Channel \& Switchbox Routing

Detailed routing

switchbox routing

Routing Models

- Grid-based model:
- A grid is super-imposed on the routing region.
- Wires follow paths along the grid lines.
- Gridless model:
- Any model that does not follow this "gridded" approach.

grid-based

Models for Multi-Layer Routing

- Unreserved layer model: Any net segment is allowed to be placed in any layer.
- Reserved layer model: Certain type of segments are restricted to particular layer(s).
- Two-layer: HV (horizontal-Vertical), VH
- Three-layer: HVH, VHV

unreserved layer model

HVH model

VHV model

$$
3 \text { types of 3-layer models }
$$

Terminology for Channel Routing Problems

- Local density at column i : total \# of nets that crosses column i.
- Channel density: maximum local density; \# of horizontal tracks required \geq channel density.

Channel Routing Problem

- Assignments of horizontal segments of nets to tracks.
- Assignments of vertical segments to connect.
- horizontal segments of the same net in different tracks, and
- the terminals of the net to horizontal segments of the net.
- Horizontal and vertical constraints must not be violated.
- Horizontal constraints between two nets: The horizontal span of two nets overlaps each other.
- Vertical constraints between two nets: There exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to the other net.
- Objective: Channel height is minimized (i.e., channel area is minimized).

Horizontal Constraint Graph (HCG)

- HCG $G=(V, E)$ is undirected graph where
- $V=\left\{v_{i} \mid v_{i}\right.$ represents a net $\left.n_{i}\right\}$
- $E=\left\{\left(v_{i}, v_{j}\right) \mid\right.$ a horizontal constraint exists between n_{i} and $\left.n_{j}\right\}$.
- For graph G : vertices \Leftrightarrow nets; edge $(i, j) \Leftrightarrow$ net i overlaps net j.

A routing problem and its HCG.

Vertical Constraint Graph (VCG)

- VCG $G=(V, E)$ is directed graph where
- $V=\left\{v_{i} \mid v_{i}\right.$ represents a net $\left.n_{i}\right\}$
- $E=\left\{\left(v_{i}, v_{j}\right) \mid\right.$ a vertical constraint exists between n_{i} and $\left.n_{j}\right\}$.
- For graph G : vertices \Leftrightarrow nets; edge $i \rightarrow j \Leftrightarrow$ net i must be above net j.

A routing problem and its VCG.

2-L Channel Routing: Basic Left-Edge Algorithm

- Hashimoto \& Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- No vertical constraint.
- HV-layer model is used.
- Doglegs are not allowed.
- Treat each net as an interval.
- Intervals are sorted according to their left-end x-coordinates.
- Intervals (nets) are routed one-by-one according to the order.
- For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- Optimality: produces a routing solution with the minimum \# of tracks (if no vertical constraint).

Basic Left-Edge Algorithm

```
Algorithm: Basic_Left-Edge( \(U, \operatorname{track}[j]\) )
\(U\) : set of unassigned intervals (nets) \(I_{1}, \ldots, I_{n}\);
\(I_{j}=\left[s_{j}, e_{j}\right]\) : interval \(j\) with left-end \(x\)-coordinate \(s_{j}\) and right-end \(e_{j}\);
track[j]: track to which net \(j\) is assigned.
1 begin
\(2 U \leftarrow\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}\);
\(3 t \leftarrow 0\);
4 while \((U \neq \emptyset)\) do
\(5 t \leftarrow t+1\);
6 watermark \(\leftarrow 0\);
7 while (there is an \(I_{j} \in U\) s.t. \(s_{j}>\) watermark) do
8 Pick the interval \(I_{j} \in U\) with \(s_{j}>\) watermark,
    nearest watermark;
\(9 \quad \operatorname{track}[j] \leftarrow t\);
\(10 \quad\) watermark \(\leftarrow e_{j}\);
\(11 \quad U \leftarrow U-\left\{I_{j}\right\}\);
12 end
```


Basic Left-Edge Example

- $U=\left\{I_{1}, I_{2}, \ldots, I_{6}\right\} ; I_{1}=[1,3], I_{2}=[2,6], I_{3}=[4,8], I_{4}=[5,10], I_{5}=[7,11], I_{6}=[9,12]$.
- $t=1$:
- Route I_{1} : watermark $=3$;
- Route I_{3} : watermark $=8$;
- Route I_{6} : watermark $=12$;
- $t=2$:
- Route I_{2} : watermark $=6$;
- Route I_{5} : watermark $=11$;
- $t=3$: Route I_{4}

Constrained Left-Edge Algorithm

```
Algorithm: Constrained_Left-Edge( \(U, \operatorname{track}[j]\) )
\(U\) : set of unassigned intervals (nets) \(I_{1}, \ldots, I_{n}\);
\(I_{j}=\left[s_{j}, e_{j}\right]\) : interval \(j\) with left-end \(x\)-coordinate \(s_{j}\) and right-end \(e_{j}\);
track[j]: track to which net \(j\) is assigned.
1 begin
\(2 U \leftarrow\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}\);
\(3 t \leftarrow 0\);
4 while \((U \neq \emptyset)\) do
\(5 \quad t \leftarrow t+1\);
6 watermark \(\leftarrow 0\);
7 while (there is an unconstrained \(I_{j} \in U\) s.t. \(s_{j}>\) watermark) do
8 Pick the interval \(I_{j} \in U\) that is unconstrained,
    with \(s_{j}>\) watermark, nearest watermark;
\(9 \quad \operatorname{track}[j] \leftarrow t\);
\(10 \quad\) watermark \(\leftarrow e_{j}\);
\(11 \quad U \leftarrow U-\left\{I_{j}\right\}\);
12 end
```


Constrained Left-Edge Example

- $I_{1}=[1,3], I_{2}=[1,5], I_{3}=[6,8], I_{4}=[10,11], I_{5}=[2,6], I_{6}=[7,9]$.
- Track 1: Route I_{1} (cannot route I_{3}); Route I_{6}; Route I_{4}.
- Track 2: Route I_{2}; cannot route I_{3}.
- Track 3: Route I_{5}.
- Track 4: Route I_{3}.

track 3
track 4

Dogleg Channel Router

- Deutch, "A dogleg channel router," 13rd DAC, 1976.
- Drawback of Left-Edge: cannot handle the cases with constraint cycles.
- Doglegs are used to resolve constraint cycle.

- Drawback of Left-Edge: the entire net is on a single track.
- Doglegs are used to place parts of a net on different tracks to minimize channel height.
- Might incur penalty for additional vias.

save 2 tracks, with via penalty

Dogleg Channel Router

- Each multi-terminal net is broken into a set of 2-terminal nets.
- Two parameters are used to control routing:
- Range: Determine the \# of consecutive 2-terminal subnets of the same net that can be placed on the same track.
- Routing sequence: Specifies the starting position and the direction of routing along the channel.
- Modified Left-Edge Algorithm is applied to each subnet.

Over-the-Cell Routing

- Routing over the cell rows is possible due to the limited use of the 2nd (M2) metal layers within the cells.
- Divide the over-the-cell routing problem into 3 steps: (1) routing over the cell, (2) choosing the net segments, and (3) routing within the channel.
- Reference: Cong \& Liu, "Over-the-cell channel routing," IEEE TCAD, Apr. 1990.

Over-the-Cell Channel Routing

- Cong \& Liu, "Over-the-cell channel routing," IEEE TCAD, Apr. 1990.

Select over-the-cell nets use Supowit's Max. Independent Set algorithm for circle graph (solvable in $\mathrm{O}\left(\mathrm{c}^{3}\right)$ time,
c: \# of columns)
Select terminals among "equivalent" ones for regular channel routing
(Goal: minimize channel density
NP-complete!)

Plannar routing for over-the-cell nets
$+$
Regular channel routing

Supowit's Algorithm

- Supowit, "Finding a maximum plannar subset of a set of nets in a channel," IEEE TCAD, 1987.
- Problem: Given a set of chords, find a maximum plannar subset of chords.
- Label the vertices on the circle 0 to $2 n-1$.
- Compute $\operatorname{MIS}(i, j)$: size of maximum independent set between vertices i and j, $i<j$.
- Answer $=\operatorname{MIS}(0,2 n-1)$.

Maximum plannar subset of chords.

Maximum independent set: nodes b, c, f

vetrices on the circle

Dynamic Programming in Supowit's Algorithm

- Apply dynamic programming to compute $\operatorname{MIS}(i, j)$.

case 2
case 3

$\begin{aligned} \operatorname{MIS}(i, j)= & M I S(i, k-1)+1 \\ & +\operatorname{MIS}(k+1, j-1)\end{aligned} \quad M I S(i, j)=\operatorname{MIS}(i+1, j-1)+1$

