
On the Use of Stochastic Hessian Information in Optimization

Methods for Machine Learning

Richard H. Byrd∗ Gillian M. Chin† Will Neveitt ‡ Jorge Nocedal §

January 13, 2011

Abstract

This paper describes how to incorporate sampled curvature information in a Newton-
CG method and in a limited memory quasi-Newton method for statistical learning. The
motivation for this work stems from supervised machine learning applications involving
a very large number of training points. We follow a batch approach, also known in the
stochastic optimization literature as a sample average approximation (SAA) approach.
Curvature information is incorporated in two sub-sampled Hessian algorithms, one based
on a matrix-free inexact Newton iteration and one on a preconditioned limited memory
BFGS iteration. A crucial feature of our technique is that Hessian-vector multiplications
are carried out with a significantly smaller sample size than is used for the function and
gradient. The efficiency of the proposed methods is illustrated using a machine learning
application involving speech recognition.

∗Department of Computer Science, University of Colorado, Boulder, CO, USA. This author was supported
by National Science Foundation grant CMMI 0728190 and Department of Energy grant DE-SC0001774.
†Department of Industrial Engineering and Management Sciences, Northwestern University. This author

was supported by an NSERC fellowship and a grant from Google Inc.
‡Google Research.
§Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL,

USA. This author was supported by National Science Foundation grant DMS-0810213 and by Department
of Energy grant DE-FG02-87ER25047-A004.

1

On the Use of Stochastic Hessian Information 2

1 Introduction

The inexact Newton-CG method and the limited memory BFGS method are useful tech-
niques for solving large-scale deterministic optimization problems in which the function
and the gradient can be computed with good accuracy but the Hessian matrix cannot be
formed or factored at reasonable cost [11]. In this paper, we consider optimization problems
whose objective function is given by an expectation or a loss function and can therefore be
considered stochastic. We ask whether one can design Newton-CG and limited memory
BFGS methods that exploit the properties of such objective functions. In this paper, we
propose to employ sampled (or stochastic) curvature information, using a small batch size,
to accelerate these optimization methods.

The motivation for this work stems from supervised machine learning, where the goal
is to estimate a statistical model on training data that makes accurate predictions on pre-
viously unseen data. Given a random set of training points (xi, yi) drawn from some prob-
ability distribution, and given a loss function `(w; yi, xi) parametrized by a vector w ∈ Rn,
we seek to find the vector w that minimizes the expected loss. The optimization problem
can thus be stated as

min
w∈Rn

J(w) =
1

m

m∑
i=1

`(w; yi, xi), (1.1)

where xi ∈ RNF represent the feature vectors of the training points and yi ∈ RNC their
corresponding labels (or classes). The right hand side in (1.1) represents an expectation
taken over the random set of training points. We are mainly interested in the case when the
loss function `(·, xi, yi) is smooth and convex, as is the case in log-linear models for entropy
maximization. We are motivated by applications, such as speech recognition, where the
number of training points, m, is exceedingly large (in the millions or even billions) and the
number of variables, w, is large (in the tens of thousands or millions). The evaluation of
the objective function J(w) is therefore very costly in these applications, and determining
an exact solution by standard optimization methods is very time consuming.

In order to reduce the computational cost of the optimization, and given that the training
set is often highly redundant, it is common to consider only a random sample of the training
points, i.e., to include only a subset of the summation terms in (1.1) in the optimization
process, thus following a sample average approximation (SAA) framework. If we define
D = {1, 2, · · · ,m} and let X ⊆ D be a random sample consisting of |X | training instances
(yi, xi)i∈X , we can define a stochastic approximation of the true objective J(w) as

JX (w) = 1
|X |

∑
i∈X

`(w; yi, xi). (1.2)

If the sample X is large enough (a so-called batch or SAA approach [13]), we can apply a
conventional gradient-based method to minimize JX . If on the other hand, the sample X
is very small (the on-line or SA approach), we can apply one step of a stochastic gradient
method [12, 1], choose another small sample X , and repeat the process.

The two methods proposed in this paper are designed for batch (or mini-batch) applica-
tions – not for online settings where the optimization is performed using highly inaccurate

On the Use of Stochastic Hessian Information 3

function and gradient information. For the applications we have in mind, one can use either
the complete training set to define the loss function, as in (1.1), or only a subset of it (a
mini-batch) as in (1.2). Our approach is based on the fact that less accuracy in the Hessian
is required than in the gradient, and on the observation that, although the Hessian of JX
is typically very large and dense, one can compute products of a sample of the Hessian
times vector terms at modest cost. Specifically, suppose that we have determined (by some
consideration) that an appropriate sample for computing the function and gradient is X .
Then, we select a random subset of X , which we denote as S, and compute Hessian-vector
products by including only those terms corresponding to S.

In the Newton-CG method, we incorporate sampled (or stochastic) curvature informa-
tion through a matrix-free conjugate gradient (CG) iteration applied to the Newton equa-
tions. We implement this idea by using a subsample that is much smaller than that used
for the evaluation of the objective function JX and its gradient ∇JX , in the computation
of the Hessian-vector products required by the CG iteration. By coordinating the size of
the subsample and the number of CG iterations, the computational cost of this Newton-like
iteration is comparable to the cost of a steepest descent step – but the resulting iteration is
much more rapidly convergent. We refer to this algorithm as a sub-sampled Hessian Newton
method.

In the limited memory BFGS (L-BFGS) method, we incorporate stochastic Hessian
information through the so-called “initial matrix” employed in limited memory BFGS up-
dating. In the standard L-BFGS method [6], this initial matrix is chosen at every iteration
as a multiple of the identify matrix. In the proposed algorithm, the initial matrix is de-
fined implicitly via a conjugate gradient solve of a linear system whose coefficient matrix is
given by the stochastic Hessian. We call this technique the stochastically initialized L-BFGS
method, and similarly to the approach described above, it is crucial that the stochastic cur-
vature information provided to the algorithm uses a much smaller sample than that used
for the evaluation of the objective function and its gradient.

The main goal of this paper is to propose that the use of approximate second derivative
information of this kind can be useful in some machine learning applications. Additional
gains in efficiency can be obtained in both methods by implementing them in a dynamic
setting, where the sample X is initially small, and is increased automatically, as needed,
so as to achieve any desired level of accuracy. This dynamic framework is, however, not
explored here, as it is the subject of a future study.

An important motivation for the approach proposed in this paper stems from the avail-
ability of large-scale distributed computing environments that permit the parallel evaluation
of the objective function (1.2) and obviate the need for working with very small batch sizes.
In such a setting, JX , ∇JX and Hessian-vector products can all be evaluated in parallel by
assigning subsets of the summation in (1.2) to different computing nodes. It is advantageous
that the subsets are not too small, so that the latency in communication does not dominate
the total computing time. Thus, the overall sample X need not be very small and the use
of deterministic optimization techniques is justified.

A Newton-like method for machine learning has been studied in [5] in the context of
classification problems involving 2 classes and a sparse set of features. Other Newton-like

On the Use of Stochastic Hessian Information 4

methods and quasi-Newton methods for machine learning are discussed in [1, 4]. All of
these approaches are significantly different from the techniques proposed here.

The paper is organized into 5 sections. In Section 2 we present the sub-sampled Hessian
Newton-CG method and in Section 3, the L-BFGS variant. Numerical results on a speech
recognition problem are reported in Section 4, and in Section 5 we provide some concluding
remarks and open questions.

Notation. We follow the convention used in machine learning and denote the variables of
the optimization problem (i.e. the parameters to be estimated) by w. Throughout the
paper ‖ · ‖ denotes Euclidean vector norm.

2 The Sub-Sampled Hessian Newton Method

Let us begin by reviewing the Newton-CG method for unconstrained optimization (also
known as the truncated or inexact Newton method; see e.g. [16, 17, 10]). The problem
under consideration is to minimize a function J : Rn → R.

At an iterate wk, we apply the conjugate gradient (CG) method to compute an approx-
imate solution pk of the linear system

∇2J(wk)p = −∇J(wk). (2.1)

The CG iteration is terminated when the residual rk = ∇2J(wk)pk +∇J(wk) is sufficiently
small, or when a prescribed number of CG iterations have been performed. The new iterate
is then given by wk+1 = wk +αkpk, where αk is a steplength that ensures sufficient decrease
in the objective function.

The conjugate gradient method does not require explicit knowledge of the Hessian ma-
trix, but only requires products of this matrix times vectors. Therefore, we can implement
the Newton-CG method in a matrix-free setting, provided we have the ability to compute
these Hessian-vector products without forming the Hessian. This method is quite flexible:
by controlling the number of CG iterations, it can resemble the steepest descent method,
at one extreme, or the classical (exact) Newton method at the other extreme. However,
if an effective preconditioner is not available, the Newton-CG method can be expensive
because each Hessian-vector product is at least as costly as one gradient evaluation. In
other words, the savings in outer iterations achieved by the Newton-CG method, normally
do not compensate for the higher cost of the iteration.

We propose that for expectation minimization problems of the form (1.2), an effective
way of implementing the Newton-CG method is to reduce the cost of the iteration by
employing a smaller sample S, and including only those terms corresponding to S in the
computation of Hessian-vector products. In Section 4.1 we give an illustrative example in
which the cost of the Hessian-vector products decreases linearly as the sample size decreases.

The method described in this section is motivated by the following three considerations:
a) The stochastic nature of the objective (1.2) suggests that a natural way of incorporating
curvature information into a Newton-like method inexpensively is to sample the Hessian;

On the Use of Stochastic Hessian Information 5

b) Newton-like methods are much more tolerant to errors in the Hessian than in the com-
putation of the function and its gradient, and therefore, one can use small samples for the
representation of curvature information; c) instead of constructing Hessian approximations,
once can incorporate curvature information through Hessian-vector products.

The Hessian subsample S can be chosen small enough so that the total cost of the CG
iteration is not much larger than the cost of one gradient evaluation. On the other hand, S
should be large enough so that the curvature information obtained through these Hessian-
vector products is useful. One of the challenges in this approach is to achieve the right
balance between these two goals.

The proposed algorithm is stated below. We recall that, given any sample Xk ⊂ D =
{1, 2, ...,m}, the stochastic approximation JXk

is defined by (1.2).

Algorithm S-Newton: Sub-Sampled Hessian Newton-CG Method

Choose an initial iterate w0, constants η, σ ∈ (0, 1), a CG iteration limit maxcg, and initial
samples X0 and S0 6= ∅ such that |S0| < |X0|.
For k = 0, 1, ..., until a convergence test is satisfied:

1. Evaluate JXk
(wk) and ∇JXk

(wk).

2. Apply the matrix-free conjugate gradient method to compute an approximate solution
pk of the linear system

∇2JSk(wk)p = −∇JXk
(wk). (2.2)

The CG iteration is terminated when either maxcg iterations have been performed or
when the residual rk = ∇2JSk(wk)pk +∇JXk

(wk) satisfies

rk ≤ σ‖∇JXk
(wk)‖. (2.3)

3. Update the variables:
wk+1 = wk + αkpk, (2.4)

where the steplength αk is the largest element in the set {1, 1/2, 1/4, · · · } such that

JXk
(wk+1) ≤ JXk

(wk) + ηαk∇JXk
(wk)T pk. (2.5)

4. Choose new samples Xk+1, Sk+1 such that |Sk+1| < |Xk+1|.

The curvature information obtained in this manner can be expected to be useful in
some statistical learning applications because, as mentioned above, Newton-like methods
are both very tolerant to the choice of Hessian and can make good use of limited curvature
information. Specifically, if B is any symmetric and positive definite matrix and if we apply
any number of CG steps to the system Bd = −∇J(wk), the resulting Newton-CG step is
a descent direction for J(wk); see section 2.1. In the machine learning applications that
motivated this study, the (logistic) loss function ` in (1.2) is convex, and hence ∇2JS will
be positive semi-definite for any non-empty choice of S.

On the Use of Stochastic Hessian Information 6

We have not specified in Algorithm S-Newton whether the sizes of the samples Xk, Sk
change at every iteration, or are kept fixed. The algorithm has been stated in sufficient
generality to allow many strategies, including the “semi-stochastic” case when Sk ⊂ Xk =
D = {1, 2, · · · ,m} for all k. Comparatively, Algorithm S-Newton is also capable of in-
corporating dynamic techniques in which the samples sizes |Sk| < |Xk| are initially small
(to benefit from the initial efficiency of stochastic gradient-type methods) and increase as
needed to achieve the desired objective value. Regardless of the strategy chosen, and in
order to avoid bias, the subsample Sk should be recomputed at every (outer) iteration of
the sub-sampled Hessian Newton method. Thus, even if the size of the sample Sk remains
constant throughout the iteration, the sample itself should change, and would typically be
chosen as a subset of Xk. For the sake of simplicity, in this paper, we analyze and test only
the semi-stochastic case Sk ⊂ Xk = D and defer the study of dynamic sampling strategies
to a future study.

Let us quantify the cost of the search direction computation in the sub-sampled Hessian
Newton method. Let gcost denote the cost of computing the gradient ∇JXk

and maxcg the
maximum number of CG iterations permitted. Suppose that the cost of one Hessian-vector
product is factor×gcost. Then, assuming that the maximum limit of CG iterations is always
reached, the cost of the step computation in Algorithm S-Newton (excluding the function
and gradient evaluation) is given by

maxcg × factor× gcost.

In the deterministic Newton-CG method, which corresponds in our case to the choice Sk =
Xk = D, we have that factor is at least 1, and maxcg can range from 5 to several dozen. Thus,
the cost of one iteration of the classical Newton-CG method can easily be 10 times higher
than the cost of a gradient computation, and this causes the method to be less competitive
than limited memory quasi-Newton and nonlinear CG methods on many problems.

Now, by decreasing the sample size S, we can reduce the ratio factor significantly. For
example, if |Sk| is one tenth of |Xk|, then factor will be about one tenth. In general, we
can coordinate the size of the sample size |Sk| with the maximum allowable number of CG
iterations so that

factor×maxcg ≈ 1,

and thus the total cost of the step computation is comparable to the cost of one gradient
evaluation. The freedom in the selection of the subsample Sk thus provides the sub-sampled
Hessian Newton-CG method with much flexibility. We should also point out that for the
solution of the subsampled Hessian Newton equation (2.2), scale invariance is preserved
with respect to changes in scale of w.

2.1 Convergence Properties

Based on some well-known properties of the CG method, it is easy to show that the semi-
stochastic version of the Newton method (with Xk = D) is globally convergent on problems
of the form (1.1), provided the subsampled Hessians are uniformly positive definite, i.e.,

On the Use of Stochastic Hessian Information 7

there is a constant γ1 > 0 such that for all k and all v ∈ Rn

vT∇2JSk(wk)v ≥ γ1‖v‖. (2.6)

For objective functions of the form (1.1) the loss term ` is often convex (although not
strongly so) but J can be made uniformly convex by adding a regularization term of the
form δ‖w‖2 to the right hand side of (1.1). Furthermore, uniform convexity of J implies
that the sequence of iterates wk is bounded, and by continuity of ∇2J there is a constant
γ2 such that, for all k and all Sk,

‖∇2JSk(wk)‖ ≤ γ2. (2.7)

For the following discussion, we denote J , JD.

Theorem 2.1 Let JD : Rn → R be twice continuously differentiable and uniformly convex
and suppose that condition (2.6) holds. Then, the sequence of iterates {wk} generated by
Algorithm S-Newton, with Xk = D, satisfies

lim
k→∞

∇JD(wk) = 0. (2.8)

Proof. First we show that the search directions pk obtained by applying any number of
CG steps to the system (2.2) are directions of strong descent for JD(wk).

It is a well known fact [7] that the iterates generated by the CG method applied to
the system (2.2) minimize the quadratic function

1
2p

T∇2JSk(wk)p+ pT∇JD(wk)

over a Krylov subspace that includes the vector ∇JD(wk). Let us define Q to be an
orthonormal basis for this space. Then, the search direction pk can be expressed as
pk = Qv, for some vector v satisfying

[QT∇2JSk(wk)Q]v = −QT∇JD(wk). (2.9)

Since ∇JD(wk) is in the range of Q (it is in the Krylov space mentioned above), we
have that ‖QT∇JD(wk)‖ = ‖∇JD(wk)‖, and hence by the orthogonality of Q,

∇JD(wk)T pk = −∇JD(wk)TQ[QT∇2JSk(wk)Q]−1QT∇JD(wk) (2.10)

≤ − ‖Q
T∇JD(wk)‖2

‖QT∇2JSk(wk)Q‖
(2.11)

≤ − ‖∇JD(wk)‖2

‖∇2JSk(wk)‖
(2.12)

≤ −‖∇JD(wk)‖2/γ2, (2.13)

where γ2 is defined in (2.7). In addition, we have from (2.9) and (2.6) that

‖p‖ = ‖Q[QT∇2JSk(wk)Q]−1QT∇JD(wk)‖ ≤ ‖∇JD(wk)‖/γ1.

On the Use of Stochastic Hessian Information 8

It follows that

− pT∇JD(wk)

‖∇JD(wk)‖‖p‖
≥ γ1/γ2,

which proves that pk is a strong direction of descent for JD at wk. We also have from
(2.9) and (2.7) that

‖∇JD(wk)‖ = ‖QT∇JD(wk)‖ ≤ ‖∇2JSk(wk)‖‖v‖ ≤ γ2‖v‖,

so that
‖pk‖ = ‖v‖ ≥ ‖∇JD(wk)‖/γ2.

We can now apply Zoutendijk’s classical analysis to prove global convergence. Specifi-
cally, we have shown that all the conditions in Theorem 11.7 in ([3, p.379]) are satisfied
and it follows that the limit (2.8) holds. �

3 Stochastically Initialized L-BFGS Method

The limited memory BFGS method (L-BFGS) [11] maintains very simple approximations
of the Hessian of J(w). Curvature information from gradients at a few recent iterations is
used to construct a Hessian approximation in a way that does not store a fully dense n by
n matrix but is parsimonious in terms of computational time and memory space.

In the standard BFGS method, an approximation Hk of the inverse Hessian ∇2J(wk)−1

is updated at every iteration so that the secant equation is satisfied at each step, i.e.,

Hk+1yk = sk where yk = ∇J(wk+1)−∇J(wk), sk = wk+1 − wk. (3.1)

The BFGS update formula (see, e.g. Fletcher [2]) is given by:

Hk+1 = (I − ρkyksTk)THk(I − ρkyksTk) + ρksks
T
k where ρk = 1/yTk sk. (3.2)

The L-BFGS method does not construct the Hessian approximation explicitly, but defines
it indirectly based on stored secant information from the t most recent iterations, where t
is a small integer. If we define Vk = (I − ρkyksTk), apply the BFGS formula t times, and
expand the resulting equation to encompass all computations from an initial approximation
H0

k , we obtain

Hk = (V T
k−1V

T
k−2 · · ·V T

k−t)H
0
k(Vk−tVk−t+1 · · ·Vk−1)

+ ρk−t(V
T
k−1 · · ·V T

k−t+1)sk−ts
T
k−t(Vk−t+1 · · ·Vk−1)

+ ρk−t+1(V
T
k−1 · · ·V T

k−t+2)sk−t+1s
T
k−t+1(Vk−t+2 · · ·Vk−1) (3.3)

+ · · ·
+ ρk−1sk−1s

T
k−1.

The search direction of the L-BFGS method is defined as

pk = −Hk∇J(wk). (3.4)

On the Use of Stochastic Hessian Information 9

Rather than forming the matrices Hk, one can store the correction pairs {si, yi} that define
them, and compute the product Hk∇J(wk) via the relation (3.3). This matrix-vector
multiplication can be carried out very efficiently by the two loop recursion described in [11,
p.112] at a cost of about 4tn multiplications plus the cost of one multiplication by H0

k .
In the standard L-BFGS method, the so-called initial matrix H0

k in (3.3) is defined afresh
at every iteration, with a common choice being

H0
k = γkI where γk =

sTk−1yk−1

yTk−1yk−1
. (3.5)

Such a choice of H0
k contains little curvature information about the problem. Therefore we

ask whether it is possible to define H0
k in a way that exploits the structure of a loss function

of the form (1.1).
We propose to define H0

k implicitly through the use of a conjugate gradient iteration.
To see how this can be done, note that when performing the computation of Hk∇J(wk)
through (3.3) we must compute, at some point, a product of the form

r ← H0
kq, for some vector q ∈ Rn.

Ideally, H0
k would be defined as an accurate approximation of the inverse of the Hessian,

i.e. H0
k ≈ ∇2J(wk)−1. Therefore, in the ideal scenario we would compute r as the solution

of the linear system
∇2J(wk)r = q. (3.6)

Instead of solving this system exactly, we could perform only a few iterations of the matrix-
free conjugate gradient method, and define the vector r as the resulting approximate solution
of (3.6). This approach therefore eliminates the need for specifying the initial matrix, and
implicitly defines H0

k through an approximate matrix-free conjugate gradient solve of the
system (3.6).

As in the Newton method of the previous section, we employ a smaller sample to define
the Hessian in (3.6), compared to the sample used for the function and gradient computation
so that the cost of Hessian-vector products within the CG method is affordable. Thus, given
a sample Sk such that |Sk| < |Xk|, we define the vector r as an approximate solution to the
system

∇2JSk(wk)r = q (3.7)

computed by the conjugate gradient method. The computation of the product Hk∇JXk
(wk)

in this semi-stochastic L-BFGS approach can be stated as follows (c.f.[11, p.112]):

On the Use of Stochastic Hessian Information 10

Procedure I: Two-loop Recursion with Implicit Stochastic Initial Matrix
q ← ∇JXk

(wk)
for i = k − 1, k − 2, · · · , k − t

αi ← ρis
T
i q ;

q = q − αiyi ;
end(for)
r ← approximate solution to (3.7) obtained by the matrix-free CG Method ;
for i = k − t, k − t+ 1, · · · , k − 1

β ← ρiy
T
i r ;

r ← r + si(αi − β) ;
end(for)
STOP: result r = Hk∇JXk

(wk)

We terminate the CG method when either the residual condition (2.3) is met, or when
a CG iteration limit is reached. The precise description of the stochastic L-BFGS method
is as follows.

Algorithm SLM: Stochastically Initialized L-BFGS Algorithm
Choose an initial iterate w0, a CG iteration limit maxcg, initial samples X0 and S0 6= ∅ such
that |S0| < |X0|, and constants 0 < c1 < c2 < 1. Set k ← 0.

1. Evaluate JX0(w0) and ∇JX0(w0).

Set p0 = −∇JX0(w0)

2. While: Convergence Test is not satisfied:

2.1 Store: wk and ∇JXk
(wk).

2.2 Line Search: compute steplength αk that satisfies the Wolfe conditions

1. JXk
(wk + αkpk) ≤ JXk

(wk) + c1αk∇JXk
(wk)T pk

2. ∇JXk
(wk + αkpk)T pk ≥ c2∇JXk

(wk)T pk.

2.3 Compute new iterate: wk+1 ← wk + αkpk.

2.4 Update sk ← wk+1 − wk and yk ← ∇JXk
(wk+1)−∇JXk

(wk).

2.5 Set k ← k + 1.

2.5 Re-sample Xk, Sk such that |Sk| < |Xk|.
2.6 Evaluate JXk

(wk) and ∇JXk
(wk).

2.7 Compute direction vector pk using Procedure I.

3. End(While)

A variety of strategies can be employed to choose the samples Xk, Sk at every iteration.
For simplicity, our testing is done for the semi-stochastic case Sk ⊂ Xk = D. As before,

On the Use of Stochastic Hessian Information 11

to avoid bias, the subsample Sk is recomputed at every iteration of the stochastic L-BFGS
algorithm; see section 4.

We now show that Algorithm SLM is globally convergent on convex problems.

Theorem 3.1 Under the assumptions on J given in Theorem 2.1, the sequence of iterates
{wk} generated by Algorithm SLM satisfies

lim
k→∞

∇JD(wk) = 0. (3.8)

Proof. It has been shown in [6] that the L-BFGS algorithm is globally convergent on convex
problems provided the symmetric positive definite initial matricesH0

k have eigenvalues
that are uniformly bounded above and away from zero. In Algorithm SLM, these
matrices are not constructed explicitly; instead we compute the vector r ← H0

kq via
the approximate CG solution of (3.7). Thus, we need to show that at every iteration,
the vector r computed in this manner can be expressed as the product of a matrix
(with the desired properties) times q.

Since the vector r is the result of, say j, CG steps applied to a linear system (3.7), it
follows from the same argument that lead to the equation (2.9) that r = Qv, where

[QT∇2JSk(wk)Q]v = QT q

and the columns of Q are an orthonormal basis for the Krylov subspace generated by
the CG iteration. Thus,

r = (Q[QT∇2JSk(wk)Q]−1QT)q.

The matrix multiplying q is singular. However, q is in the Krylov subspace (and hence
in the range of Q) and therefore we also have that

r = (Q[QT∇2JSk(wk)Q]−1QT + Q̄Q̄T)q
def
= H0

kq, (3.9)

where Q̄ is a n× (n− j) matrix whose columns are an orthonormal basis for the null
space of QT , so that Q̄T q = 0. The matrix inside the square brackets can therefore be
regarded as the initial matrix, H0

k , for the limited memory update (3.3). The eigen-
values of H0

k are as follows: n− j are equal to 1 and correspond to the eigenvalues of
Q̄Q̄T , and the rest are given by the j nonzero eigenvalues of Q[QT∇2JSk(wk)Q]−1QT .
By the orthogonality of Q these j eigenvalues are in the the interval [1/γ2, 1/γ1] where
γ1 and γ2 are defined in (2.6) and (2.7). Therefore, the eigenvalues of the matrix H0

k

defined in (3.9) are all in the interval [min{1, 1/γ2},max{1, 1/γ1}].
It then follows from Theorem 7.1 of Liu and Nocedal [6] that the limit (3.8) is satisfied.

�

On the Use of Stochastic Hessian Information 12

3.1 Numerical Behavior in the Deterministic Setting

Before testing Algorithm SLM on statistical learning problems of the form (1.1), let us
verify that the incorporation of curvature information, as described above, is beneficial in
the ideal case when the objective function is deterministic and Sk = Xk = D, i.e. when the
matrix-vector products employed in the CG solve of (3.7) use the exact Hessian. This will
serve as indication that the approach is not unsound.

Test 1: Quadratic Function. We consider the problem of minimizing the convex quadratic

f(w) =

100∑
j=1

(100− j + 1)w2
j ,

whose Hessian has a condition number of 100. In Table 1 we report the number of iterations
and function evaluations required by Algorithm SLM as a function of the maximum allowed
number of CG iterations (maxcg). In the bottom row, we report the performance of the
standard L-BFGS method.

Table 1: Results on a Quadratic Function
maxcg SLM Iter SLM Functions Total CG Iter

1 95 96 94
5 13 14 60

10 8 9 70
15 6 7 73
20 5 6 74

L-BFGS 74 79

Note from Table 1 that there is a consistent decrease in the number of iterations of
Algorithm SLM as maxcg increases, showing the beneficial effect of incorporating curvature
information through the initial matrix. The SLM method cannot, however, be considered
successful in this deterministic setting (where Sk = Xk) because, as shown in the last column
of Table 1, the total number of CG iterations is too expensive, even with the reduction
observed in outer iterations.

Test 2: Quadratic Plus Exponential. To increase the complexity of the problem, we in-
troduce an exponential term to the previous quadratic function, resulting in the convex
function

f(w) =
100∑
j=1

(
(100− j + 1)w2

j + ewj

)
.

As in the previous example, we observe in Table 2 a steady reduction in the number
of SLM iterations as the maximum allowable number of CG iteration (maxcg) increases,

On the Use of Stochastic Hessian Information 13

Table 2: Results on a Quadratic + Exponential Function
maxcg SLM Iter SLM Functions Total CG Iter

1 83 84 82
5 12 13 55

10 8 9 70
15 6 7 72
20 6 7 91

L-BFGS 66 70

however the overall cost, as indicated by the last column, is too expensive to justify the
savings in outer iterations.

These experiments therefore, suggest that the incorporation of curvature information in
the initial matrix H0

k has a beneficial effect in terms of total outer iteration counts. In the
next section, we show that by decreasing the cost of the CG iteration through stochastic
Hessian sub-sampling we can make the SLM approach competitive in terms of computing
time.

4 Numerical Tests

To assess the effectiveness of the sub-sampled Hessian methods proposed in this paper,
we analyze and document their performance on a challenging machine learning problem
involving multi-class classification of speech frames. Our benchmark is the standard L-
BFGS algorithm, which is widely used in the machine learning community for tasks of this
type [8, 9, 14]. As only the semi-stochastic form of the new methods is analyzed in this
paper, we assume that Xk = D, and thus the function and gradient evaluations will use
100% of the information available for every iteration. The stochastic Hessian information
will be based on a smaller sample Sk — typically 5% and 10% of the sample used for the
function and gradient. For convenience, we define the Hessian-vector sampling percentage
p%, as

p =
|S|
|D|

100. (4.1)

To determine the Hessian samples Sk, we first read in the training data and randomly
shuffle it. Specifically, each training pair (xi, yi) is assigned a random index i ∈ {1, . . . ,D},
excluding indices that have already been assigned. The array of indices obtained in this
manner is divided into blocks in a sequential manner. Thus, the first iteration of the
optimization algorithm will use the first p% of indices to define S1. At the second iteration,
the next p% of the training points will be assigned to computing S2, and so on. If we reach
the end of the array we wrap the current data block around to the beginning of the data set.
Clearly, one could use a higher degree of randomization, but this will not have a noticeable
effect on our algorithms.

On the Use of Stochastic Hessian Information 14

4.1 A Speech Recognition Problem.

The objective of the speech recognition problem employed in our tests, is to construct
a representative multinomial logistic regression model that maximizes the probability of
correct classification amongst the data points included within the training set. Each training
point consists of a real valued vector representing features for a 10 millisecond frame of
speech, and a label representing the phonetic state assigned to that frame based on a
human transcription of the source utterance. The training set was provided by Google.
Our objective is to maximize the conditional probability of the correct phonetic state given
the observed real valued vector. The variables and parameters of the problem are described
as follows.

Parameters:

m : number of training points: 168, 776.

C : the set of all class labels: {1, 2, · · · , 128, 129}.
NF : number of feature measurements per data point: 79

yh : the class label associated with data point h : yh ∈ C.
xh : feature vector for data point h

xh(j) : indicates the jth entry of the feature vector

Decision Variable:

w : a parameter vector of dimension |C| ×NF = 10, 191;

wi : parameter sub-vector for class label i;

wi(j) : indicates the jth entry of the parameter vector wi.

Given pertinent feature information for a set of data points, the goal is to develop a model
that will suggest the correct class label for each point, on average, with reasonably high
probability. For each individual class label, the parameter vector w will have a value as-
sociated with each respective feature measurement. Thus, each class label will have a
parameter vector of size NF, and as there are 129 different class labels and 79 pertinent
feature measurements, the total number of decision variables for this speech problem is
129× 79 = 10, 191.

As we hope to build a statistical model that will suggest the correct class for each data
point in the training set, an intuitive method for parameterizing the statistical model, based
on observed data, is maximum likelihood estimation. By performing maximum likelihood
estimation, we can not only determine the parameters of the statistical model that most
likely represents the data, but also derive several attractive asymptotic properties for these
values, such as consistency and efficiency. Therefore, in choosing the method of maximum
likelihood estimation, we define the objective function J of the minimization problem (1.1)

On the Use of Stochastic Hessian Information 15

as the normalized sum of the negative log likelihood of each data point being placed in the
correct class, over all data points used in the training set:

J(w) = − 1

m

m∑
h=1

log
exp(wT

yh
xh)∑

i∈C exp(wT
i xh)

(4.2)

=
1

m

[m∑
h=1

log
∑
i∈C

exp(wT
i xh)−

m∑
h=1

exp(wT
yh
xh)

]
.

The gradient can be written as follows,

∂J

∂wi(j)
=

1

m

[m∑
h=1

P (i, h)xh(j)−
m∑

h:yh=i

xh(j)

]
, (4.3)

where

P (i, h) =

[
exp(wT

i xh)∑
j∈C exp(wT

j xh)

]
.

Note that P (i, h) is the designated probability of class label i ∈ C being the correct class
label for data point h, given the parameter variable w.

The sub-sampling methods rely on the fact that Hessian-vector products can be com-
puted efficiently. One can show that, given a vector v ∈ Rn, if we divide it into segments
initialized by class labels, and therefore vi ∈ RNF for i ∈ C, we have

[∇2J(w)v](i,j) =
1

m

m∑
h=1

(
P (i, h) xh(j)

[
vTi xh −

∑
j∈C v

T
j xh · exp(wT

j xh)∑
j∈C exp(w

T
j xh)

])
. (4.4)

We have used the pair (i, j) to index the vector ∇2J(w)v (which is of dimension |C|×NF),
where i ∈ C refers to the class and j denotes the feature (i.e. j ∈ {1, 2, · · · , 79}). Thus,
each entry of the Hessian-vector product is composed of a summation over the set of data
points, and this presents an opportunity to incorporate second order information in a con-
trolled manner such that the advantages of curvature information are balanced against the
processing cost. Formula (4.4) represents a summation across all terms within the data set
D; to sample the Hessian, we select a subsample Sk as described above, and include only
the corresponding terms in the summation.

4.2 Testing the Sub-Sampled Hessian Newton Method

In Figure 1, we compare the behavior of three methods:

i) The standard L-BFGS method [6] with memory t = 20

ii) The classical Newton-CG method (CN) [11, p.169] with maxcg = 10 and full Hessian
information, i.e with p = 100%, where p is defined in (4.1).

On the Use of Stochastic Hessian Information 16

iii) The sub-sampled Hessian Newton method (SN) (Algorithm S-Newton) with maxcg =
10 and p = 5%.

As function, gradient and Hessian-vector product evaluations are (by far) the most costly
computations in the three algorithms tested, the computational effort in expressions (4.2),
(4.3) and (4.4) will be used in lieu of CPU time. We refer to this computational effort as the
“number of accessed points”. To further define this term, we can observe that the objective
function is a sum of terms, where each term is associated with a single training point. As
a result, when computing the objective function, we can separate the overall function into
smaller blocks, where each block is associated with a single training point. Therefore, all
blocks will have identical wall times, and cumulatively represent the objective function when
aggregated. Similar blocks appear in the gradient and Hessian-vector products, which in
turn will have approximately the same wall-time as the blocks which collectively represent
the function evaluation. We refer to the total number of computed blocks as the “number
of accessed data points”. In all figures in this paper, the horizontal axis plots this number.
(Plots based on CPU time exhibit similar behavior as those presented.) The vertical axis
plots the probability of correct classification, which is defined as exp(−J(wk)), with J given
in (4.2).

We observe from the behavior presented in Figure 1 that the sub-sampled Hessian New-
ton method is the most efficient of all the methods for a correct classification probability
greater than 0.08. Notably, for a probability level of 13% correct classification, the sub-
sampled Newton method is approximately three times as fast as the classical Newton-CG
method and twice as fast as the L-BFGS method. Note that the number of accessed points
is of order 106 and the number of training points is about 168,776.

In Figure 2 we analyze the behavior of the sub-sampled Hessian Newton method as the
CG iteration limit maxcg varies, while fixing the sampling percentage at p = 5%. We report
results for the settings of maxcg = 2, 5, 10, 50. From these plotted graphs, we observe that
the sub-sampled Hessian Newton method is not effective for maxcg = 2, but is quite efficient
for maxcg = 10 and maxcg = 50. This behavior is similar for higher sampling percentages,
such as p = 10%. The CG limit was reached at most iterations. Note that little is lost in
terms of efficiency by truncating the conjugate gradient limit maxcg from 50 to 10. Given
this observation, we fix the conjugate gradient limit to the value of maxcg = 10, and report in
Figure 3 the performance of the sub-sampled Hessian Newton method for varying Hessian-
vector product sampling percentages p, specifically for p = 1, 10, 50, 100%. We observe from
Figure 3 that the sub-sampled Hessian Newton algorithm outperforms the benchmark L-
BFGS algorithm for sampling percentages of p = 1% and 10%. Exhaustive testing indicates
that, for this problem, the new algorithm is efficient for the range p ∈ [1%, 25%].

4.3 Testing the Stochastically Initialized L-BFGS Method

In Figure 4, we compare the behavior of the standard L-BFGS method with memory t = 5
and the stochastically initialized L-BFGS method (Algorithm SLM) with t = 5,maxcg = 5
and two choices of p, namely p = 5%, 100%. From this graph, it is observed that sub-
sampling the Hessian vector products at the level p = 5%, exhibits an increased acceleration

On the Use of Stochastic Hessian Information 17

Figure 1: Comparison of L-BFGS vs. sub-sampled Hessian Newton (SN) vs. classical
Newton (CN)

of performance over the traditional L-BFGS, especially near the convergent probability.
More specifically, for an average probability classification of 13%, the reduction in number
of data points required (or similarly, a reduction in CPU time) is approximately half of that
required for L-BFGS. On the other hand, for the full sampling of Hessian-vector product,
that is p = 100%, the Algorithm SLM is significantly less efficient than the two other
methods.

In order to analyze the effect of maxcg on Algorithm SLM, we fix p = 5% and report in
Figure 5 results for the settings maxcg = 2, 5, 10 and 50, in comparison to the standard L-
BFGS algorithm with memory size t = 5. We observe from this figure that Algorithm SLM
performs well for relatively small values for maxcg. However, unlike S-Newton, a large
number of CG iterations is observed to be detrimental to the performance of the algorithm.
Therefore, with a relatively small number of CG iterations below a certain threshold, ob-
served to be maxcg = 10, the stochastically initialized L-BFGS method outperforms the
standard L-BFGS algorithm.

To evaluate the behavior of Algorithm SLM for varying sampling percentages, p, we re-
port in Figure 6 the results for p = 1, 50, 100%, with maxcg = 10 and memory setting t = 5.
This figure clearly shows the gains in efficiency achieved by Algorithm SLM as the sampling
percentage p decreases. For high percentages of sampling, which in turn leads to a larger
S set, the worth of the information in the sample does not provide enough improvement

On the Use of Stochastic Hessian Information 18

Figure 2: Behavior of the sub-sampled Hessian Newton method (SN), with p = 5%, for
varying maxcg values

over the benchmark L-BFGS algorithm to compensate for the additional processing time re-
quired. In comparison, for small sampling percentages such as p = 1%, the balance between
value of information and computing time contributes advantageously to Algorithm SLM,
which is able to achieve substantial gains over standard L-BFGS.

4.4 Comparison of the Two Methods

In Figure 7 we compare the performance of the sub-sampled Hessian Newton method and
the stochastically initialized L-BFGS method, where the sub-sample percentage of p = 5%
is used. Both methods contain several parameters that affect their performance, and in
Figure 7 we chose two settings for each method, being maxcg = 5 and 10. We see that the
two approaches appear to be similar in terms of performance for this problem. In general,
we feel that both algorithms can be effective for machine learning applications and the best
choice among them may be problem dependent.

On the Use of Stochastic Hessian Information 19

Figure 3: Behavior of the sub-sampled Hessian Newton method (SN), with maxcg = 10, for
varying values of the Hessian sub-sampling percentage p

5 Conclusions

We have proposed in this paper that Hessian sub-sampling via a matrix-free conjugate
gradient iteration is an effective way of accelerating optimization methods for machine
learning. Our method avoids sampling the second derivatives directly since this can lead
to very noisy estimators, see [15]. We described two methods that can benefit from this
approach, one is a variant of Newton-CG and the other of L-BFGS. There are a variety
of ways of implementing these methods, depending on the choice of the function/gradient
sample Xk and the Hessian subsample Sk at every iteration. In this paper, we have focused
on the case when Xk is large; i.e. we have followed a batch (or SAA) approach. A key
feature of our methods is that the Hessian subsample Sk is much smaller than Xk.

The sub-sampled Hessian Newton-CG method overcomes one of the main drawbacks of
inexact (or truncated) Newton methods, namely the high cost of computing a search direc-
tion, by significantly lowering the cost of the CG iteration. This is possible for stochastic
objective functions of the form (1.2) because the computational cost of a Hessian-vector
product decreases linearly with the sample size, and because small sample sizes provide
useful curvature information. The stochastic Newton-CG method might be further acceler-
ated by preconditioning the CG iteration, but we have not explored that topic in this paper.
The limited memory BFGS method benefits from the fact that the stochastic Hessian in-
formation complements the curvature information provided by quasi-Newton updating.

On the Use of Stochastic Hessian Information 20

Figure 4: Comparison of L-BFGS vs. SLM with p = 5%, 100%, and maxcg = 5

Figure 5: Behavior of Algorithm SLM, with p = 5%, for varying maxcg values

On the Use of Stochastic Hessian Information 21

Figure 6: Behavior of Algorithm SLM, with maxcg = 10, for p = 1%, 50% and 100%

Figure 7: Comparing S-Newton vs SLM (with memory t = 5), for maxcg = 5, 10.

On the Use of Stochastic Hessian Information 22

This work was motivated, in part, by the availability of distributed computing environ-
ments that allow the parallel computation of very expensive loss functions involving many
thousands of training points, as well as by the possibility of computing Hessian-vector
products in parallel and at modest cost. Given the latency due to communication in such a
setting, it is convenient to work with batch sizes that are not very small – and this in turn
justifies the use of deterministic optimization techniques. The potential of the sub-sampled
Hessian methods was illustrated on a speech recognition problem with data generated at
Google.

Acknowledgments. The authors acknowledge several insightful conversations with Tito
Homem-de-Mello, Alexander Shapiro and Yoram Singer.

References

[1] L. Bottou. Online Learning and Neural Networks, volume 17, chapter Online Learning
and Stochastic Approximations, pages 9–42. Cambridge University Press, 1998.

[2] R. Fletcher. Practical Methods of Optimization. J. Wiley and Sons, Chichester, Eng-
land, second edition, 1987.

[3] I. Griva, S. G. Nash, and A. Sofer. Linear and Nonlinear Optimization. SIAM, Philadel-
phia, USA, second edition, 2008.

[4] S. Gunter J. Yu, S.V.N Vishwanathan and N. N. Schraudolph. A quasi-Newton ap-
proach to nonsmooth convex optimization problems in machine learning. The Journal
of Machine Learning Research, 11:1145–1200, 2010.

[5] C. Lin, R.C. Weng, and S. S. Keerthi. Trust region Newton method for logistic regres-
sion. The Journal of Machine Learning Research, 9:627–650, 2008.

[6] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45:503–528, 1989.

[7] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley Publishing
Company, Reading, Massachusetts, USA, second edition, 1984.

[8] R. Malouf. A comparison of algorithms for maximum entropy parameter estimation.
In Proceedings of the Sixth Conference on Natural Language Learning. Taipei, Taiwan,
2002.

[9] T. P. Minka. A comparison of numerical optimizers for logistic regression. Technical
report, Microsoft Research, 2003.

[10] S. G. Nash. Newton-type minimization via the Lanczos method. SIAM Journal on
Numerical Analysis, 21(4), 1984.

On the Use of Stochastic Hessian Information 23

[11] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, second edition, 2006.

[12] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Math-
ematical Statistics, 22:400–407, 1951.

[13] A. Ruszczynski and A. Shapiro. Stochastic Programming, Handbook in Operations
Research and Management Science. Elsevier Science, 2003.

[14] F. Sha and F. Pereira. Shallow parsing with conditional random fields. Technical
report, Department of Computer and Information Science, University of Pennsylvania,
Philadelphia PA, USA, 2003.

[15] A. Shapiro and T. Homem de Mello. A simulation-based approach to two-stage stochas-
tic programming with recourse. Mathematical Programming, 81:301–325, 1998.

[16] T. Steihaug. The conjugate gradient method and trust regions in large scale optimiza-
tion. SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[17] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization.
In I. S. Duff, editor, Sparse Matrices and Their Uses, pages 57–88, London, 1981.
Academic Press.

