
SUBSPACE ACCELERATED MATRIX SPLITTING ALGORITHMS FOR

BOUND-CONSTRAINED QUADRATIC PROGRAMMING AND LINEAR

COMPLEMENTARITY PROBLEMS ∗

DANIEL P. ROBINSON† , LIMING FENG‡ , JORGE M. NOCEDAL§ , AND JONG-SHI PANG¶

Abstract. This paper studies the solution of two problems—bound-constrained quadratic programs and linear com-
plementarity problems—by two-phase methods that consist of an active set prediction phase and a subspace phase. The
algorithms enjoy favorable convergence properties under weaker assumptions than those assumed for other methods in the
literature. The active set prediction phase employs matrix splitting iterations that are tailored to the structure of the
(nonconvex) bound-constrained problems and the (asymmetric) linear complementarity problems studied in this paper.
Numerical results on a variety of test problems illustrate the performance of the methods.

Key words. quadratic programming, linear complementarity, iterative methods, Jacobi iteration, Gauss-Seidel iter-
ation, splitting methods, two-phase methods, American options pricing

AMS subject classifications. 49M05, 49M15, 65K05, 65K10, 65K15, 91G60

1. Introduction. This paper considers two-phase splitting methods for solving a linear comple-
mentarity problem (LCP) and a bound-constrained quadratic program (BQP). The LCP is to find a
vector x satisfying

LCP(q,M) x ≥ 0, Mx+ q ≥ 0, and (Mx+ q) ◦ x = 0,

where M ∈ Rn×n and q ∈ Rn are given, and we use the notation [a ◦ b]i
△
= aibi. (See Cottle et al. [4] for

an extensive study of LCPs.) The bound-constrained quadratic program is given by

BQP(q,M) minimize
x∈Rn

f(x) △
=

1

2
〈x,Mx〉 + 〈q, x〉 subject to x ≥ 0

where the matrix M is now assumed to be symmetric and 〈·, ·〉 represents the standard inner-product
on Rn; we note that our algorithms may be extended in obvious ways to handle the more general
bounds xℓ ≤ x ≤ xu. If M is symmetric and positive definite, problems LCP(q,M) and BQP(q,M)
are equivalent; if M is merely symmetric, then problem LCP(q,M) is equivalent to finding a first-order
solution to problem BQP(q,M); if M is asymmetric, there is no convenient relationship between these
two problems. It is precisely for these reasons that we present two algorithms; the first designed to solve
BQP(q,M) and the second to solve asymmetric LCP(q,M).

The methods we propose consist of two phases. In the first phase, we use iterations based on matrix
splittings of M to predict those variables that will be equal to zero at a solution. The manner in which
we use these iterates to guarantee convergence is dictated by the inherent nature of problems BQP(q,M)
and LCP(q,M). In the second phase, we use the prediction afforded by the first phase to formulate a
subproblem whose solution accelerates convergence.

The work by Moré and Toraldo [12] demonstrates that two-phase approaches for solving problem
BQP(q,M) are often very effective. Their algorithm uses a projected gradient search in the first phase
to predict the optimal active set, and then a conjugate gradient based subspace phase to accelerate

∗Research supported by the National Science Foundation grants CMMI–0927367, CMMI–1029846, and CMMI–1030540,
and the ISEN Institute at Northwestern University.

†Industrial Engineering and Management Sciences, Northwestern University, Technological Institute, 2145 Sheridan
Road, Evanston, IL 60208-3118, (daniel.p.robinson@gmail.com).

‡117 Transportation Building MC-238, 104 S. Mathews Avenue, Urbana IL 61801, (fenglm@illinois.edu).
§Industrial Engineering and Management Sciences, Northwestern University, Technological Institute, 2145 Sheridan

Road, Evanston, IL 60208-3118, (nocedal@eecs.northwestern.edu).
¶117 Transportation Building MC-238, 104 S. Mathews Avenue, Urbana IL 61801, (jspang@illinois.edu).

1

convergence. Kočvara and Zowe [9] also use a two-phase approach for solving BQP(q,M), although they
assume that M is positive definite. One of their primary contributions is the use of more sophisticated
iterations to approximate the active set at the solution, which include variants of successive overrelax-
ation and the linear conjugate gradient method. We view our algorithm for solving BQP(q,M) as an
improvement over both of these works. First, in contrast to [9], our algorithm is globally convergent—
under certain assumptions—even when problem BQP(q,M) is nonconvex. Second, our work may be
viewed as a generalization of [12] since a projected gradient iteration is a specific instance—in fact the
most basic—of our general matrix splitting iteration. We will show that this added freedom allows for
the use of more sophisticated matrix splittings and leads to improved optimal active set identification.

It has been demonstrated by Feng et al. [6] and Morales, Nocedal, and Smelyanskiy [11] that some
linear complementarity problems arising in finance and computational mechanics can also be solved
efficiently with two-phase methods. For pricing American options, the complementarity problem is
asymmetric, while frictionless contact problems arising in mechanics give rise to symmetric positive-
semidefinite systems. For both of these applications, the methods proposed in [6] have no convergence
guarantees and thus it is natural to ask whether an efficient two-phase algorithm with convergence guar-
antees can be designed. Our motivation for this work goes, however, beyond the applications in finance
and mechanics mentioned above. Our key contribution in this area is the development of a provably
convergent two-phase general purpose method that is efficient at solving the problems considered in [6]
as well as more general problems.

To validate the effectiveness of our algorithm for solving BQP(q,M), we present results on problems
from the CUTEr [1] test set and on randomly generated strictly convex BQPs. For our LCP algorithm,
we first consider the asymmetric problems arising in the pricing of American options. We show that
our method performs exactly the same as the algorithm from [6] whose performance is excellent. We
then proceed to show that our algorithm is effective on a class of randomly generated asymmetric LCP
problems, and in the process showcase the effectiveness of the subspace phase.

Preliminaries. We use matrix splittings of the form

M = B + C. (1.1)

Given such a splitting, we define the following fixed-point iteration algorithm, which iteratively solves
the following sub-LCP: find x satisfying

LCP(q + Cxk,B) x ≥ 0, Bx+ q + Cxk ≥ 0, and (Bx+ q + Cxk) ◦ x = 0.

(Note that if xk solves LCP(q + Cxk,B) then xk also solves LCP(q,M).)

Algorithm 1.1. Fixed-point iteration.
Input: starting point x0 ∈ Rn and number of iterations m.
for k = 0, 1, . . . ,m− 1

Compute a solution xk+1 to problem LCP(q + Cxk,B).
end

Output: xm

In Algorithm 1.1 we assume that each LCP(q + Cxk,B) has at least one solution, but in general
we do not presume that there is a unique solution. From a practical point of view, we assume that the
splitting is chosen such that problem LCP(q +Cxk,B) is numerically inexpensive to solve. Throughout
the paper, we use the notation

y = FPI(x, p,B,C) (1.2)

2

to mean that y is the output from the Fixed-Point Iteration Algorithm 1.1 with starting point x, number
of iterations p, and matrix splitting M = B +C. If we let L denote the strictly lower-triangular part of
M , U the strictly upper-triangular part of M , and D the diagonal part of M so that M = L +D + U ,
then Table 1.1 contains popular matrix splittings and the resulting method.

Table 1.1

Common matrix splittings and the resulting algorithms. The relaxation parameter satisfies 0 < ω < 2.

Matrix B Matrix C Resulting Method

I M − I Projected gradient

D L+ U Projected Jacobi

D + L U Projected Gauss-Seidel
1

ω
D + L (1− 1

ω
)D + U Projected Successive Overrelaxation

Our method for solving BQP(q,M) relies on minimizing f along so-called projected paths. To make
this precise, we define the following projected search algorithm.

Algorithm 1.2. Projected search.
Input: base point 0 ≤ x ∈ Rn and search direction d.
Compute α∗ as the smallest solution of

minimize
α≥0

f
(
max(x + αd, 0)

)
(maximum is component-wise).

Output: y = max(x + α∗d, 0)

We use the notation

y = PS(x, d)

to mean that y is the output from a Projected Search as described in Algorithm 1.2 for a given base
point x and direction d. Notice that Algorithm 1.2 may produce α∗ = ∞, in which case the output y
satisfies

yi =

0 if i ∈ N (d)

xi if i ∈ Z(d)

∞ if i ∈ P(d)

where

N (d) = {i : di < 0}, Z(d) = {i : di = 0}, and P(d) = {i : di > 0}.

Moreover, this implies that limα→∞ f
(
x(α)

)
= −∞ along the “feasible ray”

xi(α) =

0 if i ∈ N (d)

xi if i ∈ Z(d)

xi + αdi if i ∈ P(d)

(1.3)

for all α ≥ 0.

3

Notation. Given a vector v, a matrix V , and an indexing set S, the notation vS and VS will denote
the rows of v and the rows and columns of V that correspond to the indices in S. We use [v]+ = max(v, 0),
where the maximum is understood to be component-wise, V ≻ 0 to mean that V is a positive-definite
(not necessarily symmetric) matrix, and V � 0 to mean that V is a positive-semidefinite matrix. We
denote the inner-product of two n-dimensional vectors x and y as 〈x, y〉 △

=

∑n

i=1 xiyi. Finally, given
three real numbers r1, r2, and r3, let med(r1, r2, r3) denote the median of the numbers r1, r2, and r3.

2. Bound-constrained quadratic programming. Consider first the bound-constrained problem
BQP(q,M) introduced on page 1. In Section 2.1 we describe and state our algorithm, in Section 2.2
prove that it is globally convergent, and in Section 2.3 provide some numerical results.

2.1. The algorithm. In this section we describe each step of our method, which is given as
Algorithm 2.1 and depicted in Figure 2.1. Let the current iterate be xk ≥ 0. If xk is optimal, we
exit in Step 1; otherwise, we proceed to Step 2 and compute a so-called Cauchy step

xk,c = xk + αk,cdk,c, (2.1)

where

αk,c = argmin
α≥0

f(xk + αdk,c) subject to xk + αdk,c ≥ 0 (2.2)

and

dk,c △
= FPI(xk, 1, B, C)− xk 6= 0. (2.3)

(The fact that dk,c 6= 0 is a consequence of Lemma 2.1 and the fact that we did not terminate in Step 1.)
We note that if αk,c =∞, then we must have that limα→∞ f(xk + αdk,c) = −∞. This follows from the
observations that (i) if αk,c =∞, then dk,c ≥ 0 since otherwise the constraint in (2.2) would be violated
for all α sufficiently large; (ii) Lemma 2.1 ensures that dk,c is a descent direction for f since otherwise xk

would have been a first-order solution to BQP(q,M) and the algorithm would have terminated in Step
1; (iii) f is a quadratic function; and (iv) the solution αk,c is chosen in Algorithm 1.2 to be the smallest
nonnegative solution. Thus,

αk,c =∞ =⇒ lim
α→∞

f(xk + αdk,c) = −∞. (2.4)

The results of Section 2.2 will show that the Cauchy point drives convergence of our method.
We compute xk,f in Step 3 by performing nf additional fixed-point iterations with starting point

xk,c, i.e.,

xk,f = FPI(xk,c, nf , B, C). (2.5)

In Step 4 we estimate the variables that are active at a solution of BQP(q,M) by computing xk,pf as
the first minimizer of f along the projected path starting from xk,c and leading towards xk,f , i.e.,

xk,pf = PS(xk,c, xk,f − xk,c); (2.6)

the estimate of the active set is given by

Ak = {i : xk,pf
i = 0}. (2.7)

Note that if any component of xk,pf is infinite, then the argument leading to (1.3) shows that there
exists a ray emanating from xk,c upon which f is unbounded below.

4

In Step 5, we compute xk,s by approximately solving

minimize
x∈Rn

f(x) = 1

2
〈x,Mx〉+ 〈x, q〉 subject to xAk = 0, ‖x− xk,pf‖2 ≤ ∆k, (2.8)

where ∆k > 0 is a trust-region radius used to ensure that problem (2.8) is well defined, and xAk are the
components of x that correspond to the indexing set Ak. We accept xk,s as an approximate solution
to (2.8) provided it satisfies

f
(
xk,s

)
≤ f

(
xk,pf

)
, xAk = 0, and ‖xk,s − xk,pf‖2 ≤ ∆k. (2.9)

In Step 6 we compute xk+1 by performing a projected search starting from the point xk,pf and heading
towards xk,s, i.e.,

xk+1 = PS(xk,pf , xk,s − xk,pf). (2.10)

Similar to Step 4, if any component of xk+1 is infinite, then the argument leading to (1.3) shows that
there exists a ray emanating from xk,pf upon which f is unbounded below.

Finally, we update the trust-region radius in Step 7 based on the distance from xk,pf to xk+1. To
be precise, we define

∆k+1 = med
(
ηc∆

k, ηe‖x
k+1 − xk,pf‖2, ∆max

)
, (2.11)

which ensures that the new trust-region radius is bounded above by ∆max and adjusted according to
our expected progress in the subspace phase as indicated by the size of ‖xk+1 − xk,pf‖2. Note that if
xk+1 = xk,pf , then we decrease the trust-region radius by some contraction factor ηc with the hope that
the subspace step makes progress during the next iteration.

Algorithm 2.1. Algorithm for solving BQP(q,M).

Input: x0 ≥ 0, nmax ≥ 0, 0 < ηc < 1 < ηe, 0 < ∆max, and M = B + C with B ≻ 0.

for k = 0, 1, . . . , nmax

1. Check for optimality: If xk is a first-order solution to BQP(q,M), i.e., xk solves LCP(q,M),
then exit with first-order solution xk.

2. Cauchy step: Compute FPI(xk, 1, B, C), define dk,c by (2.3), and solve (2.2) for αk,c. If
αk,c =∞ then exit; otherwise, define xk,c from (2.1).

3. Additional fixed-point iterations: Choose nf ≥ 0 and then compute xk,f by (2.5).
4. Projected search on fixed-point iteration direction: Compute xk,pf by (2.6). Exit if any

component of xk,pf is infinite.
5. Subspace phase: Define Ak from (2.7), and compute xk,s by solving (2.8) approximately as

specified by (2.9).
6. Projected search on subspace direction: Compute xk+1 from (2.10). Exit if any component

of xk+1 is infinite.
7. Update trust-region radius: Define the new trust-region radius ∆k+1 by (2.11).

end

The reduced-space phase given by Steps 5 and 6 may be performed recursively. In this case, the
active set Ak should be redefined each time and be based on the vector resulting from the projected
search given by Step 6. For further details, see [6].

5

Fig. 2.1. Steps computed in Algorithm 2.1

2.2. Global convergence. We now proceed to prove that Algorithm 2.1 is convergent under
certain assumptions on the splitting M = B + C. The careful reader may observe that intermediary
results rely on solving LCP subproblems, which merely reinforces the close ties that exist between
problems BQP(q,M) and LCP(q,M). We begin by stating [4, Lemma 5.5.1], which establishes a descent
property for matrix splitting iterations.

Lemma 2.1. If M = B + C is splitting of the symmetric matrix M ∈ Rn×n such that B � 0, then

〈dk,c,Mxk + q〉 ≤ −〈dk,c, Bdk,c〉 ≤ 0, (2.12)

where dk,c is defined by (2.3). Moreover, if B is either symmetric or positive definite, and 〈dk,c,Mxk +
q〉 = 0, then xk solves LCP(q,M).

The next lemma gives a bound on the decrease in f achieved by the Cauchy point xk,c.
Lemma 2.2. If M = B +C is a splitting of the symmetric matrix M ∈ Rn×n such that B ≻ 0, and

xk is not a solution to LCP(q,M), then

f(xk)− f(xk,c) ≥ 1

2
|〈dk,c,Mxk + q〉|min

(
1,
|〈dk,c,Mxk + q〉|

|〈dk,c,Mdk,c〉|

)
. (2.13)

Proof. Since B ≻ 0 and xk is not a solution to LCP(q,M) by assumption, we conclude from
Lemma 2.1 that

〈dk,c,∇f(xk〉) = 〈dk,c,Mxk + q〉 < 0 (2.14)

so that dk,c is a descent direction for f at xk. Moreover, the definition of f yields

f(xk)− f(xk + αdk,c) = −α〈dk,c,Mxk + q〉 −
α2

2
〈dk,c,Mdk,c〉 (2.15)

for all α. We now consider different cases.
Case 1: 〈dk,c,Mdk,c〉 ≤ 0

6

It follows from 〈dk,c,Mdk,c〉 ≤ 0, (2.15), (2.14), and xk + dk,c = FPI(xk, 1, B, C) ≥ 0 that αk,c ≥ 1 and

f(xk)− f(xk,c) = f(xk)− f(xk + αk,cdk,c)

≥ αk,c|〈dk,c,Mxk + q〉| ≥ 1

2
|〈dk,c,Mxk + q〉|. (2.16)

Case 2: 〈dk,c,Mdk,c〉 > 0
We define

αu = argmin
α≥0

f(xk + αdk,c) = −
〈dk,c,Mxk + q〉

〈dk,c,Mdk,c〉
> 0

and consider two subcases.
Subcase 1 : xk + αud

k,c ≥ 0
In this case it must follow that αk,c ≡ αu and

f(xk)− f(xk,c) = f(xk)− f(xk + αk,cdk,c)

= −αu〈d
k,c,Mxk + q〉 −

α2
u

2
〈dk,c,Mdk,c〉

=
αu

2
|〈dk,c,Mxk + q〉|, (2.17)

where we have used (2.15), the definition of αu, and algebraic simplification.
Subcase 2 : xk + αud

k,c � 0
We conclude that

1 ≤ αk,c < αu = −
〈dk,c,Mxk + q〉

〈dk,c,Mdk,c〉
, (2.18)

which follows from the inequality 〈dk,c,Mdk,c〉 > 0, the fact that xk +αud
k,c is assumed to have at least

one negative component, the observation that xk + dk,c ≥ 0, and the definition of αu. It follows that

f(xk)− f(xk,c) = f(xk)− f(xk + αk,cdk,c)

= −αk,c〈dk,c,Mxk + q〉 −
(αk,c)2

2
〈dk,c,Mdk,c〉

≥
αk,c

2
|〈dk,c,Mxk + q〉| ≥

1

2
|〈dk,c,Mxk + q〉|, (2.19)

where we have used (2.18) and algebraic simplification.
The desired result (2.13) now follows from (2.16), (2.17), and (2.19).
We now give a bound on the guaranteed decrease in f given by the full step.
Corollary 2.3. If M = B +C is a splitting of the symmetric matrix M ∈ Rn×n such that B ≻ 0,

and xk is not a solution to LCP(q,M), then

f(xk)− f(xk+1) ≥ 1

2
|〈dk,c,Mxk + q〉|min

(
1,
|〈dk,c,Mxk + q〉|

|〈dk,c,Mdk,c〉|

)
. (2.20)

Proof. Observe that

f(xk) > f(xk,c) ≥ f(xk,pf) ≥ f(xk+1),

7

where we have used the assumption that xk is not a solution to LCP(q,M), Lemma 2.1, Lemma 2.2, and
the formulation of Steps 1, 3, and 5 of Algorithm 2.1 in succession. The desired result now follows from
Lemma 2.2.

The main convergence result for problem BQP(q,M) now follows.
Theorem 2.4. Let M = B +C be a splitting of the symmetric matrix M ∈ Rn×n such that B ≻ 0,

and assume that n
max

= ∞ in Algorithm 2.1. Then either (i) the algorithm terminates finitely with a
solution in Step 1; (ii) the algorithm terminates because an unbounded ray is discovered in either Step
2, 4, or 6; or (iii) an infinite sequence of iterates is computed such that every limit point of the iterates
generated by Algorithm 2.1 is a solution to LCP(q,M), i.e., is a first-order solution to BQP(q,M).

Proof. We assume that xk is not a first-order solution to problem BQP(q,M) for all k ≥ 0, since
otherwise the algorithm would terminate finitely in Step 1, which corresponds to possibility (i) in the
statement of the theorem. Moreover, we assume that Algorithm 2.1 does not terminate finitely by
discovering a feasible ray upon which f is unbounded, which would correspond to possibility (ii) in the
statement of the theorem. It follows that xk is not a first-order solution for all k, an infinite number of
iterates are computed, and each step of the algorithm is well defined. Let

x̄ = lim
k∈S1

xk (2.21)

be a limit point of the iterates generated by Algorithm 2.1 for some subsequence S1. We observe that f
is monotonically decreasing over the sequence {xk} as a result of Corollary 2.3, and we claim that

lim
k→∞

f(xk) = f(x̄). (2.22)

To see this, we first suppose that f(xk) is unbounded below. It follows that there exists an integer k1
such that f(xk) ≤ f(x̄) − 1 for all k ≥ k1 since {f(xk)} is monotonically decreasing. This is clearly
a contradiction since continuity of f and (2.21) imply that limk∈S1

f(xk) = f(x̄). Thus, {f(xk)} is
bounded below, must converge, and clearly its limit is f(x̄), which proves (2.22).

Next, we may use (2.22) to deduce from (2.20) that

lim
k→∞

{
|〈dk,c,Mxk + q〉|min

(
1,
|〈dk,c,Mxk + q〉|

|〈dk,c,Mdk,c〉|

)}
= 0 (2.23)

and proceed by considering two cases.
Case 1: {|〈dk,c,Mxk + q〉|/|〈dk,c,Mdk,c〉|}k∈S1

≥ ε > 0.
Under the assumptions of this case, (2.23) implies that limk∈S1

|〈dk,c,Mxk + q〉| = 0, and hence we
deduce from Lemma 2.1 and the fact that B ≻ 0, that limk∈S1

dk,c = 0. We may then use the definition
of dk,c, the triangle inequality, and (2.21) to show

0 = lim
k∈S1

dk,c = lim
k∈S1

(
FPI(xk, 1, B, C)− xk

)

= lim
k∈S1

(
FPI(xk, 1, B, C)− x̄+ x̄− xk

)
= lim

k∈S1

FPI(xk, 1, B, C)− x̄. (2.24)

Now recall that the vector yk △
= FPI(xk, 1, B, C) satisfies

yk ≥ 0, Byk + Cxk + q ≥ 0, and yk ◦ (Byk + Cxk + q) = 0

by construction. Taking limits, using (2.21), recalling that M = B+C, and using limk∈S1
yk = x̄, which

follows from (2.24), we have

x̄ ≥ 0, Mx̄+ q ≥ 0, and x̄ ◦ (Mx̄+ q) = 0

8

so that x̄ is a first-order solution to BQP(q,M).
Case 2: there exists S2 ⊆ S1 such that limk∈S2

|〈dk,c,Mxk + q〉|/|〈dk,c,Mdk,c〉| = 0.
We first claim that {dk,c}k∈S2

is bounded. To prove this, we suppose it is not true and define

bk =
dk,c

‖dk,c‖2

for some subsequence S3 ⊆ S2 such that

b̄ = lim
k∈S3

bk, ‖b̄‖2 = 1, and lim
k∈S3

‖dk,c‖2 =∞. (2.25)

Using the definition of bk and Lemma 2.1, we conclude that

〈bk,Mxk + q〉

‖dk,c‖2
=
〈dk,c,Mxk + q〉

‖dk,c‖22
≤
−〈dk,c, Bdk,c〉

‖dk,c‖22
= −〈bk, Bbk〉. (2.26)

We reach a contradiction by taking limits of (2.26) for k ∈ S3, since (2.25), (2.21), and the fact that B
is a positive-definite matrix implies that the left-hand-side converges to zero and the right-hand-side is
strictly negative. Thus, we conclude that {dk,c}k∈S2

must be bounded.
Next, the assumption of this case ensures that

lim
k∈S2

〈dk,c,Mxk + q〉 = 0,

while the boundedness of {dk,c}k∈S2
ensures the existence of S4 ⊆ S2 such that limk∈S4

dk,c = d̄.
Combining these two facts with (2.21) yields

lim
k∈S4

〈d̄,Mx̄+ q〉 = 0. (2.27)

Taking limits of (2.12) for k ∈ S4, and using (2.27) and the fact that B ≻ 0, we again conclude that
limk∈S4

dk,c = 0. The argument in Case 1 may now be repeated to show that x̄ is a first-order solution
to BQP(q,M), which completes the proof.

A couple of comments are in order.
• The theory just described carries over to the case that iteration dependent splittings M =
Bk + Ck are used provided the matrices {Bk}k≥0 are uniformly positive definite.
• Limit points of the sequence {xk}k≥0 are guaranteed under the assumption that the level curves
of f are bounded on the orthant x ≥ 0.

2.3. Numerical tests. In this section we validate the effectiveness of our Matlab [10] imple-
mentation of Algorithm 2.1 by solving strictly convex problems in Section 2.3.1, convex problems in
Section 2.3.2, and nonconvex problems in Section 2.3.3. For comparison, we have also written our own
Matlab implementation of a two-phase projected gradient based method. The step length along the
gradient direction at each step is chosen by the Borzalai-Borwein formula [5, 7] and the subspace step is
computed as described below.

For simplicity and computational efficiency, we simplified the subspace step computation required
by Step 5 of Algorithm 2.1; we set xk,s

Ak = 0 and solve for the remaining components by using the
“backslash” operator in Matlab to solve the system

MIx
k,s
I = −cI , (2.28)

where I is the complement of the set Ak defined by (2.7). Note that if the matrix MI is singular,
Matlab may compute a least-length least-squares solution, and thus this scheme is always well defined.

9

Moreover, we no longer require a trust-region radius as given by (2.8) or parameters ηc and ηe, since we
are implicitly assuming that ∆k =∞. (This does not alter the convergence theory in any way since the
trust-region radius is merely a means for ensuring that the subspace problem (2.8) is well defined.)

To allow for a fair comparison between the two algorithms we (i) allow a maximum of three recursive
subspace steps to be computed per iteration for both algorithms as described just after the statement
of Algorithm 2.1; (ii) choose nf = 0 in Algorithm 2.1; and (iii) terminate execution in both algorithms
when either a maximum iteration of nmax = 500 was reached or when

‖min(xk,Mxk + q)‖∞ ≤ 1.0e−6, (2.29)

which indicates that an approximation first-order solution to BQP(q,M) has been found.

2.3.1. Strictly convex problems. We first solved the strictly convex BQPs from the CUTEr test
set; the results are recorded in Table 2.1. We note that since M is positive definite for this class of
problems, we use projected successive overrelaxation as indicated in Table 1.1 for the matrix splitting of
M . The columns have the following meaning: “Prob” represents the name of the problem solved, “n”
the number of optimization variables, “stat” the outcome flag with zero always representing a successful
solve, “res” the final residual as measured by the left side of (2.29), “iter” the number of iterations
performed, “nss” the number of subspace steps computed, and “nsplit” the number of matrix splitting
iterations performed. The initial point for all problems is the default value supplied by CUTEr.

From Table 2.1 we can see that both algorithms perform quite well on this class of problems. How-
ever, one may also observe that Algorithm 2.1 has a tendency to require fewer iterations and subspace
steps. This is evidence that the more sophisticated projected successive overrelaxation fixed-point it-
eration is generally superior to a projected gradient iteration in terms of identifying an optimal active
set—at least for strictly convex BQPs.

Table 2.1

Output from the projected gradient algorithm and Algorithm 2.1 on the strictly convex BQPs from the CUTEr test set.

Projected Gradient Algorithm 2.1

Prob n stat res iter nss stat res iter nss nsplit

BIGGSB1 5000 1 3.61e−03 500 500 0 2.22e−16 215 216 215

BQP1VAR 1 0 0.00e+00 1 1 0 0.00e+00 1 1 1

BQPGABIM 50 0 2.08e−17 2 3 0 2.08e−17 1 1 1

BQPGASIM 50 0 2.02e−17 2 3 0 2.02e−17 1 1 1

OSLBQP 8 0 0.00e+00 1 1 0 0.00e+00 1 1 1

PENTDI 5000 0 0.00e+00 1 1 0 0.00e+00 1 1 1

SIM2BQP 2 0 0.00e+00 1 1 0 0.00e+00 1 1 1

SIMBQP 2 0 0.00e+00 1 2 0 0.00e+00 1 2 1

Next, we tested Algorithm 2.1 on a set of randomly generated strictly convex BQPs; the results are
documented in Table 2.2. The random problems were formed by first computing M and q by sampling
from the standard normal distribution. We then set M ← τsM

TM + ε and q ← τsq, where the scale
factor τs = 100 and constant ε = 1.0e−5 were used. In all cases an initial point of zero was used.

Table 2.2 tells a similar story; namely, both algorithms perform quite well, but the more sophisticated
projected successive overrelaxation fixed-point iteration generally leads to fewer iterations and subspace
steps as a result of its superior active set identification.

2.3.2. Convex problems. Next we solved the convex BQPs—eliminating the strictly convex
problems—from the CUTEr test set; the results are recorded in Table 2.3. We again used the matrix
splitting corresponding to successive overrelaxation and an initial point supplied by CUTEr.

10

Table 2.2

Output from the projected gradient algorithm and Algorithm 2.1 on ten randomly generated strictly convex BQPs.

Projected Gradient Algorithm 2.1

n stat res iter nss stat res iter nss nsplit

4000 0 1.46e−08 14 38 0 1.46e−08 4 10 4

4000 0 1.64e−08 7 17 0 1.64e−08 4 10 4

4000 0 1.32e−08 6 15 0 1.32e−08 4 9 4

4000 0 1.44e−08 7 15 0 1.44e−08 4 10 4

4000 0 1.51e−08 7 17 0 1.51e−08 4 10 4

4000 0 1.42e−08 7 17 0 1.42e−08 4 10 4

4000 0 1.47e−08 7 17 0 1.47e−08 5 11 5

4000 0 1.66e−08 6 16 0 1.66e−08 3 8 3

4000 0 1.22e−08 31 85 0 1.22e−08 4 10 4

4000 0 1.39e−08 16 44 0 1.39e−08 4 9 4

Table 2.3 indicates that the trend continues; namely, both algorithms perform quite well, but the
more sophisticated projected successive overrelaxation fixed-point iteration generally leads to fewer it-
erations and subspace iterations as a result of its superior active set identification.

2.3.3. Nonconvex problems. Finally, we solved the nonconvex BQPs from the CUTEr test set
and give the results in Table 2.4. We note that since M is now indefinite, we use the splitting B = I
and C = M − I as indicated in Table 1.1. It would likely be advantageous to use a more sophisticated
matrix splitting, but we leave this study to future research. The initial point for all problems is the
default value supplied by CUTEr.

Table 2.4 indicates that Algorithm 2.1 is capable of handling nonconvex problems; this is an attribute
not likely shared by the algorithm presented in [9].

3. Linear complementarity problems. We now consider an algorithm for solving problem
LCP(q,M) on page 1 for a given square (not neccessarily symmetric) matrix M ∈ Rn×n and vector
q ∈ Rn. Important to our discussion is the merit function

φ(x) = ‖min(x,Mx+ q)‖2. (3.1)

Note that φ(x) = 0 if and only if x is a solution to LCP(q,M). One motivation for using (3.1) is that
the linear structure of problem LCP(q,M) is maintained, which is in contrast to most commonly used
nonlinear complementarity functions [3, 15, 2, 13].

Throughout this section we make the following assumption on the matrix splitting.
Assumption 3.1. The matrix splitting M = B + C is chosen such that the fixed-point iterations

are contractions, i.e., there exists a constant ρf ∈ (0, 1) such that for any x

‖FPI(x, 2, B, C)− FPI(x, 1, B, C)‖2 ≤ ρf‖FPI(x, 1, B, C)− x‖2. (3.2)

Note that Assumption 3.1 is satisfied, for example, when the matrix M is strictly diagonally dominant
or symmetric and positive definite. See [4] for more contraction results related to matrix splittings. The
algorithm proposed in Section 3.1 depends crucially on the availability of a matrix splitting for which
condition (3.2) is satisfied.

3.1. The algorithm. In this section we describe each step of our method, which is given as
Algorithm 3.1 and depicted in Figure 3.1. Let the current iterate be xk ≥ 0. In Step 1, we choose

11

Table 2.3

Output from the projected gradient algorithm and Algorithm 2.1 on the convex BQPs from the CUTEr test set.

Projected Gradient Algorithm 2.1

Prob n stat res iter nss stat res iter nss nsplit

CHENHARK 5000 1 2.40e−05 500 501 1 2.38e−05 500 501 500

CVXBQP1 10000 0 9.44e−16 2 7 0 0.00e+00 1 1 1

HS3 2 0 0.00e+00 2 3 0 0.00e+00 1 1 1

HS3MOD 2 0 0.00e+00 5 9 0 0.00e+00 2 3 2

JNLBRNG1 10000 0 4.74e−16 19 19 0 4.74e−16 7 7 7

JNLBRNG2 10000 0 2.24e−15 11 11 0 2.23e−15 5 5 5

JNLBRNGA 10000 0 4.43e−16 18 18 0 4.43e−16 8 8 8

JNLBRNGB 10000 0 3.57e−15 7 7 0 3.56e−15 4 4 4

NOBNDTOR 5476 0 1.07e−15 23 23 0 1.07e−15 17 17 17

OBSTCLAE 10000 0 1.60e−15 21 22 0 1.60e−15 21 22 21

OBSTCLAL 10000 0 1.60e−15 20 20 0 1.60e−15 20 20 20

OBSTCLBL 10000 0 1.27e−15 15 29 0 1.26e−15 14 28 14

OBSTCLBM 10000 0 1.27e−15 9 15 0 1.26e−15 12 20 12

OBSTCLBU 10000 0 1.27e−15 16 19 0 1.26e−15 15 19 15

TORSION1 5476 0 1.40e−15 23 23 0 1.40e−15 19 19 19

TORSION2 5476 0 1.40e−15 12 13 0 1.40e−15 16 17 16

TORSION3 5476 0 9.35e−16 11 11 0 9.35e−16 9 9 9

TORSION4 5476 0 9.35e−16 12 13 0 9.35e−16 10 11 10

TORSION5 5476 0 7.40e−16 6 6 0 7.39e−16 6 6 6

TORSION6 5476 0 7.40e−16 7 8 0 7.39e−16 7 8 7

TORSIONA 5476 0 9.84e−16 23 23 0 9.83e−16 18 18 18

TORSIONB 5476 0 9.84e−16 12 13 0 9.83e−16 13 14 13

TORSIONC 5476 0 1.23e−15 11 11 0 1.22e−15 9 9 9

TORSIOND 5476 0 1.23e−15 12 13 0 1.22e−15 10 11 10

TORSIONE 5476 0 6.29e−16 6 6 0 6.28e−16 6 6 6

TORSIONF 5476 0 6.29e−16 7 8 0 6.28e−16 7 8 7

Table 2.4

Output from Algorithm 2.1 on the nonconvex BQPs from the CUTEr test set.

Algorithm 2.1

Prob n stat res iter nss nsplit

NCVXBQP1 10000 0 0.00e+00 1 1 1

NCVXBQP2 10000 0 2.77e−17 19 40 19

NCVXBQP3 10000 0 1.45e−11 15 34 15

QUDLIN 5000 0 0.00e+00 1 1 1

an integer nf ≥ 2 and compute nf + 1 fixed-point iterations {xk,f,j}
nf+1

j=0 starting from xk, i.e.,

xk,f,0 = xk and xk,f,j+1 = FPI(xk,f,j , 1, B, C) for 0 ≤ j ≤ nf . (3.3)

We note that the choice nf ≥ 2 allows us to use a contraction argument to guarantee convergence of the
method under certain assumptions. We denote the actual contraction resulting from the ith fixed-point

12

iteration as

ck,f,i △
=
‖xk,f,i − xk,f,i−1‖2
‖xk,f,i−1 − xk,f,i−2‖2

≤ ρf for all k ≥ 0 and 2 ≤ i ≤ nf + 1, (3.4)

where the inequality follows from Assumption 3.1.
In Step 2 we predict the variables that are zero at a solution to LCP(q,M) by using the inactive and

active index sets

I = {i : xk,f,nf > 0} and A = {i : xk,f,nf = 0}, (3.5)

and then compute a subspace step xk,s such that

xk,s
A = 0 and xk,s

I = max(xI , 0), (3.6)

where xI is an approximate solution of

minimize
xI∈Rn

1

2
‖MIIxI − qI‖2 subject to ‖xI − x

k,f,nf

I ‖2 ≤ ∆k (3.7)

for a given trust-region radius ∆k > 0. Generally, we expect the subspace step to improve the global and
local converge of the iterates. To prove global convergence, however, we may accept any xI satisfying

‖xI − x
k,f,nf

I ‖2 ≤ ∆k (3.8)

as an approximate solution. Once the subspace step has been computed, we enter Step 3 and compute
ns ≥ 2 (again, to allow for a contraction argument) additional fixed-point iterations {xk,s,j}ns

j=0 starting

from xk,s, i.e.,

xk,s,0 = xk,s and xk,s,j+1 = FPI(xk,s,j , 1, B, C) for 0 ≤ j ≤ ns − 1. (3.9)

Although the iterates {xk,s,j}ns

j=0 are the result of fixed-point iterations, we employ the superscript “s”
to stress that these steps are still part of the subspace phase. Thus the subspace phase consists of the
subspace step followed by ns fixed-point iterations. Similar to before, we define the actual contraction
resulting from the ith fixed-point iteration during the subspace phase as

ck,s,i △
=
‖xk,s,i − xk,s,i−1‖2
‖xk,s,i−1 − xk,s,i−2‖2

≤ ρf for all k ≥ 0 and 2 ≤ i ≤ ns, (3.10)

where the inequality follows from Assumption 3.1.
Finally, Step 4 is dedicated to determining step acceptance. We begin by choosing

ρk = max
(
ρu, (1 + ck

max
)/2
)

for some constant 1/2 < ρu < 1, (3.11)

where

ck
max

△
= max

(
max

2≤i≤nf+1
{ck,f,i}, max

2≤i≤ns

{ck,s,i}

)
≤ ρf (3.12)

Thus ρk < 1 since ρf < 1, and ρk is a measure of the minimum contraction factor obtained during the
previous fixed-point iterations. Next, we check if the following two contractions hold:

‖xk,s,1 − xk,f,nf ‖2 ≤ ρk‖xk,f,nf − xk,f,nf−1‖2 and (3.13)

‖xk,s,2 − xk,s,1‖2 ≤ ρk‖xk,s,1 − xk,f,nf ‖2. (3.14)

13

These conditions measure the effect—in terms of contraction—of the subspace step during the subspace
phase. If both of these conditions are satisfied then we accept xk+1 = xk,s,ns , possibly increase ∆k, and
proceed to the next iteration. If either (3.13) or (3.14) fails, then we check whether

φ(xk,s,ns) ≤ 1

2
φk

max
(3.15)

is satisfied, where φk
max

plays the role of a forcing sequence. The motivation for this condition is to
accept “large” subspace steps that make substantial progress towards a solution of LCP(q,M) that would
otherwise be rejected by conditions (3.13) and (3.14). If (3.15) is satisfied, we define xk+1 = xk,s,ns ,
decrease the value of φk

max
by setting φk+1

max
= 1

2
φk

max
, possibly increase the trust-region radius, and proceed

to the next iteration. If (3.13) or (3.14) fails, and (3.15) does not hold, then we have no recourse but
to decrease the trust-region radius ∆k in (3.7) and compute a new—and smaller—subspace step. Based
on this description, it will be convenient to define

C = {k : (3.13) and (3.14) are satisfied at the kth iteration}, (3.16)

M = {k : k /∈ C and (3.15) is satisfied at the kth iteration}, and (3.17)

F = {k : k /∈ (C ∪M)}. (3.18)

We call iterates k ∈ C contraction iterates or C-iterates, iterates k ∈ M merit function iterates or
M-iterates, and iterates k ∈ F failed iterates or F -iterates.

Algorithm 3.1. Algorithm for solving LCP(q,M).
Input: x0 ≥ 0, nmax ≥ 0, 0 < ηc < 1 < ηe, 0 < ∆R < ∆max, and 0 < ρu < 1.
Choose splitting M = B + C with B ≻ 0, and set φ0

max
= max

(
φ(x0), 1.0e5

)
.

for k = 0, 1, . . . , nmax

1. Fixed-point iterations: Choose nf ≥ 2 and compute {xk,f,j}
nf+1

j=0 from (3.3).

2. Subspace step: Define A and I by (3.5), and compute xk,s to satisfy (3.6) where xI is any
approximate solution to (3.7) satisfying condition (3.8).

3. Additional fixed-point iterations: Choose ns ≥ 2 and compute {xk,s,j}ns

j=0 from (3.9).

4. Step acceptance: Define ρk by (3.11) and
if (3.13) and (3.14) are satisfied then [C-iterate]

set xk+1 = xk,s,ns , φk+1
max

= φk
max

, and ∆k+1 = med(∆R, ηe∆
k,∆max);

else if (3.15) is satisfied then [M-iterate]
set xk+1 = xk,s,ns , φk+1

max
= 1

2
φk

max
, and ∆k+1 = med(∆R, ηe∆

k,∆max);

else [F -iterate]
set xk+1 = xk, φk+1

max
= φk

max
, and ∆k = ηc∆

k.
end if

5. Check for optimality: If φ(xk+1) = 0, exit with solution xk+1.
end

The reduced-space phase given by Step 2 may be performed recursively as discussed in [6]. In this
case, the active/inactive sets A/I defined by (3.5) should be redefined each time and be based on the
vector xk,s resulting from Step 2. Also note that the trust-region problem (3.7) may be solved inexactly
since the only requirement of the approximate solution is that it satisfies (3.8).

3.2. Global convergence. We begin our convergence analysis of Algorithm 3.1 by proving esti-
mates for the contraction measure ρk.

Lemma 3.1. Let ρk be defined by (3.11) and define

ρ = max
(
ρu, (1 + ρf)/2

)
, (3.19)

14

Fig. 3.1. Steps computed in Algorithm 3.1

where ρf is defined in Assumption 3.1. The following then hold for all k ≥ 0:
(a) 1 > ρ ≥ ρk ≥ ρu > 1/2 for all k ≥ 0;
(b) ρk − ck

max
≥ 1

2
(1 − ρf) for all k ≥ 0; and

(c) 1/ck
max
− 1/ρk ≥ (1 − ρf)/(2ρρf).

Proof. It follows from the choice of ρu, the max function, (3.11), (3.12), and (3.19) that

1/2 < ρu ≤ max
(
ρu, (1 + ck

max
)/2
)
= ρk ≤ max

(
ρu, (1 + ρf)/2

)
= ρ < 1

for all k ≥ 0. This proves part (a).
We now prove part (b). First, observe that the definition of ρk guarantees that ρk ≥

(
1 + ck

max

)
/2

for all k ≥ 0. Next subtract ck
max

from both sides of this inequality, and then use (3.12) to deduce

ρk − ck
max
≥
(
1 + ck

max

)
/2− ck

max
≥ 1

2
(1 − ck

max
) ≥ 1

2
(1− ρf),

which proves part (b).
To prove part (c), we use parts (b) and (a), (3.12), (3.4), and (3.10) to obtain

1

ck
max

−
1

ρk
=

ρk − ck
max

ρkck
max

≥
1− ρf
2ρkck

max

≥
1− ρf
2ρρf

,

which is the desired result.
Our next aim is to show that if nmax = ∞ in Algorithm 3.1, then the algorithm either terminates

finitely with a solution, or generates infinitely many iterates belonging to the set C ∪M of successful
iterations. The following result proves that conditions (3.13) and (3.14) will both be satisfied when the
trust-region radius ∆k in problem (3.7) is sufficiently small.

Lemma 3.2. Let M = B + C be a splitting of the matrix M ∈ Rn×n such that B ≻ 0. It follows
that there exists a constant κ > 0 such that if the trust-region radius in problem (3.7) satisfies

∆k ≤
(1− ρf)

2
min

(
1

ρρf
‖xk,s,2 − xk,s,1‖2,

1

κ‖C‖2
‖xk,f,nf − xk,f,nf−1‖2

)
, (3.20)

15

then conditions (3.13) and (3.14) are satisfied, where ρ is defined in (3.19).
Proof. To simplify notation, we define

p1 = xk,s,1 − xk,s, p2 = xk,s,2 − xk,s,1, (3.21)

p̂1 = xk,f,nf − xk,f,nf−1, p̂2 = xk,f,nf+1 − xk,f,nf , (3.22)

ps = xk,s − xk,f,nf , pd = xk,s,1 − xk,f,nf+1. (3.23)

(See Figure 3.2 for a cartoon depicting these steps, and recall that xk,s ≡ xk,s,0.) It then follows
from (3.10) and (3.12) that

‖p2‖2 = ck,s,2‖p1‖2 ≤ ck
max
‖p1‖2. (3.24)

Also, it follows from (3.5), (3.6), and the trust-region constraint in (3.7) that

‖ps‖2 = ‖x
k,s − xk,f,nf ‖2 = ‖xk,s

I − x
k,f,nf

I ‖2

= ‖max(xI , 0)− x
k,f,nf

I ‖2 ≤ ‖xI − x
k,f,nf

I ‖2 ≤ ∆k, (3.25)

where xI is the solution to (3.7). We may further bound ‖ps‖2 by using (3.25), (3.20), and part (c) of
Lemma 3.1 to get

‖ps‖2 ≤ ∆k ≤
(1− ρf)

2ρρf
‖p2‖2 ≤

(
1

ck
max

−
1

ρk

)
‖p2‖2. (3.26)

Multiplying (3.26) by ρk and then using (3.24) and the reverse triangle-inequality yields

‖p2‖2 ≤
ρk

ck
max

‖p2‖2 − ρk‖ps‖2 ≤ ρk‖p1‖2 − ρk‖ps‖2 ≤ ρk‖p1 + ps‖2.

This is precisely condition (3.14) since ps + p1 = xk,s,1 − xk,f,nf .
We now proceed to show that condition (3.13) is satisfied. First, it follows from (3.4) and (3.12)

that

‖p̂2‖2 = ck,f,nf+1‖p̂1‖2 ≤ ck
max
‖p̂1‖2. (3.27)

Second, if we define

q(x) = q + Cx, (3.28)

then by construction we have that xk,f,nf+1 is the unique solution to LCP(q(xk,f,nf),B) and xk,s,1 is the
unique solution to LCP(q(xk,s),B). It then follows from the definition of pd, [4, Theorem 7.2.1], (3.28),
basic norm inequalities, and the definition of ps, that there exists a number κ > 0 such that

‖pd‖2 = ‖xk,s,1 − xk,f,nf+1‖2 ≤ κ‖q(xk,f,nf)− q(xk,s)‖2 = κ‖C‖2‖ps‖2. (3.29)

Next, using (3.25), (3.20), and part (b) of Lemma 3.1, we deduce that

‖ps‖2 ≤ ∆k ≤
(1− ρf)

2κ‖C‖2
‖p̂1‖2 ≤

(ρk − ck
max

)

κ‖C‖2
‖p̂1‖2. (3.30)

If we multiply both sides of this inequality by κ‖C‖2 and use (3.29) and (3.27), we find that

ρk‖p̂1‖2 ≥ κ‖C‖2‖ps‖2 + ck
max
‖p̂1‖2 ≥ ‖pd‖2 + ‖p̂2‖2 ≥ ‖p̂2 + pd‖2.

16

Fig. 3.2. Depiction of the steps p1, p2, p̂1, p̂2, ps and pd used in the proof of Lemma 3.2 and Theorem 3.4.

Thus, condition (3.13) is satisfied since p̂2 + pd ≡ xk,s,1 − xk,f,nf , which completes the proof.
We must interpret (3.20) correctly. In particular, note that the right-hand-side depends on ∆k since

xk,s,1 and xk,s,2 both depend on xk,s,0 = xk,s, which in turn depends on ∆k. Consequently, this lemma
does not allow us to immediately deduce that both (3.13) and (3.14) will be satisfied for ∆k sufficiently
small since as we decrease ∆k the right-hand side of (3.20) also changes.

We now use the previous lemma to prove that Algorithm 3.1 generates infinitely many iterates in
the set C ∪M.

Lemma 3.3. Let M = B +C be a splitting of the matrix M ∈ Rn×n such that B ≻ 0. Assume that
Algorithm 3.1 does not terminate finitely, n

max
=∞, and {xk}k≥0 is the sequence of iterates. It follows

that |C ∪M| =∞.

Proof. For a proof by contradiction, assume that there exists an integer k̂ such that k ∈ F for all
k ≥ k̂. It then follows from construction of the algorithm that

lim
k→∞

∆k = 0, (3.31)

and that

xk = x̂, φk
max

= φ̂max, and xk,f,i = xk̂,f,i for all k ≥ k̂ and i = 0 : nf + 1. (3.32)

We also note that no element of {xk̂,f,i}
nf

i=0 is a solution of LCP(q,M) for the following reason. If any

element was a solution, then it would follow that ‖ps(k̂)‖2 = ‖p1(k̂)‖2 = ‖p2(k̂)‖2 = 0, where we have
made the dependence of ps, p1, and p2 on the iteration number explicit (see Figure 3.2), which in turn
implies that conditions (3.13) and (3.14) are satisfied. This is a contradiction since this implies that

k̂ ∈ C. In particular, we know that xk̂,f,nf−1 and xk̂,f,nf are both not solutions and thus

‖p̂1(k)‖2 = ‖p̂1(k̂)‖2 6= 0 and ‖p̂2(k)‖2 = ‖p̂2(k̂)‖2 6= 0 (see Figure 3.2) (3.33)

for all k ≥ k̂. Moreover, Lemma 3.2, (3.31), (3.33), (3.32), and the fact that k ∈ F for all k sufficiently
large, implies that

0 = lim
k→∞

∆k ≥
(1− ρf)

2ρρf
lim
k→∞

‖p2(k)‖2 =⇒ lim
k→∞

p2(k) = 0. (3.34)

17

We may also conclude from (3.31), (3.7), (3.6), and (3.5) that

lim
k→∞

(
xk,s − xk̂,f,nf

)
= lim

k→∞

(
xk,s − xk,f,nf

)
= lim

k→∞
ps(k) = 0. (3.35)

Combining (3.35) with an argument similar to that used to derive (3.29), we have

lim
k→∞

‖pd(k)‖2 ≤ κ‖C‖2 lim
k→∞

‖ps(k)‖2 = 0 (3.36)

for some constant κ > 0.
We now show that for k sufficiently large condition (3.13) is satisfied. We have from (3.4) and (3.11)

that

‖p̂2‖2 = ck,f,nf+1‖p̂1‖2 ≤ ck
max
‖p̂1‖2. (3.37)

Combining this with part (b) of Lemma 3.1 and (3.36), we have

‖xk,s,1 − xk,f,nf ‖2 ≤ ρk‖p̂1‖2 for k ≥ k̄ sufficiently large,

which shows that condition (3.13) holds.
Finally, we reach a contradiction by showing that condition (3.14) is also satisfied for k ≥ k̄ suffi-

ciently large. To this end, we use (3.36) and Figure 3.2 to deduce that

lim
k→∞

‖(xk,s,1 − xk,f,nf)− p̂2‖2 = lim
k→∞

‖xk,s,1 − xk,f,nf+1‖2 = lim
k→∞

‖pd(k)‖2 = 0.

We may then combine this result with (3.33), (3.34), and part (a) of Lemma 3.1 to obtain

‖p2(k)‖2 ≤
1

4
‖p̂2‖2 ≤

ρk

2
‖p̂2‖2 ≤ ρk‖xk,s,1 − xk,f,nf ‖2 for k ≥ k̄ sufficiently large,

which shows that condition (3.14) holds.
We have reached a contradiction since we have shown that both conditions (3.13) and (3.14) are

satisfied for k ≥ k̂ sufficiently large and thus k will ultimately be an element of C. We conclude that the
set C ∪M must be infinite.

We now have our main convergence result for problem LCP(q,M).
Theorem 3.4. Let M = B + C be a splitting of the matrix M ∈ Rn×n such that B ≻ 0, and

{xk}k≥0 the sequence of iterates generated by Algorithm 3.1 for the choice n
max

= ∞. Then, either xK

is a solution to problem LCP(q,M) for some integer K ≥ 0 and the algorithm terminates finitely, or

lim inf
k≥0

φ(xk) = 0.

Moreover, if the sequence {xk}k≥0 is bounded, there exists a limit point that is a solution to LCP(q,M).
Proof. If xK is a solution to problem LCP(q,M) for some integer K ≥ 0, then Algorithm 3.1 exits

in Step 5 with the solution xK .
For the remainder of the proof we assume that a solution is not encountered. In this case, Algo-

rithm 3.1 generates an infinite sequence {xk}k≥0, and Lemma 3.3 ensures that |C ∪M| = ∞. We now
consider two cases.
Case 1: |M| =∞
In this case, Step 4 of Algorithm 3.1 and (3.15) imply that

φ(xk+1) = φ(xk,s,ns) ≤ 1

2
φk

max
for k ∈ M. (3.38)

18

Since |M| =∞, it also follows from Algorithm 3.1 that limk→∞ φk
max

= 0 so that (3.38) implies

lim
k∈M

φ(xk+1) = 0.

Moreover, if we assume that the sequence {xk}k≥0 is bounded, then so is {xk+1}k∈M. Thus, there exists
S ⊆M such that

lim
k∈S

xk+1 = x∗ and lim
k∈S

φ(xk+1) = 0,

and, therefore,

φ(x∗) = lim
k∈S

φ(xk+1) = 0,

where we have used the continuity of the function φ(x). This means that x∗ is a limit point of the
sequence of iterates and is a solution to problem LCP(q,M).
Case 2: |M| <∞

Since |C ∪M| =∞, we know that there exists an integer k̂ ≥ 0 such that

k ∈ (C ∪ F) for all k ≥ k̂, and |C| =∞. (3.39)

We now construct a sequence {zj}j≥0 from the iterates generated from Algorithm 3.1 by gathering the

points {xk, xk,f,1, xk,f,2, . . . xk,f,nf , xk,s,1, xk,s,2} for all k ∈ C such that k ≥ k̂. Specifically, z0 = xk̂,

z1 = xk̂,f,1, z2 = xk̂,f,2, etc., so that {zj}j≥0 is an infinite sequence since |C| = ∞. Using (3.4), (3.10),
(3.13), (3.14), (3.19), and the condition ρk ≤ ρ < 1 from part (a) of Lemma 3.1, we deduce that

‖zk+2 − zk+1‖2 ≤ ρ‖zk+1 − zk‖2 for k ≥ 0.

Using a contraction argument similar to [14, Theorem 9.23], we can show that {zj}j≥0 is a Cauchy
sequence. Since Rn with ‖ · ‖2 is a complete metric space, we know that

there exists a vector x∗ such that lim
j→∞

zj = x∗.

Next, we define {yj}j≥0 as the subsequence of {zj}j≥0 consisting of all the points {xk, xk,f,1} for all

k ∈ C such that k ≥ k̂. It follows from this construction that

lim
j→∞

yj = x∗ and yj+1 = FPI(yj , 1, B, C) for all even j ≥ 0.

We may now use the same argument as in the proof of Case 1 of Theorem 2.4 to prove that x∗ is a
solution to LCP(q,M). Moreover, we have

lim
k∈C

xk = x∗

since {xk}k∈C is a subsequence of {zj}j≥0. Finally, since k ∈ (C ∪ F) for all k ≥ k̂, xk+1 = xk for all
k ∈ F , and there are only a finite number of F -iterations between each pair of C iterations, we must
also have

lim
k→∞

xk = x∗

so that the entire sequence generated by Algorithm 3.1 converges to a solution x∗ of problem LCP(q,M).
Clearly, limk→∞ φ(xk) = φ(x∗) = 0 since φ is continuous and x∗ is a solution to LCP(q,M), which
completes the proof for this case.

A few comments are warranted.

19

• The theory just described carries over to the case that iteration dependent splittings M =
Bk + Ck are used provided the matrices {Bk}k≥0 are uniformly positive definite.
• The convergence result holds even if φk

max
is decreased in Step 4 when k ∈ C, i.e., the kth iterate

is a contraction iterate. However, to promote the acceptance of rapidly convergent subspace
steps, one should not decrease the quantity “too” quickly.
• Limit points of the sequence {xk}k≥0 are guaranteed under the assumption that the level curves
of φ are bounded on the orthant x ≥ 0.

3.3. Numerical tests. In this section we illustrate the effectiveness of our Matlab implementa-
tion of Algorithm 3.1 by solving the Black-Scholes-Merton American options pricing problem studied
in [6] and randomly generated strictly diagonally dominant asymmetric LCPs. For comparison, we have
also written our own Matlab implementation of the two-phase matrix-splitting based algorithm de-
scribed in [6] henceforth referred to as Algorithm FLMN to reflect the last names of the authors. The
subspace step is computed from (2.28).

For Algorithm 3.1 we used the following control parameters: number of initial fixed-point iterations
nf = 1, number of additional fixed-point iterations ns = 2, trust-region contraction factor ηc = 0.5, trust-
region expansion factor ηe = 2, maximum iterations allowed nmax = 500, trust-region reset factor ∆R =
1.0, maximum trust-region radius ∆max = 1.0e+12, splitting contraction constant ρu = 0.99, and the
successive overrelaxation matrix splitting of M as given in Table 1.1. For simplicity and computational
efficiency, we computed an approximate solution of problem (3.7) by first solving system (2.28) for xI

using the Matlab “backslash” operator, and then setting

xI ← xI +min

(
1,

∆k

‖xI − x
k,f,nf

I ‖2

)
(
xI − x

k,f,nf

I

)
.

Note that xI then satisfies (3.8) and, therefore, is acceptable as an approximate solution to (3.7).
For both Algorithm 3.1 and Algorithm FLMN, we allow a maximum of three recursive subspace

steps to be computed per major iteration. Moreover, both algorithms are terminated when either the
maximum number of iterations nmax is reached or

φ(xk) ≤ 1.0e−5

is satisfied, which indicates that an approximate solution to problem LCP(q,M) has been identified.

3.3.1. American options pricing. Consider pricing an American put option with strike price
K > 0 and time to maturity T > 0. If the put option is exercised by the holder when the underlying
asset price is S, then the holder receives a pay out of Ψ(S) = max(K − S, 0). If V (t, S) denotes the
value of the put option at time t ∈ [0, T] when the asset price is S, then the Black-Scholes-Merton model
assumes that V solves the variational inequality [8]

∂V

∂t
+ 1

2
σ2S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV ≤ 0,

Ψ ≤ V,
(
∂V

∂t
+ 1

2
σ2S2 ∂

2V

∂S2
+ (r − q)S

∂V

∂S
− rV

)
◦ (V −Ψ) = 0,

for all t ∈ [0, T] and S ∈ (0,∞), where σ ≥ 0 is the volatility of the asset, r ≥ 0 is the risk-free interest
rate, q ≥ 0 is the dividend yield paid by the asset, and must satisfy the terminal condition

V (T, S) = Ψ(S) for S ∈ (0,∞).

As described in [6], we may solve this problem numerically by (i) performing a nonlinear change of
variables; (ii) transforming the terminal value problem into an initial value problem; and (iii) discretize

20

the problem by using the linear finite element method in space and a Crank-Nicolson scheme in time. The
end result is that we need to solve the sequence of problems {LCP(qj,Mj)}Nj=0, where N is the number
of time subintervals of length ∆t = T/N , Mj = M+ (∆t/2)A, qj = −(M− (∆t/2)A)xj−1 +∆tF ,

A =

a0 a1

a−1 a0
. . .

. . .
. . . a1
a−1 a0

, M =
h

6

4 1

1 4
. . .

. . .
. . . 1
1 4

,

a0 = 2rh/3 + σ2/h, a±1 = ∓µ/2 + rh/6− σ2/(2h), µ = r − q − σ2/2, and the “load” vector F may be
computed by approximating the payoff function Ψ by its linear element interpolant and then evaluating
a certain bilinear form. (See [6, Section 2] for more details.)

For all tests we chose r = 0.5, q = 0, h = 0.0025, N = 40, and K = 100. However, the remaining
parameters σ, T , xℓ, and xu were varied to obtain four test cases, where xℓ and xu are the lower and
upper bounds in space for the discretized problem, respectively.

Table 3.1 contains the results of our tests, which compare Algorithm 3.1 with Algorithm FLMN.
The columns have the following meaning: “iter” is the total number of iterations, “nsplit” is the total
number of splitting iterations, “nss” is the total number of subspace iterations, and “atm” is the at-
the-money value of the put option, i.e., the spot price is the same as the strike price. These results are
precisely what we hoped to obtain; the performance of Algorithm 3.1 is exactly the same as Algorithm
FLMN, which was shown in [6] to solve these problems very efficiently. We find comfort, however, in
knowing that Algorithm 3.1 is guaranteed to converge since Assumption 3.1 holds as a result of Mj being
diagonally dominant; this is a well known result for the matrix splitting that corresponds to successive
overrelaxation given in Table 1.1.

Table 3.1

Results from Algorithm FLMN and Algorithm 3.1 on four scenarios for pricing an American put option.

BSM Parameters Algorithm FLMN Algorithm 3.1

σ T xℓ xu iter nsplit nss atm iter nsplit nss atm

0.2 0.5 -0.3 0.6 67 201 67 $4.63 67 201 67 $4.63

0.4 0.5 -0.5 1.0 112 325 112 $10.13 112 325 112 $10.13

0.2 5.0 -0.3 1.6 89 263 89 $9.89 89 263 89 $9.89

0.4 5.0 -0.8 3.2 92 252 92 $24.44 92 252 92 $24.44

3.3.2. Random asymmetric LCPs. Finally, we test the efficiency of Algorithm 3.1 and the
effectiveness of the subspace phase on randomly generated LCPs, whereM is constructed to be diagonally
dominant. We accomplished this by first defining M ∈ R1000×1000 by sampling a standard normal
distribution, and then scaling every element by 1.0e3. Finally, we redefined the ith diagonal element to
be the larger of its current value and the absolute ith row sum for 1 ≤ i ≤ 1000.

4. Conclusions. Kočvara and Zowe [9] have shown that a two-phase algorithm based on matrix
splitting iterations may be effective for solving strictly convex BQPs. Similarly, the work by Moré and
Toraldo [12] demonstrates that two-phase methods based on simple projected gradient iterations may
be used to efficiently solve nonconvex BQPs. For strictly convex problems, one might suspect that
the more sophisticated matrix splitting iterations, e.g. successive overrelaxtion, used in [9] might be
superior to the simple gradient iterations utilized in [12]. A natural question is whether their exists
a two-phase method with convergence guarantees for both convex and nonconvex problems that also
utilizes sophisticated matrix splittings. We presented such an algorithm in Section 2.1, proceeded to
prove convergence in Section 2.2, and exhibited its effectiveness on a variety of problems in Section 2.3.

21

Table 3.2

Output from Algorithm 3.1 with and without a subspace phase on ten randomly generated diagonally dominant LCPs.

Algorithm 3.1 (no subspace) Algorithm 3.1 (with subspace)

n res iter nsplit res iter nsplit nss

1000 3.56e−08 5 7 5.06e−09 1 3 1

1000 2.68e−08 5 7 8.44e−09 1 3 1

1000 3.25e−08 5 7 3.21e−09 1 3 1

1000 2.97e−08 5 7 7.49e−09 1 3 1

1000 2.20e−08 5 7 8.21e−09 1 3 1

1000 2.20e−08 5 7 4.40e−09 1 3 1

1000 2.74e−08 5 7 3.79e−09 1 3 1

1000 4.06e−08 5 7 5.31e−09 1 3 1

1000 3.54e−08 5 7 3.86e−09 1 3 1

1000 3.99e−08 5 7 6.45e−09 1 3 1

We believe the numerical results clearly indicate the improved active-set identification capabilities of
sophisticated matrix splittings and generally results in fewer major iterations. To be fruitful in terms
of computational time, however, the matrix splitting iteration must be inexpensive. This is true, for
example, of many problems that arise in the numerical solution of partial differential equations since the
problem matrices tend to be very sparse.

Feng et al. [6] and Morales, Nocedal, and Smelyanskiy [11] describe two-phase methods for solving
LCPs that arise from pricing American options in finance and solving contact problems in mechanics.
Their algorithms, however, do not enjoy global convergence guarantees, although they have proved to be
very efficient in their tests thanks to a carefully designed subspace phase. A deserving question is whether
one may formulate a provably convergent two-phase matrix splitting algorithm that performs equally well
for pricing American options. This would supply additional comfort when pricing options, but also would
likely prove useful for solving more general LCPs. Although BQPs and LCPs are closely related, the
formulation of a convergent algorithm for LCPs based on matrix splittings is not straightforward since
there is no natural idea of an “objective function”. Therefore, although we solved BQPs by calculating
descent directions from matrix splitting iterations, a similar concept does not lend itself to solving LCPs.
Rather, we formulated a two-phase matrix splitting algorithm in Section 3.1 by combining a contraction
argument with a “natural” merit function that is based directly on the structure of LCPs. In Section 3.2
we showed that the algorithm was globally convergent and in Section 3.3 supplied numerical tests. The
results show that our provably convergent two-phase method is equally effective for pricing American
options. We also highlighted the usefulness of the subspace phase by solving randomly generated LCPs
whose defining matrix was asymmetric and diagonally dominant. The results clearly show that the
subspace phase dramatically reduces the number of major iterations. We may conclude, therefore, that
our two-phase method for solving LCPs is an attractive option when the matrix splitting iteration is
inexpensive and the subspace problem is not prohibitively expensive to solve.

REFERENCES

[1] I. Bongartz, A. R. Conn, N. I. M. Gould, and P. L. Toint, CUTE: Constrained and unconstrained testing

environment, Report 93/10, Département de Mathématique, Facultés Universitaires de Namur, 1993.
[2] B. Chen, X. Chen, and C. Kanzow, A penalized Fischer-Burmeister NCP-function, Math. Program., 88 (2000),

pp. 211–216.
[3] J.-S. Chen, On some NCP-functions based on the generalized Fischer-Burmeister function, Asia-Pac. J. Oper. Res.,

24 (2007), pp. 401–420.
[4] R. W. Cottle, J.-S. Pang, and R. E. Stone, The linear complementarity problem, Computer Science and Scientific

22

Computing, Academic Press Inc., Boston, MA, 1992.
[5] Y.-H. Dai and R. Fletcher, Projected Barzilai-Borwein methods for large-scale box-constrained quadratic program-

ming, Numer. Math., 100 (2005), pp. 21–47.
[6] L. Feng, V. Linetsky, J. Luis, and M. J. Nocedal, On the solution of complementarity problems arising in

american options pricing, 2009.
[7] R. Fletcher, On the Barzilai-Borwein method, in Optimization and control with applications, vol. 96 of Appl.

Optim., Springer, New York, 2005, pp. 235–256.
[8] P. Jaillet, D. Lamberton, and B. Lapeyre, Variational inequalities and the pricing of american options, Acta

Applicandae Mathematicae, 21 (1990), pp. 263–289.
[9] M. Kočvara and J. Zowe, An iterative two-step algorithm for linear complementarity problems, Numer. Math., 68

(1994), pp. 95–106.
[10] MathWorks Inc., Matlab User’s Guide, Natick, Massachusetts, 1992.
[11] J. L. Morales, J. Nocedal, and M. Smelyanskiy, An algorithm for the fast solution of symmetric linear comple-

mentarity problems, Numer. Math., 111 (2008), pp. 251–266.
[12] J. J. Moré and G. Toraldo, Algorithms for bound constrained quadratic programming problems, Numer. Math.,

55 (1989), pp. 377–400.
[13] T. S. Munson, F. Facchinei, M. C. Ferris, A. Fischer, and C. Kanzow, The semismooth algorithm for large

scale complementarity problems, INFORMS J. Comput., 13 (2001), pp. 294–311.
[14] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Inc., 1976.
[15] D. Sun and J. Sun, Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions,

Math. Program., 103 (2005), pp. 575–581.

23

