region.

To illustrate the preceding discussion, Fig. 3 shows a typical rate region for a two-user MISO in-

terference network with two-antenna transmitters and single-antenna receivers. In this case, the channel

matrices Hkj in (1) are row vectors, and the signal vector xk = svk where s is the scalar symbol

and vk is the beamforming vector of antenna weights (or beam) for user k. Fig. 3 shows the boundary

of achievable rates over all possible choices of beams, subject to the same power constraint for each

transmitter.

The boundary point in Fig. 3 corresponding to the maximum sum utility has a tangent line with slope

−1. Also shown is the Nash equilibrium point, corresponding to non-cooperative users (or equivalently,

zero information exchange). (The characterization of beams corresponding to the Nash equilibrium and

the optimal sum rate point will be discussed in Section IV-A.) The Nash equilibrium point is far away

from the Pareto boundary of the achievable rate region. Even a simple time-sharing scheme between the

two users can yield better performance for each individual user than the non-cooperative outcome. Note

that the rate region has distinct non-convexities, which appear at high SNRs [15]; the convex hull of the

rate region is also achievable if time sharing between strategies on the boundary is allowed.

For both the SISO and MISO channel models discussed so far, a transmitter’s best response in the

absence of information exchange does not depend on the powers or beams of other users. Computing

the Nash equilibrium is therefore quite simple. In contrast, suppose that the channel matrices Hkj in

the channel model (1) are diagonal with complex diagonal elements, which corresponds to multi-carrier
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transmission through frequency-selective channels (with single antennas). The diagonal elements of a

channel matrix then correspond to the complex channel gains across frequency.

Each multi-carrier transmitter can allocate powers over the sub-channels to maximize utility subject to

a total power constraint. For rate utilities the best response power allocation in the absence of information

exchange is water-filling. This best response depends on the distribution of interference over sub-carriers,

which in turn is determined by power allocations at neighboring transmitters. Hence, a Nash equilibrium

can be determined by an iterative water-filling method in which users update their power allocations

until the power allocations converge [16], [17]. (The updates could occur sequentially in any order or

synchronously.) In fact, for the peer-to-peer networks considered, a Nash equilibrium need not exist and

even when one does exist, iterative water-filling does not always converge. For the two-user channel this

depends on the relative magnitude of the cross-channel gains [16]. In contrast, the distributed pricing

algorithms to be discussed often converge even when iterative water-filling does not.

III. DISTRIBUTED PRICING ALGORITHMS

As shown in Fig. 3, having each user optimize its own utility without any information exchange can

lead to poor performance. On the other hand, obtaining full information as in a centralized solution may

require excessive overhead. We next introduce the asynchronous distributed pricing (ADP) algorithm [14]

that enables each node to adapt their resources locally with the aid of limited information exchange. (See

also [18], which proposes a similar algorithm in a different context.) In this section, we describe this

algorithm for the SISO model; extensions to multiple antennas and multi-carrier transmission will be

described in subsequent sections.

The reason the non-cooperative approach in the previous section can result in poor performance is that

when the users optimize only their own utility functions they do not account for the dis-utility they cause

other users due to interference. In economic terms, a dis-utility of one agent due to the action of another

is referred to as a negative externality. These negative externalities are the root of the inefficiencies of

the non-cooperative approach. The main idea behind the ADP algorithm is to design a new payoff, which

internalizes these externalities for each agent, i.e., so that when an agent optimizes the payoff, it is taking

into account the interference to other users. For an agent to predict the exact effect of the interference it

causes would again require excessive information exchange (essentially, each agent would need to know

the entire global objective). Instead, in the ADP algorithm, each agent (receiver) announces a single

interference price, which is the marginal cost of his own utility per unit interference. Specifically, the
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interference price announced by receiver j is given by

πj = −
∂uj(SINRj)

∂Ij

(4)

where Ij =
∑

i6=j pi|hji|
2 is the total interference power at receiver j. If transmitter k has power pk, then

the “cost” of interfering with receiver j is then πjpk|hjk|
2, i.e., the interference price times the received

interference power. We can again view each user as a player in a game, only now instead of maximizing

its own utility, the user’s payoff is its utility minus the total cost summed over all unintended receivers,

Πk(pk; p−k) = uk(SINRk) − pk

∑

j 6=k

πj |hjk|
2, (5)

where p−k indicates the vector of strategy choices (powers) over all user except for k.

In the ADP algorithm, the users iteratively adapt their power allocations and announce new interference

prices. When a user adapts its power, it maximizes the payoff in (5) assuming that the power allocations

and interference prices of the other users are fixed. The power update is therefore the best response of an

agent in the resulting game. The complete algorithm is shown in Fig. 4. In general this can be completely

asynchronous, meaning that there are no restrictions on when a specific user updates its price or power

except that each quantity must be updated infinitely often. This therefore includes simultaneous updates

and round-robin updates as special cases. (“Arbitrary group” in Fig. 4 refers to a subset of users that

update simultaneously.)

To implement this algorithm, note that when updating the transmitted power according to (5), the

transmitter needs to know the interference prices from other receivers, its own SINR, and the cross-

channel gains to neighboring receivers. It does not need to know the other channel gains in the network

and other users’ utility functions. Also, to compute the interference price (4), the receiver must know the

direct channel gain and the interference-plus-noise power (or equivalently, the SINR and the transmitted

power). We next discuss the convergence of this algorithm.

A. Convergence Analysis

If the ADP algorithm has converged, then each user’s best response using the payoff in (5) does not

change the transmitted power. Additionally the interference prices should not change, i.e., they should

represent the marginal cost of interference at the equilibrium. It can be shown that such a fixed point

must satisfy the Karush-Kuhn-Tucker (KKT) optimality conditions for the centralized problem (3) [14].

(In words, the KKT conditions state that the marginal increase in utility to any user k that increases its

power is equal to the total interference cost.) Thus any limit point of the algorithm satisfies the necessary
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conditions for a local or global optimum. Likewise, any local or global optimum of (3) must be a fixed

point of the algorithm. If in addition we have CRk(x) ≥ 1 for each user k, then as discussed in the

previous section, the overall problem can be transformed into a convex problem in which case the only

allocation satisfying the KKT conditions (corresponding to the only limit point of the ADP algorithm)

is the global optimum.

We next give conditions that guarantee convergence of the ADP algorithm. Showing convergence in this

setting is different from the analysis of standard distributed optimization algorithms, such as distributed

gradient or Newton-based methods (see e.g. [19], [20]), in that we do not place any step-size restriction on

the power update of a user. This has the advantage of not requiring such a step-size, but also potentially

complicates the analysis since the overall utility could change dramatically in a single time-step. Instead,

the convergence proof of the ADP algorithm in [14] uses properties of best response updates in a game

in which each user k is represented by two players: a power player, which chooses a feasible power

allocation pk to maximize the payoff in (5), and a price player, which chooses an interference price by

maximizing a payoff that is optimized by the price in (4). A best response update of a power or price

player in this game corresponds to a power or price update, respectively, in the ADP algorithm. At a

Nash equilibrium of this game, no power or price player wishes to deviate, i. e., all Nash equilibria must

be limit points of the ADP algorithm.

From the preceding discussion it can be seen that the convergence of the ADP algorithm can be

established by showing that best response updates converge in the underlying game. For an arbitrary game,

a Nash equilibrium need not exist and even if it does exist, best response updates need not converge to

it. However, for the class of supermodular games (see side-bar in Appendix), much more is known about

the convergence of such updates, even when done in an arbitrary asynchronous manner. For the ADP

algorithm, if the coefficients of relative risk aversion of each user’s utility satisfy 1 ≤ CRk(SINRk) ≤ 2

for all feasible SINR’s, then the resulting game is supermodular. Moreover, in this case (3) has a unique

global optimum and so it follows that the ADP algorithm will globally converge to the optimum power

allocation [14].

The main restriction for the preceding convergence result of the ADP algorithm is that the coefficient of

relative risk aversion for each user’s utility lie between 1 and 2. This can be interpreted as requiring that

the utilities are sufficiently concave, but not too concave. If they are not sufficiently concave (CRk < 1),

then the overall problem may have multiple local optima. If the utilities are too concave (CRk > 2),

then the game is not supermodular and the best response updates may be too aggressive to guarantee

convergence. One utility for which this condition applies is uk(x) = log(x), the high-SINR approximation
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of the Shannon rate. This result does not apply for the rate utility uk(x) = log(1 + x), which has

CRk(x) < 1. However, in [21] it is shown that for rate utilities a version of the ADP algorithm with

fixed interference prices converges to a unique Nash equilibrium provided that the channel is diagonally

dominant, i.e., for each user k, |hkk|
2 ≥

∑

j 6=k|hjk|
2. Additionally, in [22], it is shown that the ADP

monotonically converges for all utilities with 0 ≤ CRk ≤ 2 with sequential power updates provided that

after each update every user announces a new interference price.

B. Multi-Carrier ADP

Consider now the channel model with diagonal channel matrices, corresponding to multi-carrier trans-

mission. As for the SISO model, it is possible to improve upon the performance with non-cooperative

users (iterative water-filling, or more generally, iterative utility maximization), by exchanging interference

prices. An ADP algorithm for multi-carrier transmission is considered in [14] assuming that the utility for

each user k is separable, meaning uk(SINRk,1, . . . , SINRk,M ) =
∑

m um
k (SINRk,m), where SINRk,m

is the SINR for user k on sub-channel m. (For example, this applies to the rate-utility function.) In that

case the sum utility can again be maximized by exchanging interference prices over all sub-channels,

and using an iterative primal-dual algorithm to update powers and prices (taking into account power

constraints at each transmitter).

For many applications, the utility function could be a nonlinear (e.g., increasing strictly concave)

function of the total rate, in which case it cannot be expressed as the sum of utilities across sub-channels.

Extensions of the ADP to this setting are considered in [23]. Namely, each user announces a set of

interference prices πm
k = −∂uk(. . .)/∂Im

k (P−k), m = 1, · · · , M , where Im
k is the interference power

for user k on sub-channel m, and P−k denotes the set of all user powers except those for user k. The

users then optimize surplus (a modified version of the payoff in (5)) as before. Although numerical

examples have indicated that this algorithm typically converges rapidly to a locally optimal solution,

obtaining general conditions on the utility functions that guarantee convergence of this algorithm is an

open problem.

IV. MULTIPLE ANTENNAS

A. MISO System Model

The preceding discussion applies to interference networks consisting of single-antenna terminals. We

now discuss the extension of those results to terminals with multiple antennas, which add spatial DoFs.
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We start by considering multiple antennas at the transmitter and continue to assume receivers with a

single antenna; this is a common situation in the downlink of cellular systems.

As already mentioned in Section II-B, for the MISO channel model (1) the channel matrices become

row vectors, so that we define h
†
kj = Hkj , where ‘†’ denotes Hermitian transpose. The multi-antenna

transmitter k can now vary both its power and the beam vk, subject to the power constraint ‖vk‖
2
2
≤ Pk.

In analogy to the single-antenna case, we can define the SINR as

SINRk =
|h†

kkvk|
2

∑

j 6=k|h
†
kjvj |2 + σ2

. (6)

Once again, the system objective is to maximize the sum utility, where each user is assigned a utility

function uk(SINRk), which depends on the received SINR.

If the users are non-cooperative, and are only interested in maximizing their own utility, then each

user k chooses vk to maximize |h†
kkvk|

2. Consequently, vk should be a scaled version of hkk, using the

maximum power. This is also called the matched filter solution, and corresponds to the Nash equilibrium

(non-cooperative) point shown in Fig. 3. Even with very low background noise, the SINR and thus the

utility for each user is strictly limited by the interference caused by the other users.

In contrast to the single-antenna system, the transmitters in the MISO system can make use of the

spatial DoFs (corresponding to the choice of beams) to avoid interfering with other users. Consider, for

example, the following altruistic scheme: the interference caused to every unintended receiver is forced

to be zero, i. e., h
†
jkvk = 0 for all j 6= k.1 When all users adhere to this scheme, there is no interference

at any receiver and the SINR grows without bound as the background noise decreases. In fact, as the

noise level diminishes to zero, this zero-forcing scheme optimizes the sum rate, so is clearly better for

each user than the egoistic matched filter solution.

Referring to Fig. 3, the noise level is low, so that the zero-forcing solution is quite close to the

point corresponding to maximum sum rate. However, as the noise power increases, the gain obtained

by completely removing the interference decreases, and the non-cooperative matched filter scheme even-

tually performs better. Also, at each edge of the region, there is a section in which the boundary runs

perpendicular to the coordinate axis; these sections correspond to strategies where one user employs the

matched filter while the other user performs zero-forcing.

1Note that such a solution exists only if the transmitter has at least as many antennas as the number of users with which it

interferes. Also note that in contrast to the matched filter solution, transmitter k must know all channel vectors hjk to other

receivers, requiring additional communication among the users.
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It is shown in [24] that for the case of two users and the rate utility function log(1 + SINRk), any

Pareto optimal strategy requires that both users employ a linear combination of the altruistic and egoistic

beams. The altruistic and egoistic solutions can thus be viewed as two extremes, in between which any

desirable transmit strategy should lie. As in the single antenna case, our goal is to find a distributed

transmit strategy that maximizes the sum utility (cf. (3)).

B. MISO Pricing Algorithm

The ADP algorithm for a SISO network can be naturally extended to the MISO case. Following

the same principle, each user k will again announce an interference price πk representing the marginal

decrease in that user’s utility following a marginal increase in interference. Given these interference

prices, we can again view each user as a player in a game with a payoff given by their utility minus the

cost due to the interference they generate. However, in this case the user’s best response update is given

by optimizing their payoff over beams instead of power, namely

max
vk

uk(SINRk) −
∑

j 6=k

πj · |h
†
jkvk|

2 s. t.: ‖vk‖
2

2 ≤ Pk. (7)

The users then iteratively update their beams and interference prices as before.

In the SISO case a user’s best response update involves solving an optimization over a single variable,

which can often be done in closed form. In (7), the optimization is over a vector and in general the

solution cannot be obtained in closed-form. Also, for many utility functions the objective is not concave.

Each user must therefore use an optimization algorithm to calculate its best response. To reduce this

complexity, we can linearly approximate uk(SINRk) in (7) yielding the optimization problem

max
vk

ρk · |h†
kkvk|

2 −
∑

j 6=k

πj · |h
†
jkvk|

2 s. t.: ‖vk‖
2

2 ≤ Pk. (8)

where ρk = ∂uk(SINRk)/∂(|h†
kkvk|

2). The solution to this problem can be found by simply determining

the dominant eigenvector of a matrix. It can be seen from the KKT conditions that stationarity in

problem (8) implies stationarity in (7), and therefore both converge to a local optimum of the sum-

utility problem. For the following convergence analysis, however, it is assumed that problem (7) is

solved exactly.

To implement this MISO ADP algorithm, each user must still announce only a single (scalar) inter-

ference price. However, to calculate their best response, they now need to measure the vector of channel

gains to each neighboring receiver (hjk) as well as their own, which increases the required overhead for
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channel estimation. Of course the information needed for alternative approaches such as a centralized

solution also increases accordingly.

Fig. 5 shows how the schemes discussed perform in terms of sum rate versus the level of background

noise. A two user network is assumed with two antennas at each transmitter. The results are averaged over

a large number of random channel realizations. While the non-cooperative strategy is optimal for strong

background noise (i. e., low SNR), its performance deteriorates quickly compared to the other schemes

when the background noise becomes insignificant. It is surpassed first by the zero-forcing scheme, which

is optimal in the complete absence of background noise, but eventually also by a simple scheme in which

the two users alternately transmit (time-sharing). The pricing algorithm performs best regardless of the

noise conditions.

1) Convergence Analysis: As in the SISO case, it can be shown that any limit point of the MISO ADP

algorithm satisfies the KKT conditions of the overall optimization problem. Once again such a limit point

can be viewed as a Nash equilibrium of an underlying game. In the SISO case, when the utility functions

satisfy certain conditions this game is supermodular. However, the argument cannot be directly extended

to the MISO case. In particular, the notion of supermodular games can be extended to games in which

the players have vector-valued strategies, but in this case it is required that the set of feasible strategies

are a lattice, meaning that if any two strategies are allowable, then their componentwise maximum and

minimum are also allowable. Due to the agents’ power constraints, their strategies in terms of beam

choices do not have this property. For the special case of two users, in [25] two alternative proofs of

convergence are given, which are based on looking at an alternative formulation of the underlying game.

We discuss each of these next.

The first reformulation is based on the observation that in a two-user network, an optimal beamformer

vk can always be found that lies in the convex cone spanned by the corresponding channel-matched

beamformer hkk and zero-forcing beamformer h⊥
k = P⊥

hjk
hkk, and always consumes the maximum

power allowed (see Fig. 6). Using this observation, instead of viewing a user’s strategy as the choice

of a beam v, we can think of a user’s strategy as being the angle α between its beam and h⊥
k . This

reduces the strategy set to a single scalar and then using similar ideas as in the SISO case, we can

prove that the resulting game is supermodular if each user’s utility satisfies 1 ≤ CR(SINRk) ≤ 2 for all

feasible SINRk. In fact, for 2 users, it can also be shown that the underlying game is supermodular if

0 < CR(SINRk) ≤ 1 for all feasible SINRk. Thus, if we start from suitable initial conditions, the MISO

ADP algorithm can again be guaranteed to converge. (In this case, in general we do not know if the

global optimization problem has a unique optimum and so global convergence can not be guaranteed).
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The second reformulation in [25] is based on the observation that the only aspect of a user’s strategy

choice when solving (7) that effects the utility of any other user in the network is the total interference

power received at that other user. Based on this we can instead view each user’s action as determining

the (scalar) interference powers received by other users. Given this power, a user’s payoff is then given

by optimizing his own beam subject to the chosen interference powers and his own power constraint.

For a two user network, each user’s strategy becomes a scalar and we can again show that the resulting

game is supermodular under the same restrictions on the two users’ utility functions.

Both of the previous methods cannot be generalized to a MISO network with more than two users.

For the method based on the angle parameterization, there is no clear generalization of this structure of

the optimal solution with more than two users. The second formulation involving the interference power

can be generalized to allow each agent to specify a vector of interference powers, one for each other

receiver in the network. However, in this case we can construct examples which show that the resulting

game is not always supermodular. This is due to the following key distinction between SISO and MISO

networks. In a SISO network, when one user increases its strategy (i.e. power), it results in increased

interference at every other receiver. However, in a MISO network a user can increase the interference at

one receiver while decreasing the interference at another. Hence there is no natural ordering of the users’

strategies with regard to their effect on the other users, and makes it impossible to show the properties

required by a supermodular game. Though convergence of the MISO ADP for more than two users cannot

be proven using supermodularity, in [22] it is shown that, as for the SISO model, if users update their

beams sequentially and exchange interference prices after each update, then the MISO ADP algorithm

monotonically converges for all utilities with 0 ≤ CRk ≤ 2.

Figure 7 shows plots of the total utility versus the number of iterations (each corresponding to one

beam update) for the MISO ADP algorithm in a network with 5 users and 3 transmit antennas. In these

simulations each beam update is always followed by all users announcing their interference prices, so that

the convergence results in [22] apply. Plots for four α-fair utilities are shown. As expected, for the log

utility (CR = 1) and the α = −1 utility (CR = 2) the algorithm converges. For the α = −2 (CR = 3)

and α = −3 (CR = 4) cases it does not converge.

C. MIMO Systems

With MIMO channels the transmitted signal vector for user k becomes xk = VkAksk, where sk

is a vector of transmitted symbols, Ak is a diagonal matrix of corresponding amplitudes, and Vk is

a precoding matrix with unit-norm columns. The columns of Vk correspond to different spatial beams



15

(DoFs), which multiplex different symbol streams. The centralized problem is then to select the set of

precoding and amplitude matrices across users to maximize the sum utility subject to power constraints

at each transmitter. For example, the utility for user k might be the achievable rate

uk(Qk) = log det



I + H
†
kk(Rn +

∑

i6=k

HkiQiH
†
ki)

−1HkkQk



 (9)

where Qk = VkA
2

kV
†

k is the transmit covariance matrix, Rn is the noise covariance matrix, and

interference is again treated as additive Gaussian noise.

For the rate utility, it is straightforward to determine the best response strategies of non-cooperative

users: each user k views all interference from other users as noise and selects the covariance matrix to

maximize its own rate Rk. The solution to this single-user MIMO optimization is well-known: after a

noise whitening filter, water-filling of powers over the singular values of the effective channel matrix is

performed. However, as for multi-carrier channels discussed earlier, when one user adapts its transmit

strategy in this way, the interference properties change for all other users, forcing them to readjust their

strategies. This leads again to an iterative water-filling procedure for MIMO channels, which does not

always converge [9], [8].

1) MIMO Pricing Algorithm: As for MISO channels, the non-cooperative strategy does not achieve

full system potential, especially with low background noise. When averaged over many random channel

realizations, the slope of the sum rate achieved by iterative waterfilling versus SNR shows a clear

disadvantage compared to the optimal slope (e. g., see [26], [27]). Here we discuss distributed pricing

schemes for MIMO channels that can improve performance.

There are several important differences from the MISO model, which makes finding a distributed

solution to the utility maximization problem with MIMO channels considerably more complicated. First,

the preceding Shannon rate with an optimal receiver is not a transparent function of a set of received

interference powers (e.g., along different spatial directions), which makes it more difficult to define a set

of interference prices that are used to update all precoders. Even with a centralized resource manager

the globally optimal sum-rate strategy is difficult to find, since the problem is in general non-convex. A

large number of locally optimal solutions has been observed for moderate system dimensions and low

noise power [28].

A second complication is that the performance depends on the rank or multiplexing gain of each

precoder matrix. For the MIMO interference channel a larger rank (multiplexing gain) generates more

interference to neighboring receivers, since fewer DoFs are available for interference avoidance. Hence the

ranks of the Vk’s must be jointly optimized along with the columns and associated powers (set of Ak’s).
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Finally, a third complication is that an optimal precoder matrix depends on the choice of neighboring

receivers (e.g., optimal, corresponding to (9), linear, or decision-feedback). Furthermore, in the case of

linear receivers the transmitter must know the cross-channel gains combined with the receive filters in

order to determine the received interference (i.e., G
†
kHkj , where Gk is the receive filter at node k).

An approach presented in [26] is to view each column of Vk as a spatial “beam”, which is used

to carry a separate symbol stream, and assume that all receivers are linear. The utility for a user can

then be defined as a function of the received SINRs across beams (e.g., sum rate over the beams), and

interference prices can be defined and announced for each beam as before. Each user can then select each

beam to maximize the associated utility minus cost. Of course, the achievable rate with linear receivers

only approximates the optimal rate in (9). Also, the problem is still complicated by the joint optimization

of precoder ranks and powers. Heuristic methods for beam updates are presented in [26], which trade

off performance with the amount of information exchange. (Variations depend on the order in which

beams are updated (e.g., sequentially versus all at once), how powers are allocated, and how often prices

are announced.) For two users, the performance of the distributed algorithms is typically close to that

obtained with centralized optimization and achieves the optimal high-SNR slope. The performance can

therefore be substantially better than that of the iterative water-filling algorithm, especially at high SNRs.

(With more than two users, the optimal high-SNR slope may require interference alignment [29].)

V. CONCLUSIONS AND REMAINING ISSUES

Exchanging interference prices in a wireless network enables the transmitters to adjust their resources

to optimize a network objective, as opposed to their individual single-link objectives. Although algorithms

that iterate between price announcements and combined power/beam best response updates typically show

rapid convergence to a limiting allocation, establishing general conditions that guarantee such convergence

can be challenging. The concept of supermodularity, which arises in game theory, has been shown to

be especially useful for this purpose. Specifically, convergence to the unique globally optimal allocation

is guaranteed for SISO channels provided that the utility functions satisfy weak concavity properties.

Moreover, the order in which price and best response updates occur can be arbitrary.

There are, however, several limitations of the results presented here. First, the condition on utility

functions that guarantees convergence excludes the achievable (Shannon) rate. In fact, the sum rate

objective can have multiple local optima, so that convergence to a global optimum cannot be guaranteed.

Still, convergence to a local optimum has always been observed in numerical experiments. Second, with

MISO channels supermodularity can only be applied to a network with two users, although convergence
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is typically observed with more than two users. Finally, establishing conditions for the convergence of

iterative pricing algorithms with MIMO channels and adaptive receivers remains an open problem.

Although the sum utility achieved with distributed pricing can be substantially larger than that corre-

sponding to the Nash equilibrium (no information exchange), the model presented here has ignored the

overhead associated with exchanging interference prices. The information exchange overhead might be

substantially reduced by exchanging prices corresponding to a subset of strongest interferers (e.g., see

[30]). In addition to the power and bandwidth needed to exchange those prices, resources are needed

to estimate the cross-channel gains used to compute the best response updates. Furthermore, in practice

the prices and cross-channel gains will contain estimation error, the magnitude of which depends on the

resources allocated for channel estimation. An accurate assessment of the benefits of distributed pricing

must ultimately take this overhead and estimation error into account.

Finally, our model has assumed that the users do not deviate from the specified algorithm, meaning

that each user truthfully announces a set of interference prices. A non-cooperative user could improve her

individual performance by falsely reporting a larger set of interference prices. (Cross-channel gains might

also be similarly manipulated.) One approach to this problem is to implement policing and punishment

strategies for detecting such behavior (e.g., see [5]). Alternatively, it is possible to design auction

mechanisms that provide incentives for truthful reporting, albeit with an associated loss in efficiency

(sum utility) (e.g., see [31], [32]). Understanding the tradeoffs among these approaches in the context of

interference networks with multiple DoFs poses major challenges for future investigation.
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APPENDIX A

SIDE-BAR: SUPERMODULAR GAMES

Supermodular games represent a class of games in which the players exhibit strategic complementar-

ities. Loosely, this refers to the fact that the players’ actions can be ordered so that an increase in one

player’s action results in the best response of every other player also increasing (or more precisely, not

decreasing). This notion of complementarity is formalized by requiring that the player’s payoff functions

have increasing differences. To be more concrete, consider a game in which each player chooses a real-

valued strategy xk. Each player seeks to maximize a payoff function Πk(xk, x−k), where x−k denotes
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the vector of strategies of all players except player k. Assuming the payoffs are twice differentiable, then

player k’s payoff will have an increasing difference if for all j 6= k,

∂2Πk

∂xk∂xj

≥ 0, (10)

for all xk and xj . The resulting game is said to be supermodular if each player’s payoff has increasing

differences and each player’s set of allowable strategies is a compact subset of the real-line. This definition

can be generalized to allow for non-differentiable payoffs and vector-valued strategies, e. g., see [33].

For our purposes, supermodular games have the following two useful properties:

1) If each agent’s payoff is upper semi-continuous, the game must have a Nash equilibrium.

2) If the Nash equilibrium is unique, then best response updates globally converge to that Nash

equilibrium from any initial choice of strategies.

Here, best response updates mean that players iteratively update their strategies to optimize their payoffs

assuming that the other players do not change their current strategies. For the preceding convergence

result, this updating can be done in a general asynchronous manner, which includes synchronous updates

as a special case. If the Nash equilibrium is not unique, then best response updates will still converge,

provided that agents initialize to either their smallest or largest strategy choices; in these cases the set

of Nash equilibria also has a lattice structure [33]. This should be contrasted with an arbitrary game in

which a Nash equilibrium may not exist, and even if a Nash equilibrium exists, best response updates

need not converge.
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Fig. 1. A wireless network with multiple peer-to-peer transmissions.
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Fig. 2. Plots of utility functions having a constant coefficient of relative risk aversion (CR). As the CR increases, the functions

exhibit stronger concavity.
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1) INITIALIZATION: Each user k chooses an arbitrary initial price πk(0) ≥ 0 and power 0 ≤

pk(0) ≤ Pk.

2) POWER UPDATE: Each user in an arbitrary group updates its power to maximize (5).

3) PRICE UPDATE: Each user in an arbitrary group updates its interference price according to (4).

4) GOTO 2 and repeat.

Fig. 4. The ADP algorithm for the SISO model (narrowband transmissions with single-antenna terminals).

−30 −20 −10 0 10 20 30 40
0

2

4

6

8

10

12

SNR in dB

S
um

 R
at

e

 

 
Pricing Algorithm
Zero−Forcing
Non−Cooperative
Time−Sharing
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Fig. 6. Illustration of the optimal beamformer vk in a two user network. The shaded area denotes the convex cone spanned

by the channel matched filter and the zero-forcing beamformer. The boundary of this region corresponds to those beams that

meet the power constraint.
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