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Abstract— The Nash equilibrium region for a 2-user game
was defined and characterized first for a linear deterministic
channel and then for a Gaussian channel. Challanges in extending
this understanding to some specialK-user cases have also been
explored. In this paper, we study two indices which compare
the performance (sum-rate) of the ‘best’ and the ‘worst’ Nash
equilibria to the optimum (sum-capacity) and reflect the ‘price of
stability’ and the ‘price of anarchy’, respectively. Theseindices
are evaluated for the 2-user and some specialK-user linear
deterministic interference channels. We further investigate the
impact on these indices of changing the payoff functions of each
user to include a cost of transmission.

I. I NTRODUCTION

Interference has been traditionally viewed as a limiting fac-
tor in both wireless and wireline communication systems. With
the adoption of new wireless devices, the need for interference
management is even more acute. A challenge in effective
managing interference is that the self-interest of individual
users may not be well aligned. Each user (transmitter-receiver
pair) is essentially interested in improving its own performance
(e.g. its reliable transmission rate) regardless of the impact
of the transmission on other users. Game theory provides a
framework for studying such situations.

A natural abstraction of such a situation is to consider a
game where a set of users share an interference channel. Each
user communicates an independent message over a point-to-
point link, and the links interfere with each other through
cross-talk.The canonical information theoretic model foran
interference channel is the Gaussian interference channel. The
capacity region of this channel is not known in general. How-
ever, recently the capacity region for the2-user interference
channel has been characterized to within one bit for all values
of channel parameters [1]. Furthermore, it is shown in [2] that
the high SNR behavior of the2-user Gaussian interference
channel is in fact captured by a lineardeterministicinterfer-
ence channel, for which the capacity region can be computed
exactly using the results in [4].

In [8], an information theoretic gamemodel for two users
communicating over a general interference channel was devel-
oped. In particular, theNash equilibria regionof the channel
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was defined as a natural extension of the information theoretic
capacity region. If a pair of rates lie in this region then for
long enough block lengths there exists a pair of encoding and
decoding strategies from which neither user is willing to devi-
ate if they require arbitrarily small probability of error.In [8],
this region was then completely characterized for the2-user
deterministic interference channel model from [2]. In [10],
these results were extended to the2-user Gaussian interference
channel. Beyond two users, the nature of Nash equilibria for
a generalK-user interference channel is unknown, as is the
capacity region in general. The Nash equilibria region was
partially characterized for some special cases of theK-user
interference channel was done in [9].

In this paper, we re-examine the information theoretic game
in [8] and evaluate the impact of a particular choice of
equilibrium on sum-capacity. In particular, we introduce two
indices which capture the ‘best’ and the ‘worst’ case scenarios
possible in an equilibrium from the point-of-view of the sum-
rate. These indices are evaluated for various symmetric2-user
andK-user interference channels, restricting ourselves to the
linear deterministic model. Next we re-formulate the pay-off of
each user by introducing a cost for transmission for each level
used by a user. Thus, we have a different game, and we restrict
ourselves to a family of ‘simple strategies’ that have been
shown to be ‘efficient’ in [8]. We show that this re-formulation
leads to a unique Nash equilibrium for all parameter regimes
for the 2-user case, but not so when we have more than two
users.

Other game theoretic approaches for interference channels
have been studied before, mainly focusing on Gaussian mod-
els, e.g. [6], [7]. However, beacuse of the restriction to the use
of random Gaussian codebooks or treating the interference
as Gaussian noise, the formulation in these works are not
information-theoretic in nature. Another approach recently
pursued in [11] involves use of dynamic bargaining theory
but this also assumes some form co-ordination between the
users.

II. PROBLEM FORMULATION

To begin, we recall the definition of the basic interference
channel game forK users as introduced in [9]; this directly



generalizes theK = 2 user game presented in [8]. Communi-
cation starts at time0. Each useri = 1, . . . , K communicates
by coding over blocks of lengthNi symbols. Transmitteri
sends on blockk information bitsb

(k)
i1 , . . . , b

(k)
i,Li

by transmit-

ting a codeword denoted byx(k)
i = [x

(k)
i (1), . . . ,x

(k)
i (Ni)].

All the information bits are equally probable and independent
of each other. Receiveri observes on each blockk an
output sequencey(k)

i = [y
(k)
i (1), . . . ,y

(k)
i (Ni)] through the

interference channel, which specifies a stochastic mapping
from the input sequences of users1, . . . , K to the output
sequences of the users. Given the observed sequences up to
blockk, {y(m)

i }k
m=1, receiveri generates a guessb̂(k)

iℓ for each
information bit. Without loss of generality, we assume thatthis
is done via maximum-likelihood decoding on each bit.

Note that this communication scenario is more general than
the one usually used in multiuser information theory, as we
allow the users to code over different block lengths. Such
generality is necessary here, since even though the users may
agreea priori on a common block length, a selfish user may
unilaterally decide to choose a different block length during
the actual communication process.

A strategysi of useri is defined by its message encoding,
which we assume to be the same on every block and involves:

• the number of information bitsLi and the block length
Ni of the codewords,

• the codebookCi employed by transmitteri,
• the encoderfi : {1, . . . , 2Li} × Ωi → Ci, that maps on

each blockk the messagem(k)
i := (b

(k)
i1 , . . . b

(k)
i,Li

) to a

transmitted codewordx(k)
i = fi(m

(k)
i , ω

(k)
i ) ∈ Ci,

• the rate of the code,Ri(si) = Li/Ni.
Let s = (s1, . . . , sK) denote a strategy profile, i.e., a

choice of strategies for each useri = 1, . . . , K. A given
profile s jointly determines the probabilities of errorp(k)

i :=
1
L

∑Li

ℓ=1 P(b̂
(k)
iℓ 6= b

(k)
iℓ ), i = 1, . . . , K. Note that if the users

use different block lengths, the error probability could vary
from block to block even though each user uses the same
encoding for all the blocks.

The encoder of each transmitteri may employ a stochastic
mapping from the message to the transmitted codeword;
ω

(k)
i ∈ Ωi represents the randomness in that mapping. We

assume that this randomness is independent between the two
transmitters and across different blocks and is only known at
the respective transmitter and not at any of the receivers.

For a given error probability thresholdǫ > 0, we define an
ǫ-interference channel gameas follows. Each useri chooses
a strategysi and receives a pay-off ofπi(s) = R(si) if
p
(k)
i (s) ≤ ǫ, for all k; otherwise,πi(s) = 0. In other words,

a user’s pay-off is equal to the rate of the code provided that
the probability of error is no greater thanǫ. A strategy profile
s is defined to be(1 − ǫ)-reliable provided that it results in
an error probabilitypk

i (s) of less thanǫ for i = 1, . . . , K and
all k.

For an ǫ-game, a strategy profiles∗ = (s∗1, . . . , s
∗

K) is
a Nash equilibrium(NE) if no single user can unilaterally
deviate and improve her pay-off, i.e. if for each useri =

1, . . . , K, there is no other strategysi such that1 πi(si, s
∗

−i) >
πi(s

∗

i , s
∗

−i). If user i attempts to transmit at a higher rate
than what he is receiving in a NE and the other users do
not change their strategy, then useri’s error probability must
be greater thanǫ. Similarly, a strategy profiles∗) is an
η-Nash equilibrium2 (η-NE) of an ǫ-game if no user can
unilaterally deviate and improve her pay-off by more thanη,
i.e. if for each useri, there is no other strategysi such that
πi(si, s

∗

−i) > πi(s
∗

i , s
∗

−i)+ η. Note that when a user deviates,
it does not care about the reliability of the other users but only
her own reliability. So in the above definitions(si, s

∗

−i) is not
necessarily(1 − ǫ)-reliable.

Given any ǭ > 0, the capacity regionC of the interfer-
ence channel is the closure of the set of all rate vectors
(R1, . . . , RK) such that for everyǫ ∈ (0, ǭ), there exists
a (1 − ǫ)-reliable strategy profiles that achieves the rate
vector (R1, . . . , RK). The Nash equilibrium regionCNE of
the interference channel is the closure of the set of rate pairs
(R1, . . . , RK) such that for everyη > 0, there exists a
ǭ > 0 (dependent onη) so that if ǫ ∈ (0, ǭ), there exists a
(1− ǫ)-reliable strategy profiles that achieves the rate vector
(R1, . . . , RK) and is aη-NE. Clearly,CNE ⊆ C.

Following [8], we considerCNE in the context of the linear
deterministic interference channel model introduced in [2].
In this channel, channel input for each is interpreted as a
succession of levels:x = 0.b1b2b3b4b5 . . . . each representing
one bit of the real-valued input to the corresponding Gaussian
channel. The most significant bit coincides with the highest
level, the least significant bit with the lowest level. Noise
is modeled by truncation. Bits of smaller order than the
noise are lost. The signal from transmitteri, as observed at
receiverj, is scaled by a nonnegative integer gainaji = 2nji

(equivalently, the input column vector is shifted up bynji).
At each timet, the input and output, respectively, at linki
arexi(t),yi(t) ∈ {0, 1}q, whereq = maxij nij . Note thatnii

corresponds tolog2 SNRi andnji corresponds tolog2 INRji,
whereSNRi is the signal-to-noise ratio of linki and INRji is
the interference-to-noise ratio at receiverj from transmitteri
in the corresponding Gaussian interference channel. To model
the super-position of signals at each receiver, the bits received
on each level are addedmodulo two. The channel output at
receiveri is then given by

yi(t) =

K
∑

j=1

Sq−nij xj(t), (1)

where summation and multiplication are in the binary field and
S is a q × q shift matrix (e.g. see [5]). For several symmetric
examples considered in this paper, the direct gainsnii will be
denoted bynd, whereas, the cross-gainsnij will be denoted
by nc.

1We use the notations
−i to denote the set of strategy choices for every

user except useri. Also, with a slight abuse of notation we use(si, s−i) to
denote the profiles.

2In the game theoretic literature, this is often referred to as an ǫ-Nash
equilibrium or simply anǫ-equilibrium for a game [12, page 143].
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Fig. 1. Examples ofCNE for a symmetric deterministic interference channel
with normalized cross gainα.

In [8], CNE was completely characterized for the linear
deterministic channel model withK = 2 users. In particular,
CNE was shown to be equal to the intersection of a “box”B
and the capacity regionC of the deterministic channel (see
Figure 1). The intersection is always non-empty and contains
at least one point on the sum-rate boundary ofC.

It was shown in [8] and [9] that sum-rate optimal NEs for
2-user and some specialK-user cases can be attained by using
very simple ‘structured strategies’ which involve doing one of
the following three options on each signal level:

• Transmit an independent bit to be decoded by the receiver
• Transmit a ‘copy’ bit, i.e., transmit the same bit that is

transmitted from some other level
• Transmit noise, i.e., a random bit that is not intended to

be decoded by the receiver

III. I NDICES

As can be seen from Fig. 1, in generalCNE will contain
multiple points, not all of which obtain the same sum-rate.
In this section we examine two indices to characterize the
best and worst case efficiency that can be obtained at a Nash
equilibrium, where efficiency is measured relative to the sum-
capacityRC

sum. Specifically, we define

• γmax =
(RNE

sum)max

RC
sum

• γmin =
(RNE

sum)min

RC
sum

whereRNE
sum is the sum-rate of the users in a given NE. The

first index γmax measures the best-case scenario in terms of
the equilibrium sum-rate. For a given interference channel, it is
not possible to achieve an efficiency greater thanγmax in CNE.
This index is essentially the inverse of the ‘price of stability’
metric studied in the algorithmic game theory literature [15].
The second index,γmin measures the worst-case scenario
in terms of sum-rate when the players reach an NE in the
interference game. If the players are in an NE, the efficiency
in terms of sum-rate cannot go below this value. This index
is again the inverse of the so-called ‘price of anarchy’.

Below we compute these index values for a number of
symmetriccases for which we know the sum-capacity. In each
of these symmetric channels all users have the same direct gain
nd and between any pair of users the cross gain is either0 or
nc = αnd.

Before we consider the indices for the different cases, we
shall prove a simple lemma that will be used to evaluateγmin.

Lemma 1: In any linear deterministic interference channel,
the ‘worst-case’ NE is achieved by adopting the following
strategy: Transmit independent bits from levels which are
intereference-free at a user’s own receiver. Transmit noise from
all other levels so as to create as much interference as possible
at other receivers.

Proof: First, note that such a strategy will be an equilib-
rium as no player can improve their rate. A lower information-
rate can only be achieved by not transmitting an independent
bit from a level corresponding to an interference-free level at
the receiver. But such a strategy cannot be an equilibrium as
the same player can increase her pay-off by transmitting an
independent bit from that level.

A. 2-user deterministic interference channel

The entire NE region for the2-user interference channel has
been characterized in [8]. For the symmetric case, theγmax

andγmin can be readily evaluated by looking at Figure 1 and
the capacity region of a2-user linear deterministic IC. Since,
for all values ofα, there exists an NE that is on the sum-
capacity boundary,

γmax = 1. (2)

For α < 1
2 , this is the unique NE. In the region12 < α < 1,

the lower left-hand corner of the ‘box-bound’ approches the
origin and then stays there for all values ofα > 1. Hence, it
can be shown that

γmin =























1, 0 ≤ α ≤ 1/2,
1−α

α
, 1/2 ≤ α ≤ 2/3,

1−α
1−α

2

, 2/3 ≤ α ≤ 1,

0, 1 ≤ α.

(3)

B. K-user Many-to-One deterministic interference channel

In [9] it was shown thatCNE = B∩C. Further, it was shown
thatCNE always contains a sum-rate optimal rate point. For the
symmetric case that we consider here, forα < 1, there is only
one NE. Forα > 1, due to the fact that all the users interfering
with the common user (say, user1) can use the levels below
their own noise floor to transmit noise, the ‘anarchy’ drives
theγmin to values below1. Thus for all values ofα, we have

γmax = 1 (4)

while,

γmin =















1, 0 ≤ α ≤ 1,
1

1+ α−1

K−1

, 1 ≤ α ≤ 2,

K−1
K

, 2 ≤ α.

(5)

However, asK → ∞, γmin → 1.



C. K-user One-to-Many deterministic interference channel

This channel, often viewed as complementary to the many-
to-one channel discussed before, exhibits an important char-
acteristic that it may not have a sum-rate optimal NE. It was
also shown in [9] that forK > 2 andni1 > n11 for at least
two usersi 6= 1, CNE 6= B ∩ C. FurtherCNE is not guaranteed
to contain a sum-rate optimal point. In a symmetric case, we
can characterize this loss of efficiency as follows:

γmax =











K(1−α)+α

K−α
, 0 ≤ α ≤ 1,

K(α−1)+(2−α)
K−(2−α) , 1 ≤ α ≤ 2,

1, 2 ≤ α.

(6)

Likewise, using lemma 1, we have

γmin =











K(1−α)+α

K−α
, 0 ≤ α ≤ 1,

1
K−(2−α) , 1 ≤ α ≤ 2,
1
K

, 2 ≤ α.

(7)

Note that, asK → ∞, for α > 1, γmin → 0.

D. K-user bi-symmetric deterministic interference channel

A 3-user bi-symmetric interference channel was introduced
in [9]. This is a special case of a more general ‘shoe-string’
interference channel whose sum-capacity was characterized in
[14]. Here, we consider a symmetricK-user extension of this
channel whereK − 1 users interfere with user1, while user1
also interferes with all the otherK − 1 users. None of these
K −1 users interfere with each other. Using the sum-capacity
results of [14] and using the symmetry in interference, it can
be shown that, for this channel,

Csum =



















Knd − 2αnd, 0 ≤ α ≤ 1/2,

(K − 1)nd, 1/2 ≤ α ≤ 1,

(K − 1)nd + (α − 1)nd, 1 ≤ α ≤ 2

Knd, 2 ≤ α.

(8)

In [9], it was shown that for a3-user bisymmetric interference
channel,CNE contains a sum-rate optimal point forα > 2/3.
Using the same proof technique we can prove a similar claim.
Further, we can characterize the efficencies of the NEs as
follows:

γmax =











K(1−α)
K−2α

, 0 ≤ α ≤ 1/2,
Kα

K−1 , 1/2 ≤ α ≤ 2/3,

1, 2/3 ≤ α.

(9)

γmin =











K(1−α)
K−2α

, 0 ≤ α ≤ 1/2,
K(1−α)

K−1 , 1/2 ≤ α ≤ 1,

0, 1 ≤ α.

(10)

Note that, unlike theK-user one-to-many case whereγmin →
0 asymptotically inK for α > 1, the worst case efficiency can
be 0 for evenK = 3.

Fig. 2. NE strategy when cost of transmission is included in pay-off

IV. GAMES WITH A COST OFTRANSMISSION

The low values ofγmin for several channel models in
the previous section arise due to the fact that there exists
such equilibria where users unnecessarily transmit noise from
levels below their own receiver’s noise floor, thereby reducing
reliable transmission rate for other users. A reasonable way
to discourage this sort of ‘harmful’ behavior is to associate a
‘cost’ to transmissions. This implies that a user’s strategy will
include transmission from a particular level only when that
transmission contributes to a gain in her reliable bit-rate, and
not otherwise. We define a new ‘interference game’ is similar
to the game introduced in Section II, but with a new pay-off
function for useri, given by

Pi = Ri − t · Ti (11)

where a cost oft < 1 is incurred due use of each level, andTi

is the total number of levels that useri uses for transmission.
For the present discussion, we restrict ourselves to a game
where the players are allowed to adopt strategies that either
involve transmission of an independent bit from a level, send
a copy or not transmit anything at all. We letGp denote this
modifed game. Note that, the strategies that achieveγmax in
all the previous examples belong to this strategy space.

Lemma 2:For the 2-user linear deterministic interference
channelGp has a unique NE for each parameter tuple.

Proof: First, note that under the new pay-off scheme,
sending a copy bit from a level cannot be part of an equi-
librium strategy because, by not transmitting the copy the
user can increase her pay-off due to savings in terms of the
cost of transmission. Similarly, sending noise from level’s
below a user’s own receiver’s noise floor cannot be part of
a equilibrium strategy. Thus, in the chosen strategy space,any
equilibrium strategy must have the following characterization::
Each user transmits independent bits only from levels which
do not receive any interference from the other user.

Given the knowledge of the channel parameters, any such
NE can be found by creating an ‘interference graph’ as
described in [13]. An equilibrium is then given by choosing
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Fig. 3. Efficiency of 2-user Nash Equilibria with different pay-offs

alternate levels (starting from the top-most level of each chain)
to transmit an independent bit. This is illustrated in Figure 2.
In case of cycles (which can only be composed of two nodes),
the choice of levels is not unique, but the sum-rate achieved
is. Such a situation arises, for example in the symmetric case
α = 1 which has

(

2nd

nd

)

strategy pairs, all yielding the same
sum-rate ofnd.

Inclusion of the cost of transmission in the pay-off function
enables us to get rid of many inefficient equilibria and thereby
increase the value ofγmin for all parameter values. However,
for this two user case,γmax is no longer guaranteed to be
always1. Figure 3 compares the efficiencies with and without
the cost of transmission.

Lemma 3:The uniqueness (upto sum-rate) of NE is not
guaranteed in aK-user interference network whereK > 2

Proof: Consider a3-user bi-symmetric interference chan-
nel introduced in [9]. Supposeα = 1. There are two different
Nash equilibria - one in which only the middle user transmits
from all her levels achieving a sum-rate ofnd while other
two users do not transmit at all, and another in which both
the fringe users transmit from all their levels while the middle
user does not transmit at all, thus achieving the sum-capacity
of 2nd.

Note that for both theK-user symmetric ‘one-to-many’ and
‘many-to-one’ interference networks, the new pay-off function
ensures existence of a sum-rate unique NE. The proof follows
by drawing ‘interference graphs’ and noting the absence of
any cycle in the respective graphs.

V. CONCLUSIONS

In this paper we compared the efficiencies (with respect to
sum-capacity) of the different Nash equilibria for interference
games in severalK-user symmetric linear deterministic chan-
nels. We also introduced a new pay-off function that includes
a ‘cost of transmission’. With this new game and a restricted
set of strategies, we proved that for two users there exists a
unique Nash Equilibrium. Investigating the new game in the

context of ‘unrestricted’ strategy sets and also for more general
K user intereference networks is left as future work.

REFERENCES

[1] R. Etkin, D. Tse, and H. Wang, “Gaussian Interference Channel Capacity
to within One Bit,” IEEE Trans. on Information Theory, Vol. 54, No. 12,
Dec. 2008.

[2] G. Bresler and D. Tse, “The Two-User Gaussian Interference Channel: A
Deterministic View,”European Transactions in Telecommunications, vol.
19, pp. 333-354, April 2008.

[3] G. Bresler, A. Parekh, and D. Tse, “The Approximate Capacity of the
many-to-one and one-to-many Gaussian interference channel,” Allerton
Conference on Communication, Control and Computing, Monticello, IL,
Sept. 2007.

[4] A. El Gamal and M. Costa, ”The Capacity Region of a Class of
Deterministic Interference Channels,”IEEE Transactions on Information
Theory,Vol. IT-28, No. 2, pp. 343-346, March 1982.

[5] S. Avestimehr, S. Diggavi, and D. Tse, “Wireless NetworkInformation
Flow,” Allerton Conference on Communication, Control, and Computing,
Monticello, IL, September 2007.

[6] R. Etkin, A. P. Parekh and D.Tse, ”Spectrum Sharing in Unlicensed
Bands”,IEEE Journal on Selected Areas of Communication, vol. 25, no.
3, pp. 517-528, April 2007.

[7] S. T. Chung, S. J. Kim, J. Lee, and J.M. Cioffi, “A game-theoretic
approach to power allocation in frequency-selective Gaussian interference
channels,”Proceedings of IEEE ISIT,pp. 316-316, June 2003.

[8] R. Berry and D. Tse, “Information Theoretic Games on Interference
Channels,”Proceeding of IEEE ISIT, pp. 2518-2522, July 2008.

[9] R. Berry and S. Saha, “On Information Theoretic Interference Games
with More than Two Users,”Proceedings of IEEE Information Theory
Workshop, Cairo, Egypt, January, 2010.

[10] R. Berry and D. Tse, “Shannon Meets Nash on the Interference
Channel,”submitted to IEEE Transactions on Information Theory, May
2010.

[11] X. Liu and E. Erkip, “Alternating-Offer Bargaining Games over the
Gaussian Interference Channel,”Proceedings of Forty-Eighth Annual
Allerton Conference on Communication, Control, and Computing, Sep-
Oct 2010.

[12] R. Myserson,Game Theory: Analysis of conflict, Harvard University
Press, Cambridge MA, 1991.

[13] S. Saha and R. Berry, “On the Combinatorial Structure of2-user
Linear Deterministic Interference Channel and Better Response Up-
dates,”Presented as a Poster at ISIT 2010, Austin, TX, June, 2010.

[14] S. Saha and R. Berry, “On the Sum-capacity of a Class of 3-user
Deterministic Interference Channels,”Proceedings of Forty-Eighth Annual
Allerton Conference on Communication, Control, and Computing, Sep-
Oct 2010.

[15] N. Nisan et, al., “Algorithmic Game Theory”, CambridgeUniversity
Press, 2007.


