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Abstract

It is well known that the norm of the gradient may be unreliable as a stopping test

in unconstrained optimization� and that it often exhibits oscillations in the course of the

optimization� In this paper we present results describing the properties of the gradient

norm for the steepest descent method applied to quadratic objective functions� We also

make some general observations that apply to nonlinear problems� relating the gradient

norm� the objective function value� and the path generated by the iterates�
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� Introduction

The sequence of gradient norms generated by algorithms for unconstrained optimization
often exhibits oscillatory behavior� but it is not well understood whether the size of the
oscillations is related to the conditioning of the problem and to the rate of convergence of
the iteration� Since the norm of the gradient is often used in termination rules� it is also
interesting to ask under what circumstances does it provide a good estimate of the accuracy
in the optimal function value� In this paper we study the properties of the gradient norm
for the steepest descent method applied to a quadratic objective function� We also present
some results describing the path followed by the iterates� and the �nal accuracy in the
function obtained in the presence of rounding errors�

We write the unconstrained optimization problem as

min
x�lRn

f�x�� �����

where f is a twice continuously di�erentiable function whose gradient will be denoted by g�
The motivation for this work arose during the development of a limited memory code �L�

BFGS�B� for bound constrained optimization 	
�� 	���� We observed that for some problems
this code was unable to reduce the gradient norm kg�x�k� as much as we desired� but that
LANCELOT 	� had no di�culties in doing so� Initially we reported this as a failure of the
limitedmemory code to achieve high accuracy in the solution� but a closer examination of the
results revealed that in some of these runs the limited memory code had actually produced
a lower function value than LANCELOT� Several examples of this behavior are described
in 	���� In Table � we present a striking example that was obtained when the inexact
Newton method described in 	�� and the limited memory code L�BFGS�B 	��� �using m �

 correction pairs� were applied to the unconstrained optimization problem PENALTY�
from the CUTE collection 	��� Both methods were run until no further progress could be
made in reducing the objective function� we report the �nal function values and gradient
square norms obtained by each method� �All the computations reported in this paper were
performed in IEEE double precision arithmetic��

Algorithm f kgk��
L�BFGS �m�
� ������
��
� � ���� ���� � ����

Inexact Newton ��������� � ���� ���� � �����

Table �� Final objective value and �nal square norm of the gradient obtained
by two optimization methods on the PENALTY� problem�

This behavior of limited memory methods �and more generally of quasi�Newton meth�
ods� has been noted by other researchers 	��� ��� and con�rms the well�known fact that the
gradient norm can be an unreliable measure of accuracy in the objective function f �see for
example Chapter � in 	�����
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Nevertheless there are good reasons for using the gradient norm to terminate optimiza�
tion calculations� We know that it must be zero at a solution� its value is available at every
iteration of a gradient�related method� and it requires no knowledge of the optimal function
value f� or the solution vector x�� Because of this� it is used extensively in automatic
stopping tests� For example� a variety of algorithms for constrained optimization� such as
augmented Lagrangian and barrier methods� require the solution of unconstrained opti�
mization subproblems� and the termination tests for these subproblems are usually based
on the norm of the gradient�

The paper is organized as follows� In Section �� we make some observations relating
the size of the gradient and the accuracy in the objective function� they apply to general
objective functions and are independent of the minimization algorithms used to solve the
problem� The rest of the paper concentrates on the steepest descent method applied to
quadratic functions� Section � summarizes the important results developed by Akaike 	��
and extended by Forsythe 	��� In Section � we present an upper bound on the maximum
oscillation in the gradient norm that can occur at any iteration� and in x
 we analyze the
asymptotic behavior of the gradient norm in detail� We conclude in x� by making some
observations on the �nal accuracy in the objective function�

Notation� Machine accuracy �or unit roundo�� is denoted by u� We denote the condition
number of a matrix A by ��A�� or simply by � when the argument is clear� Throughout
the paper k � k denotes the �� or Euclidean norm�

� Accuracy in f vs Gradient Norm

Let us explore the relationship between the accuracy in the objective function� as measured
by di�erence in function values

f�x�� f�� �����

and the norm of the gradient�
kg�x�k� �����

which must be zero at a solution� Other norms can be used� but for the sake of concreteness
we will focus our attention on the Euclidean norm of the gradient� Most of the results given
in this section can be found in 	���� but we derive them for clarity and completeness�

Using Taylor�s theorem we have

f�x� � f� � g�x��T �x� x�� �
�

�
�x� x��T �G�x� x���

where �G � r�f��� for some � in the line segment connecting x and x�� Noting that
g�x�� � � we obtain

f�x�� f� �
�

�
��x�kx � x�k�� �����

where ��x� is the Rayleigh quotient of �G in the direction x� x�� and is de�ned by

��x� �
�x� x��T �G�x� x��

kx� x�k� � �����
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Let us now consider the gradient� Taylor�s theorem gives

g�x� � g�x�� � �G�x� x���

where

�G �

Z �

�
r�f�x� ��x� � x��d��

Thus
kg�x�k� � ���x�kx� x�k�� ���
�

where

���x� �
�x� x��T �G��x� x��

kx� x�k� �����

is the Rayleigh quotient of �G� in the direction x�x�� Thus f�x�� f� and kg�x�k� are both
proportional to kx� x�k�� and combining ����� and ���
� we obtain

f�x�� f� �
�

�

�
�x� x��T �G�x� x��

�x� x��T �G��x� x��

�
kg�x�k�� ����

There is a simple geometrical interpretation of ���� in the case where the objective function
is a strongly convex quadratic�

f�x� �
�

�
xTGx�

where G is positive de�nite� In this case �G � �G � G and ���� becomes

f�x�� f� �
�

�

�
kzk�
zTGz

�
kg�x�k�� �����

where z � G
�
� �x � x��� In Figure � we plot contours of f and kgk� for the case f�x� �

�x�� � 
x������ Note that since kg�x�k� � xTG�x� the contours of kgk� are more elongated
than those of f � Let us consider the points �x � ��� ��

p

� and x � ��� ��� which have the

same objective function value� It is clear from Figure � that

kg��x�k� 	 kg�x�k��

so that the gradient norm does not provide useful information about the accuracy in the
objective function in this case� Indeed� we see from ����� that the relative magnitudes of
f�x�� f� and kg�x�k� can vary as much as the condition number of the Hessian�

This �gure also suggests that the path followed by the iterates of an optimization al�
gorithm may determine whether a small or large �nal gradient norm is obtained� Let us
suppose that the region inside the solid line in Figure � now denotes the set of points for
which the function values cannot be distinguished in machine arithmetic� If an iterate falls
inside this region the algorithm will stop as it will not be able to improve the objective
function� An algorithm that approaches this region near �x will give a higher gradient value
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Figure �� Contours of f�x� � �
��x

�
� � 
x��� and kg�x�k� � x�� � �
x�� �

than one approaching near x� but the quality of the solution� as measured by the objective
function� will not be worse at �x�

We will show below that the steepest descent method will normally approach a solution
along a point such as x in Figure �� As a result it will produce a �nal gradient norm that
will be small� compared to other gradient norms corresponding to equal function values�
Quasi�Newton methods are less predictable� An examination of numerical results reveals
that the path generated by their iterates varies from problem to problem� and a description
of the behavior of their gradient norms remains an open question�

� Akaike�s Results and Some Extensions

In the rest of the paper we focus on the steepest descent method� with exact line searches�
applied to the strongly convex quadratic function

f�x� �
�

�
�x� x��TQ�x� x��� �����

where Q � lRn�n is a symmetric positive de�nite matrix and x � lRn� We begin by reviewing
results of Akaike 	�� that play an important role in our analysis of the asymptotic behavior
of the gradient norm in the steepest descent method�

An iteration of the steepest descent method is given by

x�k��	 � x�k	 � 
�k	g�k	� �����

where
g�k	 � g�x�k	� � Q�x�k	 � x��� �����

and


�k	 �
�g�k	�T g�k	

�g�k	�TQg�k	
� �����

Let � � �� � �� � � � � � �n denote the eigenvalues of Q� and ��� ��� � � � � �n the corre�
sponding set of �orthonormal� eigenvectors� Let x��	 be the starting point and� with respect
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to this point� de�ne

�� � minf�i � �Ti g��	 �� �g and �� � maxf�i � �Ti g��	 �� �g� ���
�

In order to rule out the trivial case where the steepest descent method ����������� �nds
the solution after one single iteration� we make the following assumption�

Assumption �� The starting point x��	 and the matrix Q are such that �� � ���

Indeed when Assumption � does not hold� the initial gradient g��	 is an eigenvector of Q� We
will also make the following assumption whose signi�cance to the analysis will be discussed
later on�

Assumption �� The matrix Q in ����� satis�es

� � �� � � � � � �n� �����

and the starting point is such that

�� � �� and �� � �n� ����

Under Assumptions �� Akaike shows in 	�� Theorem �� that the error �k	 � x�k	 � x�

of the k�th approximate solution tends to be approximated by a linear combination of
two �xed eigenvectors of Q corresponding to the eigenvalues �� and ��� In particular� if
Assumption � holds� the steepest descent method is asymptotically reduced to a search in
the ��dimensional subspace generated by the two eigenvectors corresponding to the largest
and the smallest eigenvalues of Q� Akaike also shows in 	�� Theorem �� that �k	 alternates
asymptotically in two �xed directions� In Proposition ���� we summarize the main results
on which the proof of Theorem � in 	�� is based�

To state the results we de�ne �
�k	
i � i � �� � � � � n� to be the components of g�k	 along the

eigenvectors �i of Q� that is�

g�k	 �
nX

i
�

�
�k	
i �i� �����

Proposition ��� Suppose that Assumptions � and � hold� and that we apply the steepest

descent method ���������	� to a strongly convex quadratic function� Then

�i� the following limits hold�

lim
k��

��
��k	
i ��Pn

j
���
��k	
j ��

�

���
��

�
��c�

� if i � ��
�� if i � �� � � � � n� ��
c�

��c�
� if i � n�

�����

and

lim
k��

��
��k��	
i ��Pn

j
���
��k��	
j ��

�

���
��

c�

��c�
� if i � ��

�� if i � �� � � � � n� ��
�

��c� � if i � n�

������






for some non
zero c� and
�ii� the sequences��

� �
��k	
iqPn

j
���
��k	
j ��

��
	 and

��
� �

��k��	
iqPn

j
���
��k��	
j ��

��
	 ������

are both convergent to non
zero values for i � � and i � n�

Proof� Item �i� is clearly established in the �rst part of the proof of Theorem � in
	��� Item �ii� is a consequence of the second part of the proof of Theorem � in 	��� A clearer
proof is given by Forsythe in 	�� Theorem ����� and the comment that follows� Indeed� the
two sequences in item �ii� are nothing else but the sequences of �rst and last components of
the even and odd normalized gradients �y�k and y�k�� in Forsythe�s notation�� respectively�
that are shown by Forsythe to convergence to a single point� �

Proposition ��� gives the asymptotic rate of convergence of f �k	 �� f�x�k	��� as derived
by Akaike in 	�� Page ����

Proposition ��� Under the assumptions of Proposition ���� the sequence of function values

satis�es

lim
k��

f �k��	

f �k	
�

c��� � ���

�c� � ���� � c���
� ������

where c is the same constant as in Proposition ���� and � � �n����

Proof� Akaike shows in 	�� Page ��� that

lim
k��

f �k��	

f �k	
� ��n � ���

�
n
��n � ���

� � �c� c�������n
o��

� ������

where c is the same constant as in Proposition ���� We can rewrite this limit as

lim
k��

f �k��	

f �k	
�

c��� � ���

c��� � ��� � �c� � ����
� ������

which is equivalent to ������� �
A simple computation shows that the right hand side of ������ is maximized when c� � ��

this gives the worst rate of convergence in the objective function�
Next� we extend Akaike�s results to provide an interpretation for the meaning of c� and

in particular� that it is related to the ratio of the components of the gradient g�k	 in the
coordinate system de�ned by the eigenvectors �� and �n� Before establishing this result� we
make the following observations� Assumptions � and � guarantee that

�
�k	
� �� � and ��k	n �� � for all k � �� ����
�

Indeed� since �
�k	
i � �Ti g

�k	� ����
� is obviously true for k � �� by de�nition of �� and ��

and by Assumption �� For k 	 �� observe by ������ ����� and ����� that

�
�k	
i � �

�k��	
i ��� 
�k��	�i�� i � �� � � � � n� ������

�



and that


�k��	 �

Pn
i
���

�k��	
i ��Pn

i
���
�k��	
i ���i

� �����

by ����� and ������ It follows from Assumption �� ���� and ����� that

�� �
�


�k��	
� �n

for all k 	 �� Hence ����
� also holds for k 	 �� by �������
We next consider the asymptotic behavior of the sequence of steplengths f
�k	g�

Lemma ��� Under the assumptions of Proposition ���� the following limits hold�

lim
k��


��k	 �
� � c�

���� � c���
������

and

lim
k��


��k��	 �
� � c�

���c� � ��
� ������

where c is the same constant as in Proposition ����

Proof� From ������ ����� and ������ we have

lim
k��

�
��k	��� �
���� � c���

� � c�
������

and

lim
k��

�
��k��	��� �
���c

� � ��

� � c�
� ������

�

We can now provide an interpretation for the constant c�

Lemma ��� Under the assumptions of Proposition ���� the constant c satis�es

c � lim
k��

�
��k	
n

�
��k	
�

� ������

and

c � � lim
k��

�
��k��	
�

�
��k��	
n

� ������

Moreover c is uniquely determined by the starting point x��	 and by the eigenvalues and the
eigenvectors of Q�





Proof� From ����� and ������ we have that

lim
k��

��
��k	
n ��

��
��k	
� ��

� lim
k��

��
��k��	
� ��

��
��k��	
n ��

� c�� ������

These limits together with item �ii� of Proposition ��� are su�cient to ensure the convergence

of the sequences f���k	n ��
��k	
� g and f���k��	� ��

��k��	
n g� Hence we can deduce ������ from

������� without loss of generality� Now ������� ������ and ������ imply that

lim
k��

�
��k��	
�

�
��k��	
n

� lim
k��

�
��k	
� ��� 
��k	���

�
��k	
n ��� 
��k	�n�

� �c� ����
�

which proves �������
Finally note that equalities ������ and ����� together with ������ or ������ show that c

is uniquely determined by the values of �
��	
i � i � �� � � � � n �and hence by the starting point

x��	�� and by the eigenvalues and the eigenvectors of Q� �
We now determine the range of values that c can attain� for a given starting point x��	�

An important quantity in this analysis is the minimum deviation of the eigenvalues of Q
from the mean� as measured by

� � min
i�I






�i �
�n���

�
�n���

�






 � ������

where

I � fi � �� � � � � n� � � �� � �i � �n� �Ti g
��	 �� � and �i �� �
�k	��� � k � �g� �����

Note that � � 	�� ��� and its value depends on x��	 through the de�nition of the set I�
Moreover� � can only be near one if all the eigenvalues whose index is in I cluster around

�� and �n� It is also important to observe that� by the identity �
��	
i � �Ti g

��	 and �������

i � I 	 �� � �i � �n and �
�k	
i �� � for all k � �� ������

In other words� for i � I� the gradient component along the eigenvector �i whose corre�
sponding eigenvalue is strictly between �� and �n is not discarded in the course of the
algorithm�

The restriction on the possible values for c given by the following lemma is an obvious
consequence of a result of Akaike �see 	�� Page ���� from which the author deduces that
�the rate of convergence of the steepest descent method for ill�conditioned problems tends
near to its worst possible value �reached for c� � ��� especially when there is some �i close
to the midpoint ��n � �������

Lemma ��� Under the assumptions of Proposition ���� and assuming that the set I is
nonempty� c is restricted to the interval

���� � c� � ��� ������

�



where

�� �
� � �� �

q
��� � ���

�
� ������

and

�� � �

�
� � ��

�� ��

�
� ������

Proof� Using the following inequality that holds for all i � I �see 	�� Page �����
�n � ��

�

��
�


�i � �n � ��

�

��
� ��� c���

��� � c���
��n � ���

�� ������

Akaike shows that
�c� � ���

c�
� �i ������

for all i � I� where
�i � �

�
� � ��i
�� ��i

�
� ������

and

�i �
�i � �n���

�
�n���

�

� ����
�

Since j�ij � � for all i � I� using the de�nition ������ of the minimum deviation �� we obtain

�c� � ���

c�
� ��� ������

where �� is de�ned in ������� This last inequality is equivalent to ������� �
Note that� by ������� the requirement that the set I be nonempty in the assumptions of

Lemma ��
 guarantees that at least one gradient component along an eigenvector �i whose
corresponding eigenvalue is strictly between �� and �n is not discarded in the course of the
algorithm� As a consequence� if I is empty� the steepest descent method will be reduced
to a search in the ��dimensional subspace generated by �� and �n after a �nite number

of iterations rather than asymptotically� In that case� the behavior of the method is not
typical� it coincides with that for the ��dimensional case� which as we will see in x
��� has
some special properties�

Figure � illustrates the possible values of c� as a function of �� It is clear that �� increases
very slowly with � � except when � approaches �� when it diverges to 
� Note also that
the value c� � � giving the worst rate of convergence in f is always contained in the range
of possible values of c� The de�nitions ������ and ������ imply that �� �and hence the set
of possible values of c�� is exclusively determined by � �for a �xed starting point�� and thus
by the distribution of the inner eigenvalues of Q � and is in general not directly dependent
on the condition number �� since we can vary � why leaving � unchanged�

Assumption � has been made throughout this section to simplify the exposition� We
note� however� that ����� can be relaxed without altering the results stated here� as discussed
by Forsythe 	�� x
�� On the other hand� ���� is assumed for convenience and without loss
of generality�

�
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� Maximum Oscillation in the Gradient Norm

The following result provides an upper bound on the growth of the gradient norm� This
bound holds� not only asymptotically� but at each iteration� and its derivation is independent
from the results of x��

Theorem ��� At each iteration of the steepest descent method ���������	� applied to a

strongly convex quadratic function�

kg�k��	k�
kg�k	k� � �� � ���

��
� �����

Proof� The proof is similar to that used in 	��� to establish the rate of convergence
of the objective function for the steepest descent method� By ����� and ������ we have

g�k��	 � g�k	 � 
�k	Qg�k	�

Therefore
kg�k��	k� � kg�k	k� � �
�k	�g�k	�TQg�k	 � �
�k	���g�k	�TQ�g�k	�

Substituting ����� in the above expression yields

kg�k��	k� �
�
kg�k	k�kQg�k	k�
��g�k	�TQg�k	��

� �

�
kg�k	k�� �����

By introducing z�k	 � Q���g�k	� we may rewrite this equation as

kg�k��	k� �
��
�
�
�z�k	�TQ��z�k	

��
�z�k	�TQz�k	

�
�
�z�k	�T z�k	

�� � �

��
	 kg�k	k�� �����

Using the Kantorovich inequality �see 	����� we have

�
�z�k	�TQ��z�k	

��
�z�k	�TQz�k	

�
�
�z�k	�T z�k	

�� � �� � ���

��
�

Substituting this inequality in ����� yields the desired bound ������ �

This result implies that� for the gradient norm to increase� it is necessary that ������ 	
��� that is�

� 	 � � �
p
�� �����

Conversely� if the condition number of Q satis�es � � � � �
p
�� then the sequence of gradi�

ent norms fkg�k	kg generated by the steepest descent method ����������� is monotonically
decreasing� We can also deduce from this theorem that� if large oscillations in the gradient
are observed� the problem must be ill�conditioned�

��



� Asymptotic Behavior of the Gradient Norm

Theorem ��� might suggest that� for ill�conditioned problems� the norm of the gradient can
exhibit extreme growth at some iterations� Of course� since the gradient converges to zero
�in exact arithmetic�� there must exist iterations at which it decreases� and in general we
can expect oscillatory behavior�

In the next theorem� we study the one�step and two�step ratios of gradient norms and
establish their limiting values in terms of � and the constant c from x��

Theorem ��� Suppose that Assumptions � and � hold� When applying the steepest descent
method ���������	� to a strongly convex quadratic function� we have both

lim
k��

kg��k��	k�
kg��k	k� �

c��� � ���

�� � c����
� �
���

and

lim
k��

kg��k��	k�
kg��k��	k� �

c��� � ���

�c� � ���
� �
���

where c is the same constant as in Proposition ���� Moreover� the two
step asymptotic rate
of convergence of the gradient norm is equal to the one
step asymptotic rate in the function

value� i�e�

lim
k��

kg�k��	k
kg�k	k � lim

k��

f �k��	

f �k	
� �
���

Proof� Using ������ ����
� and ������� we have that
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As in the proof of Lemma ���� we observe that ����� and ������ yield

lim
k��

��
��k	
n ��

��
��k	
� ��

� lim
k��

��
��k��	
� ��

��
��k��	
n ��

� c� �
�
�

and� for i � �� � � � � n� ��
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k��
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�k	
i ��
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�k	
� ��
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We thus deduce �
��� from �
��� using these limits and ������ in Lemma ���� The proof of
�
��� is similar� but uses ������ rather than ������� and �
��� is an obvious consequence of
Proposition ���� �
��� and �
���� �

The relation �
��� indicates that it is appropriate to consider two steps when using the
gradient norm to monitor progress of the steepest descent method�

It is interesting to note that the two limits �
��� and �
��� coincide if and only if c� � ��
which as we recall gives the worst rate of convergence in the objective function� Indeed� for
this value of c� the three limits �
���� �
��� and ������ are the same� Thus� if c� � �� the
one
step rates of convergence of kg�k	k� and f �k	 are the same� and the sequence of gradient
norms will be monotonically decreasing for all su�ciently large k� These observations
indicate that we cannot use the amplitude of the oscillations in the gradient norm as a sign
that the starting point has caused the worst rate of convergence in f to take place� nor does
the lack of oscillations in the gradient norm imply that the condition number of the Hessian
Q is moderate� But� as noted earlier� since ����� is of order O���� it is correct to state that
if the oscillations in the gradient norm are large� then the condition number of Q must be
large�

In the next section� we will make use of the results of Theorems ��� and 
�� to make
further observations about the asymptotic oscillatory behavior of the gradient norm�

��� Oscillations in the Gradient Norms

For a given problem� the choice of initial point determines both whether oscillations in
the gradient norm will take place and the magnitude of the oscillations� Unlike the ��
dimensional case �see x
��� we will not be able to directly characterize the regions of initial
points in lRn for which oscillations in the gradient norm take place� Instead we follow an
indirect approach� using the results established so far� to make some observations about the
largest possible oscillation and about the relationship between the rate of convergence in f
and the oscillatory behavior of the gradient norm� These observations apply to most� but
not all� problems�

We assume throughout this section that x��	 is �xed and � is large enough that �����
holds� We �rst ask whether the upper bound given in ����� � which gives the maximum
increase in the gradient norm� at one iteration � can be attained� asymptotically� Using
������ �
��� and �
���� we set up the equations

c��� � ���

�� � c����
�

�� � ���

��
and

c��� � ���

�c� � ���
�

�� � ���

��
�

whose solutions are
c� � ��� and c� � �� �
��

respectively� If c takes one of these values� then the maximum possible oscillation in kgk
will occur asymptotically�

From the one�step asymptotic behavior �
��� and �
���� we can also deduce that the
gradient norm will grow �and thus oscillate� for su�ciently large k if one of the following

��



conditions is satis�ed�

c��� � ���

�� � c����
	 � or

c��� � ���

�c� � ���
	 ��

These two inequalities yield

l�
��

� c� �
u�
��

and l� � c� � u� � �
���

where

l� �
�� � ��� � �� � �� � ��

p
�� � ��� � ��

�
� �
���

and

u� �
�� � ��� � �� � �� � ��

p
�� � ��� � ��

�
� �
����

Since the bounds in �
��� depend only on �� we have found a simple relationship between c
and � that ensures oscillations in the gradient�

Figure � illustrates the values of c� and � satisfying �
���� The two dashed lines represent
the values c� � ��� and c� � � corresponding to the largest possible growth in kgk �see
�
���� Since l� and u� satisfy

� � l� � � � u� � �� and l�u� � �� �
����

for all � satisfying ������ and since

lim
���

l� � � and lim
���

u� �
� �
����

whe see that as � tends to in�nity� the intervals �
��� expand to cover ��� �� and ���
��
respectively� but never overlap� Thus the value c� � �� which gives rise to the worst rate of
convergence in f � is not contained in the shaded area of Figure �� This is consistent with
our previous observation that oscillations in the gradient norm do not occur in this case�

We have seen in x�� however� that the values of c� must be restricted to the interval
������� In Figure � we superimpose over Figure � the set of possible values of c� �shaded
region� for � � ���
� �Note that � � ���
 yields a rather large set of possible values of
c� and corresponds to a spectrum of Q whose eigenvalues are relatively far from the mean
��� � �n����� Let us now consider how large can we expect the oscillations in kgk to be�
It is immediately apparent from Figure � that the shaded region of possible values of c�

considerably limits the size of the oscillations in kgk � compared to the maximum value
which occurs when the values of c� and � lie on the dashed lines� More speci�cally� if

�� � �� �
����

the one�step growth in the gradient norm will not approach the upper bound given by ������
regardless of the starting point� Moreover� as � increases� the gap between the maximum

actual oscillation in kgk and the upper bound �	��� will widen� Condition �
���� will be
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satis�ed for most ill�conditioned problems and for most starting points since we have ob�
served in x� that �� is small except when � is close to one� For example� even in the mildly
ill�conditioned case when � � ��� we �nd that � has to be greater than ���� for �
���� to
be violated�

We conclude this section by making an interesting remark relating the rate of conver�
gence in f and the behavior of the gradient norm� Consider the right hand side of ������
as a function of c�� when � 	 � is held �xed� This function is monotonically increasing for
c� � ��� �� and monotonically decreasing in ���
�� Therefore�

�i� the rate of convergence in f decreases for c� � ��� ���

�ii� the rate of convergence in f increases for c� � ���
��

In terms of Figure �� as we move away vertically from both sides of the dash�dot line
corresponding to c� � �� the rate of convergence in f improves monotonically�

Let us now consider the oscillations in the gradient norm� If we vary c� for a �xed value
of �� it is easy to see that�

�iii� the right hand side in �
��� is monotonically increasing for c� � ��� and monotonically
decreasing otherwise�

�iv� the right hand side in �
��� is monotonically increasing for c� � � and monotonically
decreasing otherwise�

We must� however� focus only on the possible values of c�� For the current case where
condition �
���� holds� c� must satisfy

c� 	 ��� or c� � ��

by ������ in Lemma ��
� From this and �iii� and �iv�� we deduce �see Figure �� that when
increasing or decreasing c� vertically �i�e� for �xed �� away from the value � until it reaches
the border of the shaded area of possible values of c�� the oscillations in the gradient increase
�for either the odd or even iterates�� More precisely by moving c� away from the value �� we
�rst obtain values of c� for which oscillations in the gradient will not occur �since the curves
in Figure � do not touch along the line c� � ��� while varying c� further generates values for
which oscillations of increasing magnitude take place� Combining these observations with
�i� and �ii� we deduce that if ������ holds �which should be often the case� the asymptotic

behavior of the steepest descent method is such that the larger the oscillation in kgk� the
faster the convergence rate in f � This observation was contrary to our initial expectations�
as we had speculated that the largest oscillations in the gradient would characterize the
most unfavorable starting points�

��� Path Followed by the Iterates

As we mentioned in x�� Akaike has shown �see 	�� Theorem ��� that if Assumptions � and �
hold� the steepest descent method is asymptotically reduced to a search in the ��dimensional

�



subspace generated by the eigenvectors �� and �n� Let us therefore consider the restriction
of f to this subspace� and observe the values of the ratio

�
�k	
n

�
�k	
�

� �
����

Due to the de�nition of �
�k	
i � this ratio is the slope of the gradient g�k	 restricted to the

space spanned by �� and �n� We deduce from ������� ������ and ������ that� for a given
value of �� �

�
�k	
n

�
�k	
�

��
� 	���� � �� �� �
��
�

asymptotically� Since these intervals are generally narrow� the possible values for the slope
of the gradient are greatly restricted� and imply that the iterates approach the solution
along a path that is close to the eigenvector corresponding to the smallest eigenvalue of Q�
This is associated with relatively small gradient norms� as we discussed in x��

To illustrate this� we plot in Figure 
 the contours of f � �x�� � ��x�n���� which can
be considered as the restriction of some quadratic function to lR�� Let us assume that
	���� � ��� � 	���� ���� which corresponds to � � ��
�� The set of points for which the slope of
the gradient satis�es the restriction �
��
� has been highlighted in Figure 
� �The highlighted
areas do not overlap at the left and right extreme points of the contours� because ���� 	 ���
As � grows and the contours become more elongated� the highlighted areas shrink and move

Figure 
� Sets of possible iterates� restricted to the ��dimensional subspace spanned by ��
and �n� in the case when 	���� � �� � � 	���� ����

closer and closer to the horizontal axis�
Let us now consider an example in three dimensions and observe the path in lR� followed

in by the iterates� for a given choice of the starting point� Figures � to � illustrate this path
in the case when f�x� � �x�� � �x�� � ��x����� and x��	 � ����� �� ������ For this example�
� � ��� � � ��� and c � ���� Figures �� � and � show the rather fast speed at which the
method is reduced asymptotically to a search in the x�x��plane �that is� at which the second
component becomes very small and converges to zero�� Figure  shows that the iterates
alternate asymptotically in two �xed directions� Figures  and � illustrate the fact that the

��



path followed by the iterates is closely aligned with the eigenvector corresponding to the
smallest eigenvalue�

Figure �� Example of path generated by
the steepest descent method�

Figure � Viewpoint perpendicular to the
x�x��plane�

Figure �� Viewpoint perpendicular to the
x�x��plane�

Figure �� Viewpoint perpendicular to the
x�x��plane�

In summary� by combining the results of xx� and �� we conclude that the steepest
descent iterates will normally approach the solution along a path that will give a small �nal
gradient norm� compared to the set of all gradient norm values corresponding to the same
�nal function value�

��� The ��Dimensional Case

Since the set I in ����� is always empty in the ��dimensional case� the assumptions of
Lemma ��
 are never satis�ed and the values of c� will not be restricted to the interval

��



������� Therefore� we can expect a di�erent behavior of the steepest descent method in the
��dimensional case� In particular� we will be able to describe the behavior of the gradient
norm at every iteration in terms of the starting point and the condition number �� The
rate of convergence in f is also easily characterized�

As the steepest descent method is invariant under the rotations and translations of the
coordinates� let us assume� without losing generality� that

Q �

�
�� �
� ��

�
and x� � ��� �� �
����

in ������ and that � � �� � ���

Writing x�k	 � �x
�k	
� � x

�k	
� �� relation ����� implies that

g�k	 � ���x
�k	
� � ��x

�k	
� �� �
���

Let us de�ne

��k	 �
x
�k	
�

x
�k	
�

�

Using ����� and ����� it is easy to verify that ��k��	 � ������k	 for all k � �� with � � ������
as pointed out in 	��� This implies that

���k	 � ���	 and ���k��	 � � ��

���	
� �
����

for all k � �� Hence� the sequence of iterates fx�k	g zigzags between the pair of straight lines
x� � ������	�x� and x� � �����	����x�� as is the case asymptotically in the n�dimensional
case �see Figures � and ��

Observe now that ������ �
��� and �
���� imply that

�
��k	
�

�
��k	
�

�
�

���k	
�

�

���	
�
����

and
�
��k��	
�

�
��k��	
�

�
�

���k��	
� ����	

�
� �
����

for all k � �� Hence the two subsequences
n
�
��k	
� ��

��k	
�

o
and

n
�
��k��	
� ��

��k��	
�

o
are both

constant in the ��dimensional case� and we can deduce from the de�nition of c in ������ that

c �
�

���	
� �
����

In other words� c represents the constant slope �����	 of the even subsequence of gradients
fg��k	g at each iteration �the constant slope of the odd subsequence fg��k��	g is equal to
����	����

��



As a consequence of this� the asymptotic analysis of the previous sections can now be
replaced by an exact analysis based on the ratio ���	 �or equivalently the starting point
x��	�� whose choice in the ��dimensional plane is obviously free� Indeed� it is easy to verify
that �
���� �
���� ������ and �
��� hold for all k � �� i�e��

kg��k��	k�
kg��k	k� �

������	����� ���

�����	�� � ����
� �
����

kg��k��	k�
kg��k��	k� �

����	���� � ���

�� � ����	����
� �
����

f �k��	

f �k	
�

����	����� � ���

�����	�� � ��������	�� � ��
� �
����

and
kg�k��	k
kg�k	k �

f �k��	

f �k	
� �
��
�

Let us now study under what conditions will the gradient norm oscillate� From �
���
and �
���� we see that oscillations will take place if the starting point satis�es

� l���� � j���	j � � u���� � �
����

or
l���� � j���	j � u���� � �
���

Moreover� since �
���� and �
���� are equalities the amplitude of the oscillations of the odd
and even iterates is constant� Figure �� gives a characterization of the oscillatory behavior
of the gradient norm according to the choice of the starting point in the ��dimensional plane�
for the case �� � � and �� � �� Conditions �
���� and �
��� determine two regions in each
quadrant �see the shaded areas� for which the starting point will give rise to oscillations
in the gradient� Observe that both conditions �
���� and �
��� together with �
���� imply
that oscillation will never occur when j���	j � �� For the �rst quadrant for instance� this
corresponds to the region above the dotted line x� � x�� Furthermore� because of �
�����
when � increases and tends to in�nity� the smaller shaded cone in each quadrant will tend
to the horizontal axis� while the larger cone will expand to cover all the region j���	j 	 ��
but without intersecting the smaller cone� Indeed� between these two cones lie the dash�
dot lines corresponding to the worst case for the rate of convergence in f � which occurs
when j���	j � �� and for which oscillations in the gradient norm will never occur� Finally�
the largest oscillation in the gradient norm is obtained either when j���	j � ���� or when
j���	j � ���� �see the dashed lines��

Let us now consider the rate of convergence in f � It can easily be veri�ed that

lim
���

f �k��	

f �k	
�

�������
������

�� if j���	j � �����
�
� � if j���	j � �����

�� if ���� � j���	j � �����
�
� � if j���	j � �����

�� if j���	j 	 �����

�
����

��
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Figure ��� Characterization of the starting points for which the gradient norm will exhibit
oscillations� in the ��dimensional case� Here � � ��

Hence again� the rate of convergence may be characterized according to the region of the
��dimensional plane in which the starting point x��	 lies� Three kinds of regions can be
distinguished in each quadrant� as illustrated by Figure �� for the case �� � � and �� � ��
If x��	 is chosen outside the shaded areas �i� e� j���	j � ���� or j���	j 	 ������ the rate of
convergence in f will be fast� If x��	 is selected on the boundary of the shaded areas �i� e�
j���	j � ���� or j���	j � ������ the rate of convergence will be moderate� A starting point
within the shaded areas �i� e� ���� � j���	j � ����� will produce a slow rate of convergence
� the slowest rate being reached for a starting point satisfying j���	j � � �see the two
dash�dot lines��

We note also that as the condition number � grows and tends to in�nity� the shaded
areas in Figure �� shrink and tend towards the horizontal axis � which is the eigenvector
��� Thus in the ��dimensional case� if the starting point is chosen at random from� say�
the uniform distribution� the chance of selecting a starting point that produces a fast rate
of convergence increases with the condition number� a statement that cannot be made in
the n�dimensional case� Indeed� we have seen in x
�� that in the n�dimensional case� as
the algorithm is progressively reduced to a search in the ��dimensional subspace generated
by �� and �n� the iterates are generally attracted to the region near �� � which is precisely
the area where slow convergence in f prevails� This remark complements Akaike�s analysis
and illustrates some of the similarities and di�erences between the ��dimensional and n�
dimensional cases�

To conclude this section� we note from the fact that the shaded areas in Figure ��
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Figure ��� Characterization of the convergence rate in f in the ��dimensional case according
to the starting point �for � � ���

shrink and tend toward the horizontal axis as � � 
� that for a �xed initial point x��	

�or equivalently ���	�� the rate of convergence may even improve when � increases �see
Figure ���� Indeed� it can be shown that the derivative with respect to � of the right hand
side term in �
���� is negative if � satis�es condition ����� and ���� � j���	j�

Given this� we should comment on the concluding remarks made in 	��� In that paper�
the authors propose a two�point step size steepest descent method� and report numerical
experiments on a n�dimensional quadratic function for which the proposed method is faster
than the classical steepest descent algorithm� To strengthen the numerical study� the au�
thors analyze the convergence rate of their algorithm in the ��dimensional case� and are
surprised by the fact that the rate of convergence increases with the condition number of
the Hessian matrix� They speculate that this could contribute to explain the numerical
advantage of their method in the n�dimensional case� However� in the light of the anal�
ysis we have given above� that line of reasoning seems questionable� Even though in the
��dimensional case the convergence rate of the steepest descent method may improve as
the condition number increases� this is not true in the n�dimensional case� It is therefore
necessary to show that the ��dimensional case of the algorithm described in 	�� is in fact
representative of the n�dimensional case�

� Final Accuracy in f

Now that we have studied the behavior of the gradient norm� we conclude by making some
observations on the �nal accuracy in the objective function� taking into account the e�ect
of rounding errors�

For many optimization algorithms� the �nal accuracy in f � as measured by the di�erence
f�x��f�� is intimately related to their speed of convergence� To illustrate this let us suppose
that for all su�ciently large k there is a constant � � a � � such that

f �k��	 � f� � a�f �k	 � f��� �����

��
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Figure ��� Rate of convergence of f �k	 as a function of �� in the ��dimensional case� and for
di�erent choices of ���	�

or equivalently� f �k	 � f �k��	 � �� � a��f �k	 � f��� We let the algorithm iterate until the
steps are so small that function values can no longer be distinguished in �nite precision� i�e�

f �k	 � f �k��	

f �k	
 u� �����

where we have assumed for convenience that f �k	 �� � for all k su�ciently large� Thus f �k	

is our best estimate of f�� Assuming that the inequality ����� is tight we have

f �k	 � f�

f �k	
 u

�� a
� �����

Thus the slower the algorithm �the closer a is to �� the fewer the correct digits in the �nal
function value� We should note that this argument ignores the e�ects of roundo� errors in
the computation of the iterates� which will prevent ����� from being sustained inde�nitely�

For the steepest descent method with exact line searches� applied to a strongly convex
quadratic function whose Hessian has a condition number �� it is well known 	��� that

a �


� � �

� � �

��
� �����

In addition� as argued by Akaike� we can expect ����� to be tight �see x��� Thus for this
method the �nal accuracy in f is determined by the condition number of the Hessian� For
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large ��s� ����� can be approximated by

f �k	 � f�

f �k	
 �u

�
� ���
�

showing that the inaccuracy in f grows linearly with ��
To test whether the behavior predicted by these relations can be observed in practice�

even for non�quadratic objective functions� we performed numerical experiments using the
quartic objective function in ��� variables�

�

�
�x� ��TD�x� �� �

�

�

�
�x� ��TB�x� ��

��
� �� �����

where D was chosen as

D � diag
h
�� � ����� �� � ����� � � � � �� � ���

i
�

with  � ����� � � ����� and

B � UTU� with U �

�
��
� � � � �

� � �
���
�

�
�� �

The starting point was chosen as ����i � 
� for i � �� � � � � ���� The Hessian matrix of
this quartic function at the solution has a condition number of ��� � ���� We used double
precision so that u  ����

We used the steepest descent method� using the inexact line search of Mor e and Thuente
	��� that enforces the standard Wolfe conditions� and terminated it when no further decrease
in the objective function was possible� We obtained

f � f� � ���D � �� and kgk� � ���D � ���

Note that there is a good agreement between our estimate ���
� for the steepest descent
method� which predicts approximately �� correct digits in f � and these results � in spite of
the fact that the problem was not quadratic�
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