
NORTHWESTERN UNIVERSITY

Department of Electrical Engineering

and Computer Science

REPRESENTATIONS OF QUASI�NEWTON MATRICES

AND THEIR USE IN LIMITED MEMORY METHODS

by

Richard H� Byrd�� Jorge Nocedal� and Robert B� Schnabel�

Technical Report NAM���

June ����� revised January ��� ���	

� Computer Science Department� University of Colorado� Campus Box ���� Boulder� Colorado ������

These authors were supported by the Air Force O�ce of Scienti	c Research under Grant AFOSR
��

����� the Army Research O�ce under Grant DAAL��
��
���� and the National Science Foundation

under Grants CCR
������ and CCR
�������
� Department of Electrical Engineering and Computer Science� Northwestern University� Evanston Il

����� This author was supported by the U�S� Department of Energy� under Grant DE
FG�
��ER����

A���� and by National Science Foundation Grants CCR
������� and ASC
������ �

�

REPRESENTATIONS OF QUASI�NEWTON MATRICES

AND THEIR USE IN LIMITED MEMORY METHODS

by

Richard H� Byrd� Jorge Nocedal and Robert B� Schnabel

ABSTRACT

We derive compact representations of BFGS and symmetric rank�one matrices for

optimization� These representations allow us to e�ciently implement limitedmemory

methods for large constrained optimization problems� In particular� we discuss how

to compute projections of limited memory matrices onto subspaces� We also present

a compact representation of the matrices generated by Broyden�s update for solving

systems of nonlinear equations�

Key words� Quasi�Newton method� constrained optimization� limited memory method�
large�scale optimization

Abbreviated title� Representation of quasi�Newton matrices

�� Introduction�

Limited memory quasi�Newton methods are known to be e�ective techniques for
solving certain classes of large�scale unconstrained optimization problems �Buckley and
Le Nir ������ Liu and Nocedal ������ Gilbert and Lemar�echal ������
 They make
simple approximations of Hessian matrices� which are often good enough to provide a fast
rate of linear convergence� and require minimal storage
 For these reasons it is desirable
to use limited memory approximations also for solving problems that include constraints

However� most algorithms for constrained optimization require the projection of Hessian
approximations onto the subspace of active constraints and other matrix calculations
that can be expensive when the number of variables is large
 This is true even if limited
memory approximations are used� unless special care is taken in their representation and
manipulation

�

In this paper we derive new representations of limited memory quasi�Newton matrices
and show how to use them e�ciently in the kind of matrix computations required in
constrained optimization methods
 We present new expressions for both the BFGS and
symmetric rank�one formulae for optimization� and also derive a compact expression for
Broyden�s method for solving systems of nonlinear equations
 We believe that these new
compact representations of quasi�Newton matrices are of interest in their own right� but
in this paper we focus on their use in limited memory methods

To motivate the new matrix representations we begin by describing the limited mem�
ory BFGS method for unconstrained optimization
 It is a variation of the standard BFGS
method� which is given by

xk�� � xk � �kHkgk k � �� �� �� ��� �����

where �k is a steplength� gk is the gradient of the objective function f � Rn � R at xk�
and where the inverse Hessian approximation Hk is updated at every iteration by means
of the formula

Hk�� � V T
k HkVk � �ksks

T
k � �����

where
�k � ��yTk sk� Vk � I � �kyks

T
k � �����

and
sk � xk�� � xk� yk � gk�� � gk�

�see e
g
 Fletcher ������
 We say that the matrix Hk�� is obtained by updating Hk

using the pair fsk� ykg

The limited memory BFGS method is an adaptation of the BFGS method to large

problems
 The implementation described by Liu and Nocedal ����� is almost identical
to that of the standard BFGS method � the only di�erence is in the matrix update

Instead of storing the matrices Hk� one stores a certain number� say m� of pairs fsi� yig
that de�ne them implicitly
 The product Hkgk is obtained by performing a sequence of
inner products involving gk and the m most recent vector pairs fsi� yig
 After computing
the new iterate� the oldest pair is deleted from the set fsi� yig� and is replaced by the
newest one
 The algorithm therefore always keeps the m most recent pairs fsi� yig to
de�ne the iteration matrix
 This approach is suitable for large problems because it has
been observed in practice that small values of m �saym � ��� ��� give satisfactory results

Let us describe the updating process in more detail
 Suppose that the current iterate
is xk and that we have stored the m pairs fsi� yig� i � k �m� ���� k � �
 We choose a

�basic matrix� H
���
k �usually a diagonal matrix� and update it m times using the BFGS

formula and the m pairs fsi� yig� i � k �m� ���� k� �
 From ��
�� we see that Hk can be
written as

Hk �
�
V T
k�� � � �V

T
k�m

�
H

���
k �Vk�m � � �Vk���

� �k�m
�
V T
k�� � � �V

T
k�m��

�
sk�ms

T
k�m �Vk�m�� � � �Vk���

�

� �k�m��

�
V T
k�� � � �V

T
k�m��

�
sk�m��s

T
k�m�� �Vk�m�� � � �Vk���

�

� �k��sk��s
T
k��� ��
��

There is a recursive formula �Nocedal ������ that takes advantage of the symmetry of
this expression to compute the product Hkgk e�ciently
 As a result� the computation of
the search direction in the limited memory BFGS method for unconstrained optimization
can be performed very economically

It turns out� however� that in two respects this recursive formula is much less eco�
nomical for some of the calculations required when constraints are present
 First� when
the constraints are sparse the recursion does not take good advantage of this sparsity

For example� if ei is a unit vector� the computation of Hkei is almost as expensive as the
computation of Hkgk
 Second� many algorithms for constrained optimization require the
direct Hessian approximation� Bk � H��

k instead of the inverse BFGS approximation�
Hk
 However� there appears to be no analogous recursion for the Hessian approximation
Bk and� as pointed out in Section �
�� a straightforward implementation turns out to be
quite costly

After deriving our new quasi�Newton representations in Section �� we show in Sec�
tion � how they can be used in limited memory methods in a way that is e�cient for
unconstrained optimization� and gets around both of these di�culties in constrained
optimization calculations

Notation� The number of variables in the optimization problem is n� and the number
of correction pairs used in the limited memory methods is m
 The Hessian approxi�
mation is denoted by Bk � and the inverse Hessian approximation is Hk
 The i�th unit
vector is written as ei
 A diagonal matrix with diagonal elements ��� ���� �n is denoted by
diag���� ���� �n�

�� Compact Representations of BFGS Matrices

We will now describe new representations of the inverse and direct BFGS matrices�
and show how to compute several types of matrix�vector products e�ciently
 In this
section we will consider the updating process in a general setting� and will not restrict it
to the case of limited memory methods

Let us de�ne the n� k matrices Sk and Yk by

Sk � �s�� � � � � sk��� � Yk � �y�� � � � � yk��� � �����

We �rst prove a preliminary lemma on products of projection matrices that will be useful
in subsequent analysis and is also interesting in its own right

�

Lemma ��� The product of a set of k projection matrices of the form ����� satis�es

V� � � �Vk�� � I � YkR
��
k ST

k � �����

where Rk is the k � k matrix

�Rk�i�j �

�
sTi��yj�� if i � j
� otherwise

� �����

Proof� Proceeding by induction we note that ��
�� holds for k � �� because in this case
the right hand side of ��
�� is

I � y�
�

sT� y�
sT� � V�� �����

Now we assume that ��
�� holds for some k� and consider k � �
 If we write the matrix
Rk�� as

Rk�� �

�
�� Rk ST

k yk

� �
�k

�
�	 �

we see that

R��k�� �

�
�� R��k ��kR

��
k ST

k yk

� �k

�
�	 � �����

This implies that

I � Yk��R
��
k��S

T
k�� � I �

h
Yk yk

i��� R��k ��kR
��
k ST

k yk

� �k

�
�	
�
�� ST

k

sTk

�
�	

� I � YkR
��
k ST

k � �kYkR
��
k ST

k yks
T
k � �kyks

T
k

� �I � YkR
��
k ST

k ��I � �kyks
T
k ��

Using this with the inductive hypothesis of ��
�� we have that

V� � � �Vk � �I � YkR
��
k ST

k ��I � �kyks
T
k �

� �I � Yk��R
��
k��S

T
k����

which establishes the product relation ��
�� for all k
 �

It should be pointed out that this lemma holds for the product of any sequence of
projections onto spaces of dimension n � � and is a useful but little�known result
 Es�
sentially the same result is also mentioned by Walker ���� in the context of products
of Householder transformations
 The lemma can be generalized to projections onto sub�
spaces of arbitrary and di�erent dimensions� in which case the matrix Rk becomes block
upper triangular

The following theorem gives a compact representation of the matrixHk obtained after
k BFGS updates
 We will later see that this representation is often more convenient than
��
��

�

Theorem ��� Let H� be symmetric and positive de�nite and assume that the k pairs
fsi� yig

k��
i�� satisfy sTi yi � �� Let Hk be obtained by updating H� k times using the inverse

BFGS formula ���	� and the pairs fsi� yig
k��
i�� � Then

Hk � H� �
h
Sk H�Yk

i��� R�Tk �Dk � Y T
k H�Yk�R

��
k �R�Tk

�R��k �

�
�	
�
�� ST

k

Y T
k H�

�
�	 � ���	�

where Rk is as given in �	��� and Dk is the k � k diagonal matrix

Dk � diag
h
sT� y�� � � � � s

T
k��yk��

i
� �����

Proof� We write the BFGS formula ��
�� as

Hk � Mk �Nk� k � � ����

where Mk and Nk are de�ned recursively by�
M� � H�

Mk�� � V T
k MkVk�

�����

and �
N� � ��s�s

T
�

Nk�� � V T
k NkVk � �ksks

T
k �

������

First note� from the de�nition of Mk and ��
��� that

Mk �
�
V T
k�� � � �V

T
�

�
H� �V� � � �Vk���

� �I � SkR
�T
k Y T

k �H��I � YkR
��
k ST

k �� ��
���

Next� we will show by induction that

Nk � SkR
�T
k DkR

��
k ST

k � ������

This is true for k � �� for in this case the right hand side of ��
��� is ��s�sT� � which equals
N�
 Now let us assume that ��
��� is true for k
 Then� by the de�nition ��
��� of N�

Nk�� � V T
k SkR

�T
k DkR

��
k ST

k Vk � �ksks
T
k � ������

To simplify this expression� we note from ��
�� and ��
�� that

R��k ST
k Vk � R��k ST

k �I � �kyks
T
k �

�
h
R��k ��kR

��
k ST

k yk
i��� ST

k

sTk

�
�	

�
h
R��k ��kR

��
k ST

k yk
i
ST
k��

�
h
I �

i
R��k��S

T
k��� ��
���

�

Also� using ��
�� we can write sk as

sk � Sk��R
�T
k��ek��

�

�k
� ������

Substituting this and ��
��� in ��
���� we have

Nk�� � Sk��R
�T
k��

I

�

�
Dk

h
I �

i
R��k��S

T
k�� � Sk��R

�T
k��

�
�����

�

�
�
�k

�
����	R��k��ST

k��

� Sk��R
�T
k��

�
�� Dk �

� �
�k

�
�	R��k��ST

k��

� Sk��R
�T
k��Dk��R

��
k��S

T
k���

This proves ��
��� for k � �

Finally by expanding the expression

H� �
h
Sk H�Yk

i��� R�Tk �Dk � Y T
k H�Yk�R

��
k �R�Tk

�R��k �

�
�	
�
�� ST

k

Y T
k H�

�
�	

we see that it is equal to Mk �Nk� where Mk and Nk are given by ��
��� and ��
���

�

Note that the conditions sTi yi � � i � �� ���� k� � ensure that Rk is nonsingular� so that
��
	� is well de�ned
 Indeed it is well known �Fletcher ������ that the BFGS formula
preserves positive de�niteness if sTi yi � � for all i

Theorem �
� gives us a matrix representation of the inverse Hessian approximation
Hk
 We now present an analogous expression for the direct Hessian approximation Bk

The direct BFGS update formula� i
e
 the inverse of ��
�� is given by

Bk�� � Bk �
Bksks

T
kBk

sTkBksk
�
yky

T
k

yTk sk
� ����	�

Theorem ��� Let B� be symmetric and positive de�nite and assume that the k pairs
fsi� yig

k��
i�� satisfy sTi yi � �� Let Bk be obtained by updating B� k times using the direct

BFGS formula �	��
� and the pairs fsi� yig
k��
i�� � Then

Bk � B� �
h
B�Sk Yk

i
 ST
k B�Sk Lk

LT
k �Dk

�
��

ST
k B�

Y T
k

�
� ������

where Lk is the k � k matrix

�Lk�i�j �

�
sTi��yj�� if i � j

� otherwise
� �����

	

Proof� Let us write ��
	� as
Hk � H� � UkCkU

T
k � ������

where
Uk �

h
Sk H�Yk

i
�

and

Ck �

R�Tk �Dk � Y T

k H�Yk�R
��
k �R�Tk

�R��k �

�
�

By direct multiplication we can verify that the inverse of Ck is

C��k �

� �Rk

�RT
k ��Dk � Y T

k H�Yk�

�
� ������

Applying the Sherman�Morrison�Woodbury formula �Ortega and Rheinboldt ������� to
��
��� we obtain

Bk � B� �B�Uk�I � CkU
T
k B�Uk�

��CkU
T
k B�

� B� �B�Uk�C
��
k � UT

k B�Uk�
��UT

k B�� ��
���

Now

UT
k B�Uk �

ST
k

Y T
k H�

�
B�

h
Sk H�Yk

i

�

ST
k B�Sk ST

k Yk
Y T
k Sk Y T

k H�Yk

�
�

Therefore using ��
���

C��k � UT
k B�Uk �

ST
k B�Sk ST

k Yk � Rk

Y T
k Sk �RT

k �Dk

�
�

Note that the matrix Lk de�ned by ��
�� can be written as

Lk � ST
k Yk �Rk� ������

so that

C��k � UT
k B�Uk �

ST
k B�Sk Lk

LT
k �Dk

�
� ������

Substituting this into ��
��� we obtain ��
���

�

In the next sections we will show that the new formulae ��
��� and ��
	�� which at �rst
appear rather cumbersome� are actually very convenient for some calculations arising in

�

constrained optimization
 Before doing so we make a remark concerning the implemen�
tation of ��
���

The middle matrix in ��
����

ST
k B�Sk Lk

LT
k �Dk

�
������

is inde�nite
 However we now show that its inversion can be carried out using the
Cholesky factorization of a related matrix
 First we re�order the blocks of ��
��� and
note that

�Dk LT
k

Lk ST
k B�Sk

�
�

D

���
k �

�LkD
����
k Jk

�

�D

���
k D

����
k LT

k

� JTk

�
� ������

where Jk is the lower triangular matrix that satis�es

JkJ
T
k � ST

k B�Sk � LkD
��
k LT

k � ����	�

The following result shows that Jk exists and is nonsingular

Theorem ��� If B� is positive de�nite and sTi yi � �� i � �� ���� k� �� then the matrix
ST
k B�Sk � LkD

��
k LT

k is positive de�nite�

Proof� From the de�nition ��
�� we see that Dk is positive de�nite and hence ST
k B�Sk�

LkD
��
k LT

k is positive semi�de�nite
 Suppose that uT �ST
k B�Sk�LkD

��
k LT

k �u � � for some
vector u
 Then LT

k u � � and Sku � �� which in turn implies that Y T
k Sku � �
 Recalling

��
��� we have Y T
k Sk � LT

k �RT
k � so that RT

k u � �
 Since RT
k is triangular with positive

diagonal� we conclude that u � �

�

Therefore� only the Cholesky factorization of the k�k symmetric positive de�nite matrix
ST
k B�Sk � LkD

��
k LT

k needs to be computed� to implement ��
���
 This is preferable to
factorizing the inde�nite �k � �k matrix ��
���
 We will discuss the implementation of
��
��� in more detail in section �
�� in the context of limited memory methods

�� Application to the Limited Memory Method�

Since we know that k BFGS updates can be written in the compact forms ��
	� and
��
���� it is easy to describe a limited memory implementation
 We keep the m most
recent correction pairs fsi� yig to implicitly de�ne the iteration matrix
 This set of pairs
is refreshed at every iteration by removing the oldest pair and adding a newly generated
pair
 We assume that m is constant� but it is not di�cult to adapt all the formulae of
this section to the case when m changes at every iteration

Suppose that at the current iterate xk we wish to construct the inverse limited memory

BFGS matrix Hk
 We do so by implicitly updating H
���
k � the basic matrix� m times using

the �m vectors fsk�m� � � � � sk��g and fyk�m� � � � � yk��g� which have been saved
 Let us

assume that H
���
k � �kI � for some positive scalar �k
 From ��
	� we see that the resulting

matrix is

Hk � �kI �
h
Sk �kYk

i��� R�Tk �Dk � �kY
T
k Yk�R

��
k �R�Tk

�R��k �

�
�	
�
�� ST

k

�kY
T
k

�
�	 � �����

where now
Sk � �sk�m � � � � � sk��� � Yk � �yk�m� � � � � yk��� � �����

and where Rk and Dk are the m�m matrices

�Rk�i�j �

�
�sk�m���i�

T �yk�m���j � if i � j
� otherwise

� �����

and
Dk � diag

h
sTk�myk�m� � � � � s

T
k��yk��

i
� �����

After the new iterate xk�� is generated� we obtain Sk�� by deleting sk�m from Sk and
adding the new displacement sk
 The matrix Yk�� is updated in the same fashion

This describes the general step when k � m
 For the �rst few iterations� when k �m�

we need only replace m by k in the formulae above
 We have assumed that H
���
k � �kI

because this choice is common in practice �see Gilbert and Lemar�echal ����� and Liu
and Nocedal ������
 Other formulae for the initial matrix could also be used� but would
probably result in a more expensive computation

A limited memory matrix based on the direct BFGS formula is also easily obtained

Let the basic matrix be of the form B
���
k � 	kI � for some positive scalar 	k
 From

��
��� we see that if we update B
���
k m times using the vectors fsk�m � � � � � sk��g and

fyk�m� � � � � yk��g� we obtain

Bk � 	kI �
h
	kSk Yk

i
 	kS
T
k Sk Lk

LT
k �Dk

�
��

	kS
T
k

Y T
k

�
� �����

where Sk � Yk� Dk are given by ��
�� and ��
��� and where Lk is de�ned by

�Lk�i�j �

�
sTk�m���iyk�m���j if i � j
� otherwise

� ���	�

We now describe procedures for performing computations with these compact repre�
sentations of limited memory BFGS matrices

���� Computations involving Hk�

�

We consider several products involving the inverse limited memory matrix Hk
 To
save computations we will store� in addition to the two n � m matrices Sk and Yk � the
m �m matrices Y T

k Yk � Rk� and Dk
 Since in practice m is very small� say m � �� the
storage space required by these three auxiliary matrices is negligible
 In the operation
counts given below we concentrate on multiplications since the arithmetic consists pri�
marily of inner products� so that the number of additions is similar to the number of
multiplications
 We note that for the rest of this section Sk � Yk� Rk� Dk� Lk are de�ned
by ��
�����
�� and ��
	�

Computation of Hkgk�
This product de�nes the search direction in a limited memory method for unconstrained
optimization
 Since some of the calculations involved in the product Hkgk occur also in
the update of Hk� it is e�cient to consider both operations together

At the k�th iteration of the limited memory algorithm for unconstrained optimization
we must update our representation of Hk�� to get Hk� compute the search direction
�Hkgk and perform a line search
 To update Hk�� we delete a column from and add
a new column to each of the matrices Sk�� and Yk��� and make corresponding updates
to Rk��� Y

T
k��Yk�� and Dk��
 We will show that these updates can be done in O�m��

operations by storing a small amount of additional information
 For example� from ��
��
we see that the new triangular matrix Rk is formed from Rk�� by deleting the �rst row
and column� adding a new column on the right� which is given by

ST
k yk�� � ST

k �gk � gk���� �����

and adding a new row on the bottom� which is zero in its �rstm�� components
 It would
appear that this requires mn multiplications
 However� note from ��
�� that the vector
ST
k gk and the �rst m � � components of ST

k gk�� have to be calculated in the process of
computing Hkgk and Hk��gk��
 Thus we may save the �rstm�� components of ST

k gk��
from the previous iteration� and we need only compute sTk��gk��� which can be obtained
with O�m�� work� as we will show below
 Thus to compute ST

k yk�� by the di�erence
��
�� will require only O�m�� operations
 The matrix Y T

k Yk can be updated in a similar
way saving another mn multiplications

An updating process that implements these savings in computation is as follows
 At
xk� the following data has been saved from the previous iteration�

gTk��gk���

sTi gk�� i � k �m� �� � � � � k� �� �i�e� ST
k��gk���

and
yTi gk�� i � k �m� �� � � � � k � � �i�e� Y T

k��gk����

Now we compute the quantities corresponding to the present iteration
 We begin with

sTk��gk�� � ��k��g
T
k��Hk��gk���

��

which by ��
�� is equal to

��k���k��g
T
k��gk����k��w

T
k

�
�� R�Tk���Dk�� � �k��Y

T
k��Yk���R

��
k�� �R�Tk��

�R��k�� �

�
�	wk ����

where

wk �

�
�� ST

k��gk��

�k��Y
T
k��gk��

�
�	 �

This requires only O�m�� operations since gTk��gk��� S
T
k��gk�� and Y

T
k��gk�� have already

been saved from the previous iteration

Next we compute the inner products

gTk gk�

sTi gk i � k �m� � � � � k� �� �i�e� ST
k gk�

and
yTi gk i � k �m� � � � � k� �� �i�e� Y T

k gk��

With this information� the new components of Rk� Y
T
k Yk and Dk� can be computed in

O�m� work by the formulae

sTi yk�� � sTi gk � sTi gk�� i � k �m� � � �� k � �� ��
��

yTi yk�� � yTi gk � yTi gk�� i � k �m� � � � � k� �� ��
���

yTk��yk�� � �gTk gk � ��gk � gk���
Tgk � gTk��gk��� ��
���

We now give a complete description of the procedure for updating Hk and computing
Hkgk

Algorithm ��� �Step Computation for Unconstrained Minimization�
Let xk be the current iterate
 Given sk��� yk��� gk� the matrices Sk��� Yk��� Rk���

Y T
k��Yk��� Dk��� the vectors ST

k��gk��� Y
T
k��gk�� and the scalar gTk��gk���

�
 Update Sk� Yk

�
 Compute gTk gk� S
T
k gk� and Y T

k gk

�
 Compute sTk��gk�� by ��
�

�
 Update Rk� Y
T
k Yk and Dk with the aid of ��
�����
���

�
 Compute �k� for example

�k � yk��
T sk���yk��

Tyk��� ������

��

	
 Compute

p �

R�Tk �Dk � �kY

T
k Yk�R

��
k �ST

k gk�� �kR
�T
k �Y T

k gk�
�R��k �ST

k gk��

�

�
 Compute

Hkgk � �kgk �
h
Sk �kYk

i
p�

In this procedure� step � requires ��m���n multiplications� step � requires ��m���n
multiplications� step � depends on the formula used for �k �the choice ��
��� is free since
both inner products have been stored�� all other steps cost at mostO�m�� multiplications�
for a total of ��m���n�O�m�� multiplications
 Note� however� that when this procedure
is part of an algorithm using a line search procedure� the scalar sTk��gk�� is also required
for the line search� whereas gTk gk is likely to be needed to check the stopping conditions of
the algorithm
 Therefore the amount of extra work required to update Hk and compute
the step direction is �mn � O�m�� in that case
 Of course for large problems the term
�mn predominates

As will be seen in Section �
� this is the same amount of work per iteration as required
by the two�loop recursion described by Nocedal ������ and as far as we know there is
no more e�cient way to implement the unconstrained limited memory BFGS method

Thus the two approaches are equally e�cient for unconstrained problems� but� as pointed
out in Section �
�� the compact matrix representations derived in this paper are more
economical when computing certain quantities arising in sparse constrained optimization
calculations

The product Hkv�

Let us consider the computation of the product Hkv� where v is an arbitrary vector

From ��
�� we see that this product is given by

Hkv � �kv �
h
Sk �kYk

i��� R�Tk �Dk � �kY
T
k Yk�R

��
k �R�Tk

�R��k �

�
�	
�
�� ST

k v

�kY
T
k v

�
�	 � ������

To carry out the computation we �rst compute the products ST
k v and Y

T
k v� which together

require �mn multiplications
 To multiply the resulting �m vector by the middle �m��m
matrix involves � solutions of triangular systems and one multiplication by an m � m

matrix
 Finally� it takes �mn multiplications to multiply �Sk �kYk � with the resulting
�m vector
 Thus� if we include the product �kv and ignore O�m� operations� the whole
computation requires ��m� ��n� �

�m
� multiplications

Products of the form vTHkv and uTHkv�
Consider the weighted scalar product vTHkv where v is an arbitrary vector� and where
we assume that the vector Hkv is not needed
 Using ��
�� we have

vTHkv � �kv
Tv � �R��k ST

k v�
T �Dk � �kY

T
k Yk��R

��
k ST

k v�� ��kv
TYkR

��
k ST

k v� ������

��

We �rst compute ST
k v and Y T

k v� which requires �mn multiplications
 Next we solve a
triangular system to get R��k ST

k v� which we save� multiply by the matrix Dk � �Y T
k Yk�

compute vTv and do some order m inner products
 Thus the total cost of this compu�
tation is ��m � ��n � 	

�m
� � O�m�� roughly half of what the cost would be if we �rst

computed Hkv and then vTHkv

If we wish to compute the product uTHkv for two arbitrary vectors u and v the cost

is more� since

uTHkv � �ku
T v � �R��k ST

k u�
T �Dk � �kY

T
k Yk��R

��
k ST

k v�� �ku
TYkR

��
k ST

k v

��ku
TSkR

�T
k Y T

k v

can be seen to require ��m���n��m��O�m� multiplications
 This is only slightly less
expensive than computing Hkv and then taking the inner product of the result with u�
which would cost ��m� ��n�O�m�� multiplications

The Product ATHkA�

A related computation is the problem of computing the matrix ATHkA where A is an
n�t matrix with t � n
 This computation occurs when solving the constrained nonlinear
optimization problem�

minimize f�x� ������

subject to c�x� � � ����	�

with n variables and t constraints
 This problem is frequently solved by the sequential
quadratic programming method� which at every iteration solves a subproblem of the form

minimize gTk d�
�
�d

TBkd ������

subject to AT
k d � �ck� �����

where Ak is the matrix of constraint gradients at the current iterate xk � ck is a vector
of length t� and Bk � H��

k is an approximation to the Hessian of the Lagrangian of the
problem
 If Ak has full rank� the solution to ��
������
�� can be expressed as

d � �Hk�gk � Ak�� ������

where the Lagrange multiplier � satis�es

�AT
kHkAk�� � �AT

kHkgk � ck� ������

Let us suppose that Hk is a limited memory matrix represented in the compact form
��
��
 Then the matrix AT

kHkAk may be e�ciently computed by �rst computing ST
k Ak

and Y T
k Ak� which require �mnt multiplications� then R��k ST

k Ak� requiring
�
�m

�t multi�
plications� and then computing

�kA
T
kAk � �R��k ST

k Ak�
T �Dk � �kY

T
k Yk��R

��
k ST

k Ak�� ��kA
T
k YkR

��
k ST

k Ak� ������

��

which requires m�t� 	
�mt

�� �
��t

��t�n�O��maxfm� tg��� multiplications
 Ignoring lower
order terms� this is a total of

��m� �
�t �

�
��tn�

�

�
�m� t�mt

multiplications
 As long as m and t are fairly small this is not extremely expensive and
is much less than the cost of computing the matrix HkAk �rst� and then multiplying
by AT

k
 To solve ��
��� requires the Cholesky factorization of AT
kHkAk which requires

�

 t

	 multiplications
 The other matrix vector products required in ��
��� and ��
��� cost
about ��t � �m�n� if certain quantities computed in other parts of the procedure are
saved and reused appropriately

Operations with Hk and sparse constraints�

We now consider computations similar to those in the previous section but where the
vectors and matrices multiplying Hk are sparse �but recall that Hk is dense�
 This is
an important case because� even though gk� Sk� and Yk are not likely to be sparse� it
is very common to have constrained optimization problems where the gradients of the
constraints� and thus the matrix A in ��
�� are sparse
 A special case in which we are
very interested is the case of a minimization subject to bound constraints� where the
matrices dealt with are actually submatrices of the identity
 Signi�cant reductions in
computational cost result in such problems if e�cient sparse storage is used

The product Hkei requires �mn � O�m�� multiplications
 This is easy to see from
��
���� since ST

k ei and Y
T
k ei require only O�m� indexing operations
 For the same reason�

we see from ��
��� that eTi Hkei can be computed with O�m�� multiplications

Consider now ATHkA in the case where A is an n � t sparse matrix with nA non�

zeros
 We perform this computation by ��
���
 The products ST
k A and Y T

k A together
require �mnA multiplications
 The back�solve R��k ST

k A requires �
�mt

� multiplications�
and the rest of the operations require �mt� � m�t � O��maxfm� tg�� multiplications
plus the operations of ATA which cost at most tnA multiplications
 Thus the total is
O�maxfm� tg�nA � ��t � 	

�m�mt � O��maxfm� tg���
 Thus we see that� while in the
previous section the computational e�ort in most tasks was roughly proportional to the
number of variables n� in the sparse case it is proportional to the number of non�zeros in
the sparse array under consideration

���� Operations with Bk

We now consider the direct Hessian approximation Bk
 To take advantage of the
decomposition ��
���� we rewrite ��
�� as

Bk � 	kI �
h
Yk 	kSk

i
 �D
���
k D

����
k LT

k

� JTk

�
��

D
���
k �

�LkD
����
k Jk

�
��

Y T
k

	kS
T
k

�
�

������

��

where Jk is de�ned by ��
�	�
 We use this expression� both in the sparse and dense case�
to compute several products involving Bk

Update of Bk and the product Bkv�

This computation is required when applying limited memory methods to solve con�
strained optimization problem
 It occurs� for example� in the algorithm for nonlinearly
constrained problems developed by Mahidhara and Lasdon ������� and in the primal
limited memory algorithm for bound constrained optimization described by Byrd� Lu
and Nocedal ������

The following procedure� which is based on the representation ��
���� describes in
detail the k�th step of an iteration that �rst updates Bk and then computes the product
Bkv for an arbitrary vector v

Algorithm ���

Let xk be the current iterate� and assume that the matrices Sk��� Yk��� Lk���
ST
k��Sk��� and Dk�� have been stored
 The vectors sk��� yk�� have just been computed�

and the vector v is given

�
 Obtain Sk� Yk� by updating Sk�� and Yk��

�
 Compute Lk� S
T
k Sk and Dk

�
 Compute 	k� for example

	k � yk��
T sk���sk��

T sk��� ������

�
 Compute the Cholesky factorization of 	kS
T
k Sk � LkD

��
k LT

k to obtain JkJ
T
k

�
 Compute

p �

Y T
k v

	kS
T
k v

�
�

	
 Perform a forward and then a backward solve to obtain

p ��

�D

���
k D

����
k LT

k

� JTk

�
��

D
���
k �

�LkD
����
k Jk

�
��

p�

�
 Compute

Bkv � 	kv �
h
Yk 	kS

T
k

i
p�

The �rst step of this procedure� in which the oldest columns of the matrices Sk���
Yk�� are replaced by the vectors sk��� and yk��� does not require any arithmetic
 Step
� requires �m inner products to form the new columns of matrices Lk � S

T
k Sk and Dk�

which cost �mn multiplications
 The choice of 	k in step � costs only one multiplication
since both yk��

T sk�� and sk��
T sk�� have been calculated in step �
 In step � the

��

Cholesky factorization of the positive de�nite matrix 	kS
T
k Sk � LkD

��
k LT

k costs O�m	�
multiplications
 Step � costs �mn multiplications
 The forward and the backward solves
of �m��m triangular systems in step 	 cost O�m�� multiplications
 Step � costs ��m���n
multiplications
 In summary� this procedure costs �mn�O�m	� multiplications from step
� to step �� where the matrix Bk is de�ned� and costs ��m���n�O�m�� multiplications
from step � to step �� where the product Bkv is calculated

The weighted scalar product vTBkv�
This product occurs� for example� in the conjugate gradient inner�iteration as well as
in the Cauchy point computation of the primal algorithm described by Byrd� Lu and
Nocedal ������
 Using ��
��� we have

vTBkv � 	kv
Tv � vTWT

k

�D

���
k D

����
k LT

k

� JTk

�
��

D
���
k �

�LkD
����
k Jk

�
��

Wkv� ������

where

Wk �

Y T
k

	kS
T
k

�
�

We �rst compute and store the matrix vector products Y T
k v� 	kS

T
k v� which determine

Wkv� and which require �mn multiplications
 Then we solve two �m � �m triangular
systems� and compute the scalar product of two �m�vectors� all of these cost at most
O�m�� multiplications
 The last part is to compute 	kv

Tv� and subtract the previously
computed scalar from it
 The total cost of this computation is ��m � ��n � O�m��
multiplications
 Of course in the case v � gk� which is often required� using previously
computed quantities form the computation of Hk would allow this to be reduced to
O�m��

Sparse computations with Bk

Calculations involving the product of Bk and sparse vectors involve savings similar to
those involving Hk� for example� computing Bkei requires �mn�O�m	� multiplications

A special but important sparse case concerns minimization problems subject to bound
constraints� in which the constraint gradients are submatrices of the identity matrix

Minimizing over a subspace in that case involves computations with the reduced Hessian
approximation �Bk � ZTBkZ� where Z is an n��t matrix whose columns are unit vectors

Thus the subspace problem is of size �t

To express �Bk we use ��
��� to obtain

�Bk � 	k �I �
h

�Yk 	k �Sk
i

�D
���
k D

����
k LT

k

� JTk

�
��

D
���
k �

�LkD
����
k Jk

�
��

�Y T
k

	k �ST
k

�
�

where �I � ZTZ is the identity matrix of size �t� and �Yk � ZTYk and �Sk � ZTSk are �t�m
submatrices of Yk and Sk
 The procedure of multiplying the reduced Hessian �Bk by an
arbitrary �t�vector �v is similar to steps � to � of Algorithm �
� and costs ��m����t�O�m��

�	

multiplications
 Similarly� the weighted scalar product �vT �Bk�v costs ��m� ���t � O�m��
multiplications

In this case we see signi�cant reductions in computational cost� resulting in work
proportional to �t rather than to n

�� Alternative Formulae�

For the sake of completeness we now review two other known approaches for handling
limited memory matrices
 The �rst approach exploits the symmetry and structure of
��
��� giving rise to an e�cient two�loop recursion for computing products using the
inverse Hessian approximation
 The second approach is for the direct BFGS update and
consists of a straightforward sequence of multiplications

���� The Two�Loop Recursion

The following recursive formula computes the step direction Hkgk for unconstrained
minimization
 It is given in Nocedal ����� and is based on the recursion developed by
Matthies and Strang ������ for the standard BFGS method
 As before� Hk represents a
limited memory BFGS approximation of the inverse Hessian
 It is obtained by applying

m updates to a basic matrix H
���
k using the m most recent correction pairs� which we

label for simplicity �s�� y��� ���� �sm��� ym���

�
 q � gk

�
 For i � m� �� � � � � �

i � �is

T
i q �store
i�

q �� q �
iyi

�
 r � H
���
k q

�
 For i � �� �� � � � � m� �

� � �iy

T
i r

r �� r � si�
i � �i�

�
 Hkgk � r

Excluding step �� this algorithm requires �mnmultiplications� if H
���
k is diagonal then

n additional multiplications are needed
 When used for unconstrained minimization
the computation and storage cost is thus essentially the same as using formula ��
	�

implemented as described in Section �
�� as long as H
���
k is a scalar multiple of the

identity
 However� the two loop recursion has the advantage that the multiplication by

the basic matrix H
���
k is isolated form the rest of the computations
 As a result the two�

loop recursion will be less expensive than ��
	� in the case when H
���
k di�ers from H

���
k��

��

by more than a simple scalar multiplication� since the entire matrix Y T
k H

�k�
� Yk would

then have to be updated

However� the two�loop recursion cannot be e�ciently adapted for sparse projections

Let us consider for example the product Hkei� which can be obtained by replacing gk
with ei in the two�loop recursion
 Since the vectors si and yi are in general not sparse�
we see that only the computation of
m�� in step � results in savings
 Thus steps � and
� require ��m� ��n multiplications � almost the same as in the dense case

We should also mention that while the compact form ��
	� has an analog ��
��� for
the direct update� we know of no procedure analogous to the two loop recursion that can

compute the direct update from B
���
k � Sk� and Yk in O�mn� operations

Mathematically� the relation of the two�loop recursion to ��
	� can be seen if we note
that ��
	� can be expressed

Hk � �I � SkR
�T
k Y T �H

���
k �I � YkR

��
k ST

k � � SkR
�T
k DkR

��
k ST

k �

The vector made up of the coe�cients
i can then be seen to be R��k ST
k gk� and the �nal

value of the vector q is �I�YkR
��
k ST

k �gk
 Note that in the two�loop procedure everything
is computed afresh at each iteration� thus making it easier to change parameters such as

H
���
k � while implementing ��
	� involves saving and updating more computed quantities�

thus making information such as sparse projections of H more immediately accessible

A close examination of the two�loop recursion reveals that it is similar in structure

to computations of gradients by means of the adjoint method �or the reverse mode of
automatic di�erentiation �Griewank ������
 In fact Gilbert and Nocedal ������ show
that there is a precise relationship between these two algorithms� the two�loop recursion
can be obtained by applying the adjoint method to compute the gradient of the function
h�g� � �

�g
THkg with respect to its argument g� where Hk is the limited memory BFGS

matrix
 The scalars
i� which are saved during the �rst loop� correspond to the quantities
referred to as the adjoint variables in the optimal control literature

���� A Straightforward Approach�

The direct BFGS formula ��
�	� can be written as

Bk�� � Bk � aka
T
k � bkb

T
k � �����

where

ak �
Bksk

�sTkBks
T
k �

�

�

� bk �
yk

�yTk sk�
�

�

�

A straightforward implementation of the limited memory method consists of saving these
intermediate vectors ai and bi to de�ne the iteration matrix
 It has been used by several
authors including Mahidhara and Lasdon ������

�

In a typical iteration k� the matrix Bk is obtained by updating a starting matrix B
���
k

m times using the m most recent pairs� which we denote for simplicity�

�s�� y��� � � � � �sm��� ym����

From ��
�� we see that Bk can be written as

Bk � B
���
k �

m��X
i��

�bib
T
i � aia

T
i �� �����

where the vectors ai� bi can be computed by means of the following formula�

For k � �� �� � � � � m� �

�

bk � yk��y

T
k sk�

�

� �����

�

ak � B
���
k sk �

k��X
i��

h
�bTi sk�bi � �aTi sk�ai

i
�����

�

ak �� ak��s

T
k ak�

�

� � �����

At the next iteration we repeat this process� except that the pair �s�� y�� is replaced
by the new pair �sm� ym�
 The vectors ai need to be recomputed form scratch since they
all depend on the deleted pair �s�� y��
 On the other hand� the vectors bi and the inner
products bTi sk can be saved from the previous iteration� and only the new values bm and

bTi sm need to be computed
 Taking this into account� and assuming that B
���
k � I we

�nd that approximately
���m�n multiplications�

are needed to determine the limited memory matrix

To compute Bmv� for some vector v � Rn� using ��
�� requires �mn multiplications

This approach is therefore less e�cient than that based on the compact matrix represen�
tation described in section �
�
 Indeed� whereas the product Bkv costs the same in both
cases� updating the representation of the limited memory matrix using the compact form
requires only �mn multiplications� compared to ���m�n multiplications needed by the
approach described in this section

�� Compact Representation of SR� Matrices�

In this section we develop compact representations of matrices generated by the sym�
metric rank�one �SR�� formula
 These representations are similar to the ones derived for
the BFGS formula� but under some conditions require less storage

��

The SR� update formula is given by

Bk�� � Bk �
�yk �Bksk��yk �Bksk�

T

�yk � Bksk�Tsk
� �����

see for example Fletcher �����
 Note that this update is well de�ned only if the de�
nominator �Bksk� yk�Tsk is nonzero
 In recent implementations of the SR� method� the
update is simply skipped if this denominator is very small relative to kskkkBksk � ykk
�Conn� Gould and Toint ����� Khalfan� Byrd and Schnabel �������
 Since the SR�
update does not have the property of hereditary positive de�niteness� there is no reason
to enforce the curvature condition sTk yk � � as with BFGS updating� and we will thus
consider a sequence of updates to an arbitrary matrix B� subject only to the assumption
that the update is well de�ned

Theorem ��� Let the symmetric matrix B� be updated k times by means of the SR�
formula ����� using the pairs fsi� yig

k��
i�� � and assume that each update is well de�ned�

i�e� sTj �Bjsj � yj� �� �� j � �� ���� k� �� Then the resulting matrix Bk is given by

Bk � B� � �Yk �B�Sk��Dk � Lk � LT
k � ST

k B�Sk�
���Yk �B�Sk�

T � �����

where Sk� Yk� Dk� and Lk are as de�ned in �	���� �	��� and �	���� and the matrix Mk 	
�Dk � Lk � LT

k � ST
k B�Sk� is nonsingular�

Proof� We proceed by induction
 When k � � the right hand side of ��
�� is

B� � �y� �B�s��
�

�y� �B�s��Ts�
�y� �B�s��

T � B��

Let us now assume that ��
�� holds for some k
 De�ne

Qk � �q�� � � � � qk��� � Yk � B�Sk� �����

and
Mk � Dk � Lk � LT

k � ST
k B�Sk � �����

Therefore
Bk � B� �QkM

��
k QT

k �

Applying the SR� update ��
�� to Bk we have

Bk�� � B� �QkM
��
k QT

k �
�yk �B�sk � QkM

��
k QT

k sk��yk � B�sk �QkM
��
k QT

k sk�
T

�yk � B�sk�Tsk � sTkQkM
��
k QT

k sk

� B� �QkM
��
k QT

k �
�qk �QkM

��
k wk��qk �QkM

��
k wk�T

qTk sk � wT
kM

��
k wk

� B� �
h
qkq

T
k � qk�w

T
kM

��
k �QT

k � Qk�M
��
k wk�q

T
k

�Qk��kM
��
k �M��

k wkw
T
kM

��
k �QT

k

i
��k�

��

where we have de�ned
wk � QT

k sk� �����

and where the denominator

�k 	 qTk sk � wT
kM

��
k wk ��
	�

� �yk �Bksk�
Tsk

is non�zero by assumption
 We may express this as

Bk�� � B� �
�

�k
�Qk qk�

M��

k ��kI � wkw
T
kM

��
k � �M��

k wk

�wT
kM

��
k �

� ��� QT
k

qTk

�
�	 � ��
��

Now� from de�nitions ��
��� ��
�� and ��
�� we see that the new matrix Mk�� is given by

Mk�� �

Mk wk

wT
k qTk sk

�
�

and by direct multiplication� using ��
��� ��
�� and ��
	�� we see that

Mk wk

wT
k qTk sk

�

M��

k ��kI � wkw
T
kM

��
k � �M��

k wk

�wT
kM

��
k �

�
�

�k
� I� ����

Therefore Mk�� is invertible� with M��
k�� given by the second matrix in ��
�� but this

is the matrix appearing in ��
��
 Thus� we see that ��
�� is equivalent to equation ��
��
with k replaced by k � �� which observation establishes the result

�

Since the SR� method is self dual� the inverse formula can be obtained simply by
replacing B� s� y by H� y� s respectively �see Dennis and Schnabel ������
 Alternatively�
if Bk is invertible� application of the Sherman�Morrison�Woodbury formula to ��
�� shows
the inverse of Bk is given by

Hk � H� � �Sk �H�Yk��Rk � RT
k �Dk � Y T

k H�Yk�
���Sk �H�Yk�

T � �����

However� in the context of unconstrained optimization� since the SR� update is not
always positive de�nite this formula is not as likely to be useful in step computation as
is the inverse BFGS update

It should be clear how to develop limited memory SR� methods
 In ��
�� we replace

B� with the basic matrix at the k�th iteration� which we denoted earlier by B
���
k � and Sk

and Yk should now contain the m most recent corrections� as in ��
��
 Savings in storage

can be achieved if B
���
k is kept �xed for all k� for in this case the only n�vectors one needs

to store are the m columns of Qk
 This would result also in some savings in the cost
of updating the matrix Mk� depending on the step computation strategy used
 On the

��

other hand� if B
���
k is a scalar multiple of the identity and� as is often the case� one wants

to change the scalar at each iteration� then both Sk and Yk must be stored separately�
and the storage and updating costs of the limited memory SR� and BFGS methods are
similar

We will not give detailed algorithms for computing products involving limited memory
SR� matrices because the ideas are very similar to those described in the previous section

One point� however� that is worth discussing is how to compute the denominator in ��
���
at each stage of the limited memory updating� to determine if the update should be
skipped
 The condition

sTj �Bjsj � yj� �� �� j � �� ���� k� �� ������

can be expensive to test
 Note however that ��
��� is equivalent to the nonsingularity
of the principal minors of Mk
 Thus� when using the form ��
�� in a limited memory
method� the condition ��
��� could be tested when computing a triangular factorization
of Mk without pivoting� with the test for a zero on the diagonal of the factor being made
relative to the magnitude of Qk and Sk
 Skipping an update would correspond to deleting
the corresponding row and column of Mk

�� Representation of Broyden Matrices for Nonlinear Equations�

A widely used secant approximation to the Jacobian matrix of a system of nonlinear
equations�

F �x� � �� F �
n �
n� �	���

is the Broyden update �Broyden ���	����

Ak�� � Ak �
�yk � Aksk�s

T
k

sTk sk
� �	���

Here sk � xk���xk � yk � F �xk����F �xk�� and Ak is the approximation to the Jacobian
of F
 In this section we describe compact expressions of Broyden matrices that are similar
to those given for BFGS and SR�
 As before� we de�ne

Sk � �s�� � � � � sk��� � Yk � �y�� � � � � yk��� � �	���

and we assume that the vectors si are non�zero

Theorem ��� Let A� be a nonsingular starting matrix� and let Ak be obtained by up�
dating A� k times using Broyden�s formula �
�	� and the pairs fsi� yig

k��
i�� � Then

Ak � A� � �Yk �A�Sk�N
��
k ST

k � �	���

where Nk is the k � k matrix

�Nk�i�j �

�
sTi��sj�� if i � j

� otherwise
� �	���

��

Proof� It is easy to show �using induction� that Ak can be written as

Ak � Bk � Ck� �	�	�

where Bk and Ck are de�ned recursively by�
B� � A�

Bk�� � Bk�I � �ksks
T
k � �k � ��

�	���

and �
C� � �
Ck�� � Ck�I � �ksks

T
k � � �kyks

T
k �k � ��

�	��

and where
�k � ��sTk sk �

Considering �rst Bk we note that it can be expressed as the product of B� with a sequence
of projection matrices�

Bk � B��I � ��s�s
T
� � � � ��I � �k��sk��s

T
k���� �	���

Now we apply Lemma �
�� with y �� s in the de�nition ��
��� to this product of projections
to yield the relation

Bk � A� �A�SkN
��
k ST

k � �	����

for all k � �

Next we show by induction that Ck has the compact representation

Ck � YkN
��
k ST

k � �	����

By the de�nition �	
�� we have that C� � y���s
T
� � which agrees with �	
��� for k � �

Assume now that �	
��� holds for k
 Then by �	
��

Ck�� � YkN
��
k ST

k �I � �ksks
T
k � � �kyks

T
k

� YkN
��
k ST

k � �kYkN
��
k ST

k sks
T
k � �kyks

T
k

�
h
Yk yk

i
 N��
k ��kN

��
k ST

k sk
� �

�

ST
k

sTk

�
�
h
Yk yk

i
 � �
� �k

�

ST
k

sTk

�

� Yk��

N��
k ��kN

��
k ST

k sk
� �k

�
Sk��� �	
���

Note� however� that

N��
k ��kN

��
k ST

k sk
� �k

�

Nk ST

k sk
� �

�k

�
� I� �	����

��

which implies that the second matrix on the right hand side of �	
��� is N��
k��
 By

induction this establishes �	
���
 Finally� substituting �	
��� and �	
��� in �	
	�� we
obtain �	
��

�

We now derive a compact representation of the inverse Broyden update which is given
by

A��k�� � A��k �
�sk � A��k yk�s

T
kA

��
k

sTkA
��
k yk

�	����

�see for example Dennis and Schnabel ������

Theorem ��� Let A��� be a nonsingular starting matrix� and let A��k be obtained by
updating A��� k times using the inverse Broyden formula �
���� and the pairs fsi� yig

k��
i�� �

Then
A��k � A��� � �A��� Yk � Sk��Mk � ST

k A
��
� Yk�

��ST
k A

��
� � �	����

where Sk and Yk are given by �
��� and Mk is the k � k matrix

�Mk�i�j �

�
�sTi��sj�� if i � j

� otherwise
� �	��	�

Proof� Let
U � Yk �A�Sk� V T � N��

k ST
k �

so that �	
�� becomes
Ak � A� � UV T �

Applying the Sherman�Morrison�Woodbury formula we obtain

A��k � A��� �A��� U�I � V TA��� U���V TA���

� A��� �A��� �Yk �A�Sk��I �N��
k ST

k A
��
� �Yk � A�Sk��

��N��
k ST

k A
��
�

� A��� � �A��� Yk � Sk��Nk � ST
k A

��
� Yk � ST

k Sk�
��ST

k A
��
� �

By �	
�� and �	
�	� we have that Nk � ST
k Sk � Mk� which gives �	
���

�

Note that since we have assumed that all the updates given by �	
��� exist� we have
implicitly assumed the nonsingularity ofAk
 This nonsingularity along with the Sherman�
Morrison formula ensures that �Mk � ST

k A
��
� Yk� is nonsingular

These representations of Broyden matrices have been used by Biegler� Nocedal and
Schmid ������ to approximate a portion of the Hessian of the Lagrangian in a successive
quadratic programming method for constrained optimization

��

�� Relation to Multiple Secant Updates�

There is a close algebraic correspondence� and in certain special cases an equivalence�
between the representations of a sequence of quasi�Newton updates that have been dis�
cussed in this paper� and multiple secant updates that have previously been discussed
by several authors including Barnes ���	��� Gay and Schnabel ������ Schnabel ������
and Khalfan �����
 In this section we brie�y discuss this correspondence� for the BFGS�
SR�� and Broyden updates
 We also make a few comments about the tradeo�s between
using these two types of updates
 In additional to the notation of the preceding sections�
we use the notation that Rk is the k�k matrix that is the strict upper triangle of ST

k Yk�
i
e
 Rk � Rk �Dk where Rk and Dk are de�ned by ��
�� and ��
��
 Thus

ST
k Yk � Lk �Dk � Rk �����

where Lk is de�ned in ��
��

Multiple secant updates are updates that enforce the last k secant equations� i
e

in the notation of Section � BkSk � Yk or HkYk � Sk
 While the papers mentioned
above generally consider using multiple secant update to update Bk to Bk��� analogous
updates to those considered in this paper would arise from using multiple secant updates
to update B� to Bk or H� toHk
 This is the context in which we consider multiple secant
updates in this section

In this context� the multiple secant version of the direct BFGS update applied to B�

is given by

Bk � B� � Yk�Y
T
k Sk�

��
Y T
k � B�Sk�S

T
k B�Sk�

��
ST
k B� �����

or using a representation analogous to ��
����

Bk � B� �
h
B�Sk Yk

i
 ST
k B�Sk �
� �Y T

k Sk

�
��

ST
k B�

Y T
k

�
� �����

�assuming k � n�
 The matrix Bk given by ��
�� always obeys the k secant equations
BkSk � Yk
 Schnabel ����� shows that� assuming B� is symmetric and positive de��
nite� Bk is symmetric if and only if Y T

k Sk is symmetric� and in addition Bk is positive
de�nite if and only if Y T

k Sk is positive de�nite
 These conditions are satis�ed if f�x� is a
positive de�nite quadratic� but not in general otherwise
 Schnabel ����� discusses ways
to perturb Yk to !Yk so that !Y T

k Sk is symmetric and positive de�nite� at the cost of no
longer exactly satisfying the original secant equations other than the most recent
 These
perturbations have some relation to the comparisons of this section� and we will return
to them shortly

By comparing the multiple secant update ��
�� and the representation for k consecu�
tive� standard BFGS updates ��
���� it is clear that these two formulas are very similar
algebraically
 It is also immediate that if Y T

k Sk � Dk� the multiple BFGS update to B�

is equivalent to performing k standard BFGS updates
 This condition� which means that
sTi yj � � for all i �� j� is satis�ed if f�x� is quadratic and the step directions are mutually

��

conjugate� but not in general otherwise
 In general� the two formulas ��
��� and ��
��
result in di�erent matrices Bk

Identical comments are true regarding the BFGS update to the inverse Hessian
 The
inverse form of the multiple BFGS update ��
�� is

Hk � H� �
h
Sk H�Yk

i ��� W�T
k �W��

k �Y T
k H�Yk�W

�T
k �W��

k

�W�T
k �

�
�	
�
�� ST

k

Y T
k H�

�
�	 �����

where Wk � Y T
k Sk
 Again� assuming H� is positive de�nite� this matrix is symmetric

and positive de�nite if and only if Y T
k Sk is symmetric and positive de�nite
 Again� the

algebraic forms for ��
�� and ��
	� are very similar� and by comparing these equations
and recalling de�nitions ��
�� and ��
��� it is immediate that the updates are identical if
Y T
k Sk � Dk� and in general are di�erent otherwise

From these comparisons� one can see that in the context of limited memory methods�

the multiple BFGS updates ��
�� or ��
�� would o�er similar algebraic e�ciencies to
the representations ��
��� or ��
	� for a sequence of standard BFGS updates� that are
discussed in this paper
 The multiple BFGS updates have the disadvantage� however�
that Bk or Hk is not in general symmetric and positive de�nite even if the condition
sTi yi � �� i � �� ���� k� �� that guarantees that the matrix produced by k consecutive�
standard BFGS updates is symmetric and positive de�nite� is satis�ed
 Instead� the
multiple secant updates require the much stronger condition that Y T

k Sk be symmetric
and positive de�nite� and there does not appear to be a practical way to enforce this
condition computationally
 Schnabel ����� has instead considered ways to perturb Yk to
!Yk so that !Y T

k Sk is symmetric and positive de�nite� and the most recent secant condition
�i
e
 the last column of Yk� is unchanged
 In addition� if the columns of Sk are not
strongly linear independent� the updates ��
�� or ��
�� may be numerical unstable so
some secant pairs must be dropped from Sk and Yk
 Due to the additional computations
required by these perturbations� and the lack of symmetry and positive de�niteness in
the unperturbed multiple secant BFGS update� it does not seem advantageous to use the
multiple secant BFGS update rather than k consecutive� standard BFGS updates in the
context of limited memory methods
 An interesting related question is whether there
is a natural perturbation of Yk that causes the multiple secant update to be equivalent
to ��
���� this does not seem to be the case� but as mentioned below the situation is
di�erent for the SR� update

Now we turn to the SR� update
 The multiple secant SR� update� which to our
knowledge was �rst discussed in Schnabel ������ if applied to B� is given by

Bk � B� � �Yk �B�Sk���Yk �B�Sk�
TSk�

���Yk � B�Sk�
T � �����

The matrix Bk given by ��
�� always obeys the k secant equations BkSk � Yk
 Assuming
B� is symmetric� Bk is symmetric if and only if Y T

k Sk is symmetric� which is true if f�x�
is quadratic but not necessarily otherwise
 Like the standard SR� update� Bk given by

�	

��
�� is not necessarily positive de�nite even if the necessary conditions for the standard
BFGS or multiple BFGS update to be positive de�nite are met

Comparing the multiple SR� update ��
�� to the formula ��
�� for k consecutive�
standard SR� updates� it is clear that the only di�erence between these two formulae
is that ��
�� contains the term Y T

k Sk as part of the middle� inverse expression� instead
of the symmetric term Dk � Lk � LT

k in ��
��
 Recalling that Y T
k Sk � RT

k � Dk � LT
k �

it is immediate that ��
�� and ��
�� are identical if Rk � Lk� i
e
 if sTi yj � sTj yi for all
� � i� j � k � �
 This condition is true for f�x� quadratic� and in this case the multiple
SR� update is the same as k consecutive� standard SR� updates
 This should come
as no surprise� because the quadratic termination result for the standard SR� update
also implies that the update preserves all past secant equations� as does the multiple
secant form of the SR�
 Note that the condition for the equivalence of the multiple SR�
to k consecutive� standard SR� updates is far milder than the assumption of conjugate
directions required for the equivalence of k standard BFGS updates to the multiple BFGS
in the quadratic case

For non�quadratic f�x�� however� the standard and multiple SR� updates will gener�
ally be di�erent
 Again� the algebraic costs associated with using the updates are very
similar� while the multiple SR� has the disadvantage that it does not� in general� preserve
symmetry� while a sequence of standard SR� updates does
 Also� it is easier to monitor
stability of the standard SR�� since this only involves considering each individual term
�yj � Bjsj�

Tsj rather than the matrix �Yk � B�Sk�
TSk
 For this reason� a sequence of

standard SR� updates would seem preferable to the multiple SR� update in the context
of limited memory methods
 It is interesting to note that if Yk is perturbed to the !Yk
that one obtains by multiplying Bk given in ��
�� by Sk� then the multiple secant update
becomes identical to ��
��
 The same relationship is not true for the multiple BFGS
update

Finally we consider the Broyden update for nonlinear equations
 A multiple secant
version of Broyden�s update has been considered by several authors including Barnes
���	��� Gay and Schnabel ������ and Schnabel �����
 In a limited context using the
notation of Section 	� it is given by

Ak � A� � �Yk �A�Sk��S
T
k Sk�

��ST
k ���	�

This update is well de�ned as long as Sk has full column rank� and obeys the k secant
equations AkSk � Yk

Comparing ��
	� to the formula �	
�� for k consecutive� standard Broyden updates�
one sees that the only di�erence is in the matrix in the middle of the formula that is
inverted
 In the multiple secant update it is ST

k Sk� while in �	
�� it is the upper triangular
portion of this matrix� including the main diagonal
 Therefore� the two updates are the
same if the directions in Sk are orthogonal
 The preference between these two formulas
does not appear to be clear cut
 The formula �	
�� has the advantage that it is well de�ned
for any Sk � while ��
	� is only well de�ned numerically if the k step directions that make
up Sk are su�ciently linearly independent
 �If they are not� only some subset of them can

��

be utilized in a numerical implementation of the multiple Broyden method� this is the
approach that has been taken in implementations of this update
� On the other hand�
��
	� always enforces the k prior secant equations while �	
�� generally only enforces
the most recent equation
 Thus it would probably be worthwhile considering either
method �or their inverse formulations� in a limited memory method for solving nonlinear
equations
 Note that the key di�erence between this comparison and the preceding
comparisons of the BFGS and SR� based formulae is that symmetry� which in general
is inconsistent with satisfying multiple secant equations� is not a factor in the nonlinear
equations case but is a factor for updates for optimization problems

Acknowledgement� We would like to thank Peihuang Lu for considerable help in the
preparation of this paper

�

REFERENCES

J
 Barnes� �An algorithm for solving nonlinear equations based on the secant method��
Computer Journal ���	�� 		�	�

L
 Biegler� J
 Nocedal and C
 Schmid� �Reduced Hessian methods for large scale con�
strained optimization�� Technical Report� Department of Electrical Engineering and
Computer Science� Northwestern University �Evanston� IL� �����

C
G
 Broyden� �A class of methods for solving nonlinear simultaneous equations�� Math�
ematics of Computation �� ���	�� �������

A
 Buckley and A
 LeNir� �QN�like variable storage conjugate gradients�� Mathematical
Programming ��� ����� �������

R
H
 Byrd� P
 Lu and J
 Nocedal� �A limited memory algorithm for bound constrained
optimization�� Technical Report� Department of Electrical Engineering and Computer
Science� Northwestern University �Evanston� IL� �����

A
R
 Conn� N
I
M
 Gould� and Ph
L
 Toint� �Testing a class of methods for solving min�
imization problems with simple bounds on the variables�� Mathematics of Computation
��"�� ���� �������

J
E
 Dennis Jr
 and R
B
 Schnabel� Numerical methods for unconstrained optimization
and nonlinear equations �Prentice�Hall� ����

R
 Fletcher� Practical Methods of Optimization �second edition� �John Wiley and Sons�
Chichester� ����

D
M
 Gay and R
B
 Schnabel� �Solving systems of nonlinear equations by Broyden�s
method with projected updates�� in� O
 L
 Mangasarian� R
 R
 Meyer� and S
 M
 Robin�
son� eds
� Nonlinear Programming � �Academic Press� New York� ���� ������

J
C
 Gilbert and C
 Lemar�echal� �Some numerical experiments with variable storage
quasi�Newton algorithms�� Mathematical Programming �� ����� ������	

J
C
 Gilbert and J
 Nocedal� �The limited memory step computation and automatic
di�erentiation�� Technical Report NAM ��� Department of Electrical Engineering and
Computer Science� Northwestern University �Evanston� IL� ������ to appear in Applied
Math Letters

A
 Griewank� �On automatic di�erentiation�� in� M
 Iri and K
 Tanabe� eds
� Mathemat�
ical Programming �Kluwer Academic Publishers� Tokyo� ���� �����

H
 Fayez Khalfan� �Topics in quasi�Newton methods for unconstrained optimization��
Ph
D
 thesis� Department of Mathematics� University of Colorado �Boulder� CO� ����

H
 Fayez Khalfan� R
H
 Byrd� and R
B
 Schnabel� �A theoretical and experimental study
of the symmetric rank one update�� SIAM Journal on Optimization � ������ ����

D
C
 Liu and J
 Nocedal� �On the limited memory BFGS method for large scale opti�
mization�� Mathematical Programming �� ����� ������

D
Q
 Mahidhara and L
 Lasdon� �An SQP algorithm for large sparse nonlinear programs��
Technical report� MSIS Department� School of Business Administration� University of

��

Texas �Austin� TX� �����

H
 Matthies and G
 Strang� �The Solution of nonlinear �nite element equations�� Inter�
national Journal of Numerical Methods in Engineering �� ������ �	����	�	

J
 Nocedal� �Updating quasi�Newton matrices with limited storage�� Mathematics of
Computation �� ����� ������

J
M
 Ortega and W
C
 Rheinboldt� Iterative Solution of Nonlinear Equations in Several
Variables �Academic Press� �����

R
B
 Schnabel� �Quasi�Newton methods using multiple secant equations�� Technical Re�
port CU�CS������� Department of Computer Science� University of Colorado �Boulder�
CO� ����

H
F
 Walker� �Implementation of the GMRES method using Householder transforma�
tions�� SIAM Journal on Scienti�c and Statistical Computing �"� ���� �����	�

��

