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Abstract

It is well known that the norm of the gradient may be unreliable as a stopping test
in unconstrained optimization, and that it often exhibits oscillations in the course of the
optimization. In this paper we present results describing the properties of the gradient
norm for the steepest descent method applied to quadratic objective functions. We also
make some general observations that apply to nonlinear problems, relating the gradient
norm, the objective function value, and the path generated by the iterates.
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1 Introduction

The sequence of gradient norms generated by algorithms for unconstrained optimization
often exhibits oscillatory behavior, but it is not well understood whether the size of the
oscillations is related to the conditioning of the problem and to the rate of convergence of
the iteration. Since the norm of the gradient is often used in termination rules, it is also
interesting to ask under what circumstances does it provide a good estimate of the accuracy
in the optimal function value. In this paper we study the properties of the gradient norm
for the steepest descent method applied to a quadratic objective function. We also present
some results describing the path followed by the iterates, and the final accuracy in the
function obtained in the presence of rounding errors.
We write the unconstrained optimization problem as

Jnin f(z), (1.1)
where f is a twice continuously differentiable function whose gradient will be denoted by g.
The motivation for this work arose during the development of a limited memory code (L-
BFGS-B) for bound constrained optimization [5], [14]. We observed that for some problems
this code was unable to reduce the gradient norm ||g(z)||sc as much as we desired, but that
LANCELOT [7] had no difficulties in doing so. Initially we reported this as a failure of the
limited memory code to achieve high accuracy in the solution, but a closer examination of the
results revealed that in some of these runs the limited memory code had actually produced
a lower function value than LANCELOT. Several examples of this behavior are described
in [14]. In Table 1 we present a striking example that was obtained when the inexact
Newton method described in [6] and the limited memory code L-BFGS-B [14] (using m =
5 correction pairs) were applied to the unconstrained optimization problem PENALTY3
from the CUTE collection [4]. Both methods were run until no further progress could be
made in reducing the objective function; we report the final function values and gradient
square norms obtained by each method. (All the computations reported in this paper were
performed in IEEE double precision arithmetic.)

‘ Algorithm H f ‘ lgll3 ‘
L-BFGS (m=5) [[ 9.999458658 x 102 | 6.66 x 10~°
Inexact Newton | 9.999701976 x 10~% | 1.29 x 1013

Table 1. Final objective value and final square norm of the gradient obtained
by two optimization methods on the PENALTY3 problem.

This behavior of limited memory methods (and more generally of quasi-Newton meth-
ods) has been noted by other researchers [12, 9], and confirms the well-known fact that the
gradient norm can be an unreliable measure of accuracy in the objective function f (see for
example Chapter 8 in [10]).



Nevertheless there are good reasons for using the gradient norm to terminate optimiza-
tion calculations. We know that it must be zero at a solution, its value is available at every
iteration of a gradient-related method, and it requires no knowledge of the optimal function
value f* or the solution vector z*. Because of this, it is used extensively in automatic
stopping tests. For example, a variety of algorithms for constrained optimization, such as
augmented Lagrangian and barrier methods, require the solution of unconstrained opti-
mization subproblems, and the termination tests for these subproblems are usually based
on the norm of the gradient.

The paper is organized as follows. In Section 2, we make some observations relating
the size of the gradient and the accuracy in the objective function; they apply to general
objective functions and are independent of the minimization algorithms used to solve the
problem. The rest of the paper concentrates on the steepest descent method applied to
quadratic functions. Section 3 summarizes the important results developed by Akaike [1]
and extended by Forsythe [8]. In Section 4 we present an upper bound on the maximum
oscillation in the gradient norm that can occur at any iteration, and in §5 we analyze the
asymptotic behavior of the gradient norm in detail. We conclude in §6 by making some
observations on the final accuracy in the objective function.

Notation. Machine accuracy (or unit roundoff) is denoted by u. We denote the condition
number of a matrix A by 7(A), or simply by v when the argument is clear. Throughout
the paper || - || denotes the ¢35 or Euclidean norm.

2 Accuracy in f vs Gradient Norm

Let us explore the relationship between the accuracy in the objective function, as measured
by difference in function values
f(z) = f7, (2.1)
and the norm of the gradient,
lg(@)ll, (2.2)

which must be zero at a solution. Other norms can be used, but for the sake of concreteness
we will focus our attention on the Euclidean norm of the gradient. Most of the results given
in this section can be found in [10], but we derive them for clarity and completeness.
Using Taylor’s theorem we have
1 N
fl@)=f"+9(z)" (z —2") + 5(z = 2") Gz - 27),

where G = V2f(¢) for some ¢ in the line segment connecting z and z*. Noting that
g(z*) = 0 we obtain

* 1 *
fl@) = f*=352@)z = [ (2.3)
where A(z) is the Rayleigh quotient of G in the direction z — z*, and is defined by

(z — 2*)TG(x — z*)

Me) = T

T (2.4)



Let us now consider the gradient. Taylor’s theorem gives

g(z) = g(z") + Gz — z7),

where .
G= / Vif(z +7(z* — z))dT.
0
Thus B
lg(@)I* = Az)[|lz — «*||?, (2.5)
where

(z — )T G?*(x — z¥)

l — |2

MNz) =

is the Rayleigh quotient of G2 in the direction z — z*. Thus f(z) — f* and ||g(z)||* are both
proportional to ||z — z*||?, and combining (2.3) and (2.5) we obtain

(2.6)

z— TGz — z*
o) = L [lam G =)

2 (J;_:L-*)TGZ(:L,_ *) ||g(x)||2 (27)

There is a simple geometrical interpretation of (2.7) in the case where the objective function

is a strongly convex quadratic,

fla) = 3ot G,

where G is positive definite. In this case G = G = G and (2.7) becomes

[Ell&

fla) -1t =3 LTGz] lo(z) I, 2.

where z = G%(IE — z*). In Figure 1 we plot contours of f and ||g||? for the case f(z) =
(z? + 522)/2. Note that since |g(x)||?> = 27 G?x, the contours of |g||* are more elongated
than those of f. Let us consider the points & = (0,2/v/5) and z = (2,0), which have the
same objective function value. It is clear from Figure 1 that

lg(@) I > llg()I,

so that the gradient norm does not provide useful information about the accuracy in the
objective function in this case. Indeed, we see from (2.8) that the relative magnitudes of
f(z) — f* and ||g(x)||* can vary as much as the condition number of the Hessian.

This figure also suggests that the path followed by the iterates of an optimization al-
gorithm may determine whether a small or large final gradient norm is obtained. Let us
suppose that the region inside the solid line in Figure 1 now denotes the set of points for
which the function values cannot be distinguished in machine arithmetic. If an iterate falls
inside this region the algorithm will stop as it will not be able to improve the objective
function. An algorithm that approaches this region near & will give a higher gradient value



2 2
llgll” = 20 llgll” = 4

Figure 1: Contours of f(z) = (2} + 523) and ||g(z)||* = 2} + 2523 .

than one approaching near x, but the quality of the solution, as measured by the objective
function, will not be worse at Z.

We will show below that the steepest descent method will normally approach a solution
along a point such as z in Figure 1. As a result it will produce a final gradient norm that
will be small, compared to other gradient norms corresponding to equal function values.
Quasi-Newton methods are less predictable. An examination of numerical results reveals
that the path generated by their iterates varies from problem to problem, and a description
of the behavior of their gradient norms remains an open question.

3 Akaike’s Results and Some Extensions

In the rest of the paper we focus on the steepest descent method, with exact line searches,
applied to the strongly convex quadratic function

1
flz) = g(x—ﬂﬂ*)TQ(ﬂf—w*), (3.1)
where Q € R™*" is a symmetric positive definite matrix and z € IR". We begin by reviewing
results of Akaike [1] that play an important role in our analysis of the asymptotic behavior
of the gradient norm in the steepest descent method.
An iteration of the steepest descent method is given by

gkt — (k) _ g(k)g(k)’ (3.2)
where
9" = g(z®)) = Q=™ — &¥), (3.3)
and kNT (k
(gt TQgk)” '

Let 0 < A1 < Ao < ... < Ay, denote the eigenvalues of @, and &1, &s,...,&, the corre-
sponding set of (orthonormal) eigenvectors. Let z(©) be the starting point and, with respect



to this point, define
Ao =min{); : &7 g® £0} and A" = max{); : & ¢(@ # 0} (3.5)

In order to rule out the trivial case where the steepest descent method (3.2)—(3.4) finds
the solution after one single iteration, we make the following assumption.

Assumption 1. The starting point £(©) and the matrix @ are such that \_ < A~.

Indeed when Assumption 1 does not hold, the initial gradient ¢ is an eigenvector of (). We
will also make the following assumption whose significance to the analysis will be discussed
later on.

Assumption 2. The matrix @ in (3.1) satisfies

0< A <o < Ay, (3.6)

and the starting point is such that
A=A and A =\, (3.7)
Under Assumptions 1, Akaike shows in [I, Theorem 4] that the error e®) = z(k) — g*

of the k-th approximate solution tends to be approximated by a linear combination of
two fixed eigenvectors of () corresponding to the eigenvalues A_ and A™. In particular, if
Assumption 2 holds, the steepest descent method is asymptotically reduced to a search in
the 2-dimensional subspace generated by the two eigenvectors corresponding to the largest
and the smallest eigenvalues of Q. Akaike also shows in [1, Theorem 4] that ) alternates
asymptotically in two fixed directions. In Proposition 3.1, we summarize the main results

on which the proof of Theorem 4 in [1] is based.
(k)

To state the results we define o;"’, 7 = 1,...,n, to be the components of g(k) along the

eigenvectors &; of @), that is,

g® =3 oM. (3.8)
i=1

Proposition 3.1 Suppose that Assumptions 1 and 2 hold, and that we apply the steepest
descent method (3.2)—(3.4) to a strongly convez quadratic function. Then
(i) the following limits hold,

(a(_2k))2 H_%a ifi=1,
lim " ¢ o = 0,2 ifi=2,...,mn—1, (3.9)
k%ooz _ (aj )2 1—7_7, zfz:n,
and s
lim L T =<0, ifi=2,...,n—1, (3.10)
koo 1 (a(- +1))2 1 e
J= J T+c20 'Lfl =n,



for some non-zero c, and
(ii) the sequences

(2k) (2k+1)
{ nai = } and { nai oy } (3.11)
Sy (@) V(D)2

are both convergent to non-zero values for t =1 and i = n.

Proof. Item (i) is clearly established in the first part of the proof of Theorem 4 in
[1]. Item (ii) is a consequence of the second part of the proof of Theorem 4 in [1]. A clearer
proof is given by Forsythe in [8, Theorem 4.12] and the comment that follows. Indeed, the
two sequences in item (ii) are nothing else but the sequences of first and last components of
the even and odd normalized gradients (y2 and yor11 in Forsythe’s notation), respectively,
that are shown by Forsythe to convergence to a single point. O

Proposition 3.2 gives the asymptotic rate of convergence of f*) (= f(z(*¥))), as derived
by Akaike in [1, Page 11].

Proposition 3.2 Under the assumptions of Proposition 3.1, the sequence of function values
satisfies
(k+1) 200 _ 1)2
T e oo & ekl
k—oo f(k) (A +9)(1 + c%y)

where c is the same constant as in Proposition 3.1, and v = A\, /A1.

(3.12)

Proof. Akaike shows in [1, Page 11] that

(k+1)
lim f

dm = (e - M2 {0 + M) + (e - 0_1)%%}*1 : (3.13)

where ¢ is the same constant as in Proposition 3.1. We can rewrite this limit as

E+1 2 2
i L0 cly=1) : (3.14)
k—oo  f(K) A1 +7)2+ (2 —1)2y
which is equivalent to (3.12). O

A simple computation shows that the right hand side of (3.12) is maximized when ¢? = 1;
this gives the worst rate of convergence in the objective function.

Next, we extend Akaike’s results to provide an interpretation for the meaning of ¢, and
in particular, that it is related to the ratio of the components of the gradient g®) in the
coordinate system defined by the eigenvectors £; and &,,. Before establishing this result, we
make the following observations: Assumptions 1 and 2 guarantee that

agk) #0 and o) £0 forall k> 0. (3.15)
Indeed, since ozl(k) = fiTg(k), (3.15) is obviously true for k£ = 0, by definition of A_ and A\~
and by Assumption 2. For k£ > 0, observe by (3.2), (3.3) and (3.8) that

o™ = o V(1 —gk-DN),  i=1,....n, (3.16)



and that

n (k—1)\2
g1 — izl ) (3.17)
n (k—1) 2, ’
Z:l(az ) ?
by (3.4) and (3.8). It follows from Assumption 1, (3.7) and (3.17) that
A L A
1 < 9U—1) < An
for all £ > 0. Hence (3.15) also holds for k& > 0, by (3.16).
We next consider the asymptotic behavior of the sequence of steplengths {O(k)}.
Lemma 3.3 Under the assumptions of Proposition 3.1, the following limits hold,
1+c?
lim g% = —— —— 3.18
Fovoo A (14 ) (3.18)
and )
1+c
lim kD) =~ — 3.19
F oo A2 +7)’ (3.19)
where ¢ is the same constant as in Proposition 3.1.
Proof. From (3.17), (3.9) and (3.10) we have
. _ (14 c2y)
1 (2k)y-1 _ AL TC V) 9
S (3:20)
and (e )
: @2k+1)y—1 _ Alem +y
klirgo(H ) iZ (3.21)
O
We can now provide an interpretation for the constant c.
Lemma 3.4 Under the assumptions of Proposition 3.1, the constant c satisfies
(2k)
1
and
o2k
c=— lim —L— (3.23)

2k+1) "
k%ooa% +1)

Moreover ¢ is uniquely determined by the starting point ©(©) and by the eigenvalues and the
eigenvectors of Q.



Proof. From (3.9) and (3.10) we have that

(2k)y2 (2k+1)y2
lim (O"ék)) = lim % = (3.24)
k— 00 (0‘1 )2 k— 00 (an )2

These limits together with item (ii) of Proposition 3.1 are sufficient to ensure the convergence

of the sequences {agk)/ag%)} and {a?kﬂ)/agkﬂ)}. Hence we can deduce (3.22) from
(3.24), without loss of generality. Now (3.16), (3.18) and (3.22) imply that

a(2k+1) ‘ (2k) (1 . O(Zk)Al)

Qg

Eooe o@D kDo o0 (1 _ g2k, ) = —c, (3.25)

which proves (3.23).
Finally note that equalities (3.16) and (3.17) together with (3.22) or (3.23) show that ¢

is uniquely determined by the values of az-o ,i=1,...,n (and hence by the starting point
(II(O)), and by the eigenvalues and the eigenvectors of . O

We now determine the range of values that ¢ can attain, for a given starting point z(%).
An important quantity in this analysis is the minimum deviation of the eigenvalues of @)
from the mean, as measured by

>‘i _ An‘2|‘A1

0 = min

3.26
i€T ’ ( )

An—A1
2

where
T={i=2,....,n—1: A <X <X, &¢0£0 and \; # 6®)"'VE>0} (3.27)

Note that & € [0,1), and its value depends on z() through the definition of the set Z.
Moreover, § can only be near one if all the eigenvalues whose index is in Z cluster around

A1 and \,. It is also important to observe that, by the identity ago) = fgpg(o) and (3.16),
i€T = M <A< and o £0 forall k> 0. (3.28)

In other words, for ¢ € Z, the gradient component along the eigenvector & whose corre-
sponding eigenvalue is strictly between A; and A, is not discarded in the course of the
algorithm.

The restriction on the possible values for ¢ given by the following lemma is an obvious
consequence of a result of Akaike (see [1, Page 12]) from which the author deduces that
“the rate of convergence of the steepest descent method for ill-conditioned problems tends
near to its worst possible value (reached for ¢? = 1), especially when there is some ); close
to the midpoint (A, + A1)/2”.

Lemma 3.5 Under the assumptions of Proposition 3.1, and assuming that the set T is
nonempty, c is restricted to the interval

¢yt < < gy, (3.29)



where

_2+775+\/TI§+4715 (3:30)

¢5 - 2 )
and )
1456
Proof. Using the following inequality that holds for all i € Z (see [1, Page 12]),
A — A1) 2 Mo+ AN\ (1 —¢?)? 5
—_ N———— ) >t (Ay— A 3.32
( 2 >+<’ 2 )-2(1+c2)2(" 0% (3:32)
Akaike shows that (2 2
cc—1
L < (3:33)
for all i € Z, where
1+ 67
;=4 i .34
and
>\i _ A7»‘2")\1

2
Since |0;] < 1 for all ¢ € Z, using the definition (3.26) of the minimum deviation J, we obtain

2 2
o < (3.36)
where 7 is defined in (3.31). This last inequality is equivalent to (3.29). O

Note that, by (3.28), the requirement that the set Z be nonempty in the assumptions of
Lemma 3.5 guarantees that at least one gradient component along an eigenvector &; whose
corresponding eigenvalue is strictly between A\; and A, is not discarded in the course of the
algorithm. As a consequence, if 7 is empty, the steepest descent method will be reduced
to a search in the 2-dimensional subspace generated by &; and &, after a finite number
of iterations rather than asymptotically. In that case, the behavior of the method is not
typical: it coincides with that for the 2-dimensional case, which as we will see in §5.3, has
some special properties.

Figure 2 illustrates the possible values of ¢? as a function of 6. It is clear that ¢; increases
very slowly with 6 — except when § approaches 1, when it diverges to co. Note also that
the value ¢? = 1 giving the worst rate of convergence in f is always contained in the range
of possible values of c¢. The definitions (3.30) and (3.31) imply that ¢s (and hence the set
of possible values of ¢?) is exclusively determined by § (for a fixed starting point), and thus
by the distribution of the inner eigenvalues of () — and is in general not directly dependent
on the condition number 7, since we can vary v why leaving J unchanged.

Assumption 2 has been made throughout this section to simplify the exposition. We
note, however, that (3.6) can be relaxed without altering the results stated here, as discussed
by Forsythe [8, §5]. On the other hand, (3.7) is assumed for convenience and without loss
of generality.
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4 Maximum Oscillation in the Gradient Norm

The following result provides an upper bound on the growth of the gradient norm. This
bound holds, not only asymptotically, but at each iteration, and its derivation is independent
from the results of §3.

Theorem 4.1 At each iteration of the steepest descent method (3.2)-(3.4) applied to a
strongly convex quadratic function,
g2 _ (y-1)2
lg®2 = 4y

(4.1)
Proof. The proof is similar to that used in [11] to establish the rate of convergence
of the objective function for the steepest descent method. By (3.2) and (3.3), we have

gk+D = g0 _ ) (k).

Therefore
lg® D% = [lg™)1? = 20 (g*N) T Qg™ + (6%)*(g*))TQ?g™*).

Substituting (3.4) in the above expression yields

ez _ J lgPIPIQe™M? k)12
“9( * )“ = { ((g(k))TQg(k))Z -1 Hg( )“ . (4.2)

By introducing 2k) = Q12¢%)  we may rewrite this equation as

(k) —1,(k) (k) (k)
||g(k+1)||2 _ { ((z NTQ—14k ) ((z NT QK ) ) 1} “g(k)HZ_ W

((29)728)”
Using the Kantorovich inequality (see [11]), we have

((z(k))TQ—lz(k)) ((z(k))TQz(k)) 3 (1 +7)2.
(2T 5 (k))? I

Substituting this inequality in (4.3) yields the desired bound (4.1). O

This result implies that, for the gradient norm to increase, it is necessary that (y—1)% >
4+, that is,
v > 342V2. (4.4)

Conversely, if the condition number of Q satisfies ¥ < 3 + 21/2, then the sequence of gradi-
ent norms {[|g®*) ||} generated by the steepest descent method (3.2)-(3.4) is monotonically
decreasing. We can also deduce from this theorem that, if large oscillations in the gradient
are observed, the problem must be ill-conditioned.

11



5 Asymptotic Behavior of the Gradient Norm

Theorem 4.1 might suggest that, for ill-conditioned problems, the norm of the gradient can
exhibit extreme growth at some iterations. Of course, since the gradient converges to zero
(in exact arithmetic), there must exist iterations at which it decreases, and in general we
can expect oscillatory behavior.

In the next theorem, we study the one-step and two-step ratios of gradient norms and
establish their limiting values in terms of 4 and the constant ¢ from §3.

Theorem 5.1 Suppose that Assumptions 1 and 2 hold. When applying the steepest descent
method (3.2)-(3.4) to a strongly convez quadratic function, we have both

. ||g(2k:+1)||2 _ 02(7 - 1)2 (5 1)
koo [lgZR)|[2 (14 c2y)?’ '

and
[lg®EE Py - 1)?
lim = ,
35 gBFIE (2 4 )2

(5.2)

where c is the same constant as in Proposition 3.1. Moreover, the two-step asymptotic rate
of convergence of the gradient norm is equal to the one-step asymptotic rate in the function
value, 1.e.

i ||g(k+2) ” i f(lc-i-l) 53
oo g®] T kbee fB (5-3)
Proof. Using (3.8), (3.15) and (3.16), we have that
[lg(2E+1)|2 E?:l(ag2k+l))2
@R (@) ey
B (ag%))z E?:l ((a£2k))2/(a§2k))2) (5.4)
(1020 N )2 T ((a52k+1))2/(a52k+1))2)
- S (@)2/@™))
As in the proof of Lemma 3.4, we observe that (3.9) and (3.10) yield
(2k)y2 (2k+1)y2
PR 0 S P L 0 (5.5)
k—o00 (agzk))2 k—o00 (agk'i'l))?
and, fors=2,...,n—1,
(k)y2 (k)y2
lim (O‘Z(k)) = lim (azk)) = 0. (5.6)
k—o0 (0[1 )2 k—o0 (an )2



We thus deduce (5.1) from (5.4) using these limits and (3.18) in Lemma 3.3. The proof of
(5.2) is similar, but uses (3.19) rather than (3.18), and (5.3) is an obvious consequence of
Proposition 3.2, (5.1) and (5.2). O

The relation (5.3) indicates that it is appropriate to consider two steps when using the
gradient norm to monitor progress of the steepest descent method.

It is interesting to note that the two limits (5.1) and (5.2) coincide if and only if ¢? = 1,
which as we recall gives the worst rate of convergence in the objective function. Indeed, for
this value of ¢? the three limits (5.1), (5.2) and (3.12) are the same. Thus, if ¢> = 1, the
one-step rates of convergence of ||g¥)||2 and f*) are the same, and the sequence of gradient
norms will be monotonically decreasing for all sufficiently large k. These observations
indicate that we cannot use the amplitude of the oscillations in the gradient norm as a sign
that the starting point has caused the worst rate of convergence in f to take place; nor does
the lack of oscillations in the gradient norm imply that the condition number of the Hessian
@ is moderate. But, as noted earlier, since (4.1) is of order O(vy), it is correct to state that
if the oscillations in the gradient norm are large, then the condition number of ¢) must be
large.

In the next section, we will make use of the results of Theorems 4.1 and 5.1 to make
further observations about the asymptotic oscillatory behavior of the gradient norm.

5.1 Oscillations in the Gradient Norms

For a given problem, the choice of initial point determines both whether oscillations in
the gradient norm will take place and the magnitude of the oscillations. Unlike the 2-
dimensional case (see §5.3) we will not be able to directly characterize the regions of initial
points in R™ for which oscillations in the gradient norm take place. Instead we follow an
indirect approach, using the results established so far, to make some observations about the
largest possible oscillation and about the relationship between the rate of convergence in f
and the oscillatory behavior of the gradient norm. These observations apply to most, but
not all, problems.

We assume throughout this section that z(9) is fixed and ~ is large enough that (4.4)
holds. We first ask whether the upper bound given in (4.1) — which gives the maximum
increase in the gradient norm, at one iteration — can be attained, asymptotically. Using
(4.1), (5.1) and (5.2), we set up the equations

-1 _ (-1 o =D (=17
(1+¢*y)? 4y (¢ +7)? 4y

?

whose solutions are
=1/y and =4, (5.7)

respectively. If ¢ takes one of these values, then the maximum possible oscillation in ||g||
will occur asymptotically.

From the one-step asymptotic behavior (5.1) and (5.2), we can also deduce that the
gradient norm will grow (and thus oscillate) for sufficiently large & if one of the following

13



conditions is satisfied:
chy-1* Ay —1)°
(1+¢2y)? (¢? +7)?

These two inequalities yield
u 2
< and [, <c” <u,, (5.8)

where
17:(7_1)2_27_(72_1) (7—1)2—47’ (5.9)

and
=12 =2y+(r =DV =1 — 4y
5 .

Since the bounds in (5.8) depend only on 7, we have found a simple relationship between ¢
and « that ensures oscillations in the gradient.

Figure 3 illustrates the values of ¢? and v satisfying (5.8). The two dashed lines represent
the values ¢> = 1/y and ¢ = « corresponding to the largest possible growth in [|g|| (see
(5.7)). Since I, and ., satisfy

(5.10)

Ufy:

1<, <7v<uy <~? and l7u7:72 (5.11)
for all y satisfying (4.4), and since

vli)rgo l,=1 and 71i_)1{.10 Uy = 00, (5.12)
whe see that as vy tends to infinity, the intervals (5.8) expand to cover (0,1) and (1,00),
respectively, but never overlap. Thus the value ¢ = 1, which gives rise to the worst rate of
convergence in f, is not contained in the shaded area of Figure 3. This is consistent with
our previous observation that oscillations in the gradient norm do not occur in this case.
We have seen in §3, however, that the values of ¢ must be restricted to the interval
(3.29). In Figure 4 we superimpose over Figure 3 the set of possible values of ¢? (shaded
region) for § = 0.95. (Note that 6 = 0.95 yields a rather large set of possible values of
¢? and corresponds to a spectrum of ) whose eigenvalues are relatively far from the mean
(A1 + A\p)/2.) Let us now consider how large can we expect the oscillations in ||g|| to be.
It is immediately apparent from Figure 4 that the shaded region of possible values of ¢?
considerably limits the size of the oscillations in ||g|| — compared to the maximum value
which occurs when the values of ¢? and  lie on the dashed lines. More specifically, if

b5 <, (5.13)

the one-step growth in the gradient norm will not approach the upper bound given by (4.1),
regardless of the starting point. Moreover, as v increases, the gap between the maximum
actual oscillation in ||g|| and the upper bound (4.1) will widen. Condition (5.13) will be
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Figure 3: Intervals (l,/v?,uy/v*) and (ly,u,) of ¢ values for which the gradient norm
experiences oscillation asymptotically, for v € (3 4 2v/2,10%].

15



10 T T
[0 setof possible ¢® (5 = 0.95)
10° - Iargestzoscﬂlatlon i
ct=y
Fworst case
2
c°=1
10* | P
2 Yy -
10" = N~ |
05
10°
-1
107°F , = | o
Iy/y - o
107k ST~
" largest oscillation
10 - 2=y R
10‘5 I I I
10° 10* 10? 10° 10*
Y

Figure 4: Possible ¢? values as a function of v, for &

= (.95, superimposed on the set of

values of ¢? and «y for which oscillation in the gradient norm takes place.
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satisfied for most ill-conditioned problems and for most starting points since we have ob-
served in §3 that ¢; is small except when 4§ is close to one. For example, even in the mildly
ill-conditioned case when v = 200 we find that § has to be greater than 0.98 for (5.13) to
be violated.

We conclude this section by making an interesting remark relating the rate of conver-
gence in f and the behavior of the gradient norm. Consider the right hand side of (3.12)
as a function of ¢?, when > 1 is held fixed. This function is monotonically increasing for
c? € (0,1) and monotonically decreasing in (1,00). Therefore:

(i) the rate of convergence in f decreases for ¢? € (0,1);
(i) the rate of convergence in f increases for ¢ € (1, 00).

In terms of Figure 4, as we move away vertically from both sides of the dash-dot line
corresponding to ¢? = 1, the rate of convergence in f improves monotonically.

Let us now consider the oscillations in the gradient norm. If we vary c? for a fixed value
of v, it is easy to see that:

(iii) the right hand side in (5.1) is monotonically increasing for ¢? < 1/ and monotonically
decreasing otherwise;

iv) the right hand side in (5.2) is monotonically increasing for ¢? < v and monotonically
g g Y
decreasing otherwise.

We must, however, focus only on the possible values of ¢?>. For the current case where
condition (5.13) holds, ¢? must satisfy

>1/y or <y,

by (3.29) in Lemma 3.5. From this and (iii) and (iv), we deduce (see Figure 4) that when
increasing or decreasing c? vertically (i.e. for fixed ) away from the value 1 until it reaches
the border of the shaded area of possible values of ¢?, the oscillations in the gradient increase
(for either the odd or even iterates). More precisely by moving ¢ away from the value 1, we
first obtain values of ¢? for which oscillations in the gradient will not occur (since the curves
in Figure 4 do not touch along the line ¢? = 1), while varying ¢ further generates values for
which oscillations of increasing magnitude take place. Combining these observations with
(i) and (ii) we deduce that if (5.13) holds (which should be often the case) the asymptotic
behavior of the steepest descent method is such that the larger the oscillation in ||g||, the
faster the convergence rate in f. This observation was contrary to our initial expectations,
as we had speculated that the largest oscillations in the gradient would characterize the
most unfavorable starting points.

5.2 Path Followed by the Iterates

As we mentioned in §3, Akaike has shown (see [1, Theorem 4]) that if Assumptions 1 and 2
hold, the steepest descent method is asymptotically reduced to a search in the 2-dimensional
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subspace generated by the eigenvectors &; and &,. Let us therefore consider the restriction
of f to this subspace, and observe the values of the ratio
oft)

(k)

531

(5.14)

Due to the definition of az(-k), this ratio is the slope of the gradient g¥) restricted to the
space spanned by & and &,. We deduce from (3.22), (3.23) and (3.29) that, for a given

value of 9,
(k)72
lan

m] e [¢5", sl (5.15)
@y

asymptotically. Since these intervals are generally narrow, the possible values for the slope
of the gradient are greatly restricted, and imply that the iterates approach the solution
along a path that is close to the eigenvector corresponding to the smallest eigenvalue of ).
This is associated with relatively small gradient norms, as we discussed in §2.

To illustrate this, we plot in Figure 5 the contours of f = (2? + 49x2)/2, which can
be considered as the restriction of some quadratic function to R%2. Let us assume that
[qbé_l, ¢s] = [0.1, 10], which corresponds to 6 ~ 0.58. The set of points for which the slope of
the gradient satisfies the restriction (5.15) has been highlighted in Figure 5. (The highlighted
areas do not overlap at the left and right extreme points of the contours, because qﬁé_l > 0.)
As «y grows and the contours become more elongated, the highlighted areas shrink and move

Figure 5: Sets of possible iterates, restricted to the 2-dimensional subspace spanned by &;
and &,, in the case when [¢; ", ¢5] = [0.1,10].

closer and closer to the horizontal axis.

Let us now consider an example in three dimensions and observe the path in R? followed
in by the iterates, for a given choice of the starting point. Figures 6 to 9 illustrate this path
in the case when f(z) = (27 + 423 + 16x3)/2 and (© = (3.1,1,0.39). For this example,
v =16, 6 = 0.6 and ¢ = 1.2. Figures 6, 8 and 9 show the rather fast speed at which the
method is reduced asymptotically to a search in the z;23-plane (that is, at which the second
component becomes very small and converges to zero). Figure 7 shows that the iterates
alternate asymptotically in two fixed directions. Figures 7 and 8 illustrate the fact that the
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path followed by the iterates is closely aligned with the eigenvector corresponding to the

smallest eigenvalue.

L0

Ly g2
“aL b b Lo - rwwa

Figure 6: Example of path generated by
the steepest descent method.

,}GDJ

Figure 8: Viewpoint perpendicular to the
T1T9—plane.

Figure 7: Viewpoint perpendicular to the
r1z3—plane.

0

Figure 9: Viewpoint perpendicular to the
Tox3—plane.

In summary, by combining the results of §§2 and 3, we conclude that the steepest
descent iterates will normally approach the solution along a path that will give a small final
gradient norm, compared to the set of all gradient norm values corresponding to the same

final function value.

5.3 The 2-Dimensional Case

Since the set Z in (3.27) is always empty in the 2-dimensional case, the assumptions of
Lemma 3.5 are never satisfied and the values of ¢ will not be restricted to the interval



(3.29). Therefore, we can expect a different behavior of the steepest descent method in the
2-dimensional case. In particular, we will be able to describe the behavior of the gradient
norm at every iteration in terms of the starting point and the condition number 7. The
rate of convergence in f is also easily characterized.

As the steepest descent method is invariant under the rotations and translations of the
coordinates, let us assume, without losing generality, that

Q= ( >E)1 ;\)2 > and z* = (0, 0) (5.16)

n (3.1), and that 0 < A\ < Aa.

Writing (%) = (:Ijgk), :Egk)), relation (3.3) implies that

g(k) = ()\L’Egk), Azxgk)). (5.17)
Let us define
x(k)
p(k) I
P

Using (3.2) and (3.4) it is easy to verify that p*+t1) = —42/p(®) for all k > 0, with v = Ao /Ay,
as pointed out in [3]. This implies that

N e N € (5.18)

for all £ > 0. Hence, the sequence of iterates {$(k)} zigzags between the pair of straight lines
2y = (1/p)z; and 2o = —(pV) /4?)z1, as is the case asymptotically in the n-dimensional
case (see Figures 6 and 7).

Observe now that (3.8), (5.17) and (5.18) imply that

ang) y y
o = 5 = 0 (5.19)
and (2k+1) 0)
a?2k+1) = (2Z+1) = _P_’ (5.20)
oy p Y

for all k£ > 0. Hence the two subsequences {ag%)/ag%)} and {ag%ﬂ)/ag%ﬂ)} are both
constant in the 2-dimensional case, and we can deduce from the definition of ¢ in (3.22) that

-
= (5.21)
In other words, ¢ represents the constant slope v/ p(o) of the even subsequence of gradients
{g®)} at each iteration (the constant slope of the odd subsequence {g(?**1)} is equal to

—/7).
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As a consequence of this, the asymptotic analysis of the previous sections can now be
replaced by an exact analysis based on the ratio p(o) (or equivalently the starting point
#(9)), whose choice in the 2-dimensional plane is obviously free. Indeed, it is easy to verify
that (5.1), (5.2), (3.12) and (5.3) hold for all £ > 0, i.e.,

g2 A2(pl0)2(1 — )2
9O~ (O 1792 (5:22)
lgPE+D|12 (v + (p(©)2)2 '
FE - ((pO)2 +43)((p0)2 + )’ '
e JgkD ] D
- (5.25)

lg®— f®

Let us now study under what conditions will the gradient norm oscillate. From (5.8)
and (5.11) we see that oscillations will take place if the starting point satisfies

yI? <o) < yul/?, (5.26)
or
132 < [p) < ulf?. (5.27)

Moreover, since (5.22) and (5.23) are equalities the amplitude of the oscillations of the odd
and even iterates is constant. Figure 10 gives a characterization of the oscillatory behavior
of the gradient norm according to the choice of the starting point in the 2-dimensional plane,
for the case A\; =1 and Ay = 9. Conditions (5.26) and (5.27) determine two regions in each
quadrant (see the shaded areas) for which the starting point will give rise to oscillations
in the gradient. Observe that both conditions (5.26) and (5.27) together with (5.11) imply
that oscillation will never occur when [p(®)| < 1. For the first quadrant for instance, this
corresponds to the region above the dotted line zo = 2. Furthermore, because of (5.12),
when v increases and tends to infinity, the smaller shaded cone in each quadrant will tend
to the horizontal axis, while the larger cone will expand to cover all the region |p(0)| > 1,
but without intersecting the smaller cone. Indeed, between these two cones lie the dash-
dot lines corresponding to the worst case for the rate of convergence in f, which occurs
when | p(0)| = v, and for which oscillations in the gradient norm will never occur. Finally,
the largest oscillation in the gradient norm is obtained either when [p(®)| = ~3/2
|p(9] = 41/2 (see the dashed lines).

Let us now consider the rate of convergence in f. It can easily be verified that

or when

0, if [pO] <412,
, if [p)] =412

lf 71/2 < |p(0)| < 73/2’ (528)
,if [pO)] =432

if [p(©] > 4%/2.

fk+1)
lim ——— =
~Y—00 f(k?)

O N~ R
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Figure 10: Characterization of the starting points for which the gradient norm will exhibit
oscillations, in the 2-dimensional case. Here v = 9.

Hence again, the rate of convergence may be characterized according to the region of the
2-dimensional plane in which the starting point z(®) lies. Three kinds of regions can be
distinguished in each quadrant, as illustrated by Figure 11 for the case Ay =1 and Ay = 9.
If z(9) is chosen outside the shaded areas (i. e. [p®] < 42 or [p(¥| > ~3/2), the rate of
convergence in f will be fast. If z(9) is selected on the boundary of the shaded areas (i. e.
1P = 4172 or |p(0| = 43/2), the rate of convergence will be moderate. A starting point
within the shaded areas (i. e. v'/2 < [p(®] < 43/2) will produce a slow rate of convergence
— the slowest rate being reached for a starting point satisfying |p(0)| = v (see the two
dash-dot lines).

We note also that as the condition number v grows and tends to infinity, the shaded
areas in Figure 11 shrink and tend towards the horizontal axis — which is the eigenvector
&1. Thus in the 2-dimensional case, if the starting point is chosen at random from, say,
the uniform distribution, the chance of selecting a starting point that produces a fast rate
of convergence increases with the condition number, a statement that cannot be made in
the n-dimensional case. Indeed, we have seen in §5.2 that in the n-dimensional case, as
the algorithm is progressively reduced to a search in the 2-dimensional subspace generated
by &1 and &,, the iterates are generally attracted to the region near ¢; — which is precisely
the area where slow convergence in f prevails. This remark complements Akaike’s analysis
and illustrates some of the similarities and differences between the 2-dimensional and n-
dimensional cases.

To conclude this section, we note from the fact that the shaded areas in Figure 11
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Figure 11: Characterization of the convergence rate in f in the 2-dimensional case according
to the starting point (for v =9).

shrink and tend toward the horizontal axis as v — oo, that for a fixed initial point z(0)
(or equivalently p(o)), the rate of convergence may even improve when v increases (see
Figure 12). Indeed, it can be shown that the derivative with respect to 7 of the right hand
side term in (5.24) is negative if vy satisfies condition (4.4) and /2 > |p(©)].

Given this, we should comment on the concluding remarks made in [2]. In that paper,
the authors propose a two-point step size steepest descent method, and report numerical
experiments on a n-dimensional quadratic function for which the proposed method is faster
than the classical steepest descent algorithm. To strengthen the numerical study, the au-
thors analyze the convergence rate of their algorithm in the 2-dimensional case, and are
surprised by the fact that the rate of convergence increases with the condition number of
the Hessian matrix. They speculate that this could contribute to explain the numerical
advantage of their method in the n-dimensional case. However, in the light of the anal-
ysis we have given above, that line of reasoning seems questionable. Even though in the
2-dimensional case the convergence rate of the steepest descent method may improve as
the condition number increases, this is not true in the n-dimensional case. It is therefore
necessary to show that the 2-dimensional case of the algorithm described in [2] is in fact
representative of the n-dimensional case.

6 Final Accuracy in f

Now that we have studied the behavior of the gradient norm, we conclude by making some
observations on the final accuracy in the objective function, taking into account the effect
of rounding errors.

For many optimization algorithms, the final accuracy in f, as measured by the difference
f(x)—f*, is intimately related to their speed of convergence. To illustrate this let us suppose
that for all sufficiently large k there is a constant 0 < a¢ < 1 such that

FEED e < a(f8) — ), (6.1)
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Figure 12: Rate of convergence of f(*) as a function of v, in the 2-dimensional case, and for

different choices of p(®).

or equivalently, f(®) — f+1) > (1 — a)(f*) — f*). We let the algorithm iterate until the
steps are so small that function values can no longer be distinguished in finite precision, i.e.

k) — plkt1)

where we have assumed for convenience that f*) £ 0 for all & sufficiently large. Thus f (k)
is our best estimate of f*. Assuming that the inequality (6.1) is tight we have
(k) _ f*
Al M (6.3)

~

f(k) 1—a’

Thus the slower the algorithm (the closer @ is to 1) the fewer the correct digits in the final
function value. We should note that this argument ignores the effects of roundoff errors in
the computation of the iterates, which will prevent (6.1) from being sustained indefinitely.
For the steepest descent method with exact line searches, applied to a strongly convex
quadratic function whose Hessian has a condition number 7, it is well known [11] that

o= (I—;DZ (6.4)

In addition, as argued by Akaike, we can expect (6.1) to be tight (see §3). Thus for this
method the final accuracy in f is determined by the condition number of the Hessian. For
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large 7’s, (6.3) can be approximated by

¥~ qu

BT g0 (6.5)

showing that the inaccuracy in f grows linearly with ~.

To test whether the behavior predicted by these relations can be observed in practice,
even for non-quadratic objective functions, we performed numerical experiments using the
quartic objective function in 100 variables,

%(x ~"DE - 1)+ 7@ - 1)"B@ - 1) 41, (6.6)

where D was chosen as
D= diag[(l +o ™0 (1467, ..., (14 6)49],

with € = 0.18, 0 = 0.18, and

B=U"U, with U= :
1

The starting point was chosen as (—1)* x 50 for i = 1,...,100. The Hessian matrix of
this quartic function at the solution has a condition number of 1.3 x 107. We used double
precision so that u ~ 2716,

We used the steepest descent method, using the inexact line search of Moré and Thuente
[13] that enforces the standard Wolfe conditions, and terminated it when no further decrease
in the objective function was possible. We obtained

f—f*=93D—11 and |g|?*=4.4D — 13.

Note that there is a good agreement between our estimate (6.5) for the steepest descent
method, which predicts approximately 10 correct digits in f, and these results — in spite of
the fact that the problem was not quadratic.
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