
Channel & Switchbox Routing

Detailed routing

channel routing

switchbox routing

1

Routing Models

• Grid-based model:

– A grid is super-imposed on the routing region.

– Wires follow paths along the grid lines.

• Gridless model:

– Any model that does not follow this “gridded” approach.

grid−based gridless

2

Models for Multi-Layer Routing

• Unreserved layer model: Any net segment is allowed to be placed in
any layer.

• Reserved layer model: Certain type of segments are restricted to
particular layer(s).

– Two-layer: HV (horizontal-Vertical), VH

– Three-layer: HVH, VHV

track 1
track 1

track 2

HVH model

track 1

track 2

track 3

VHV modelunreserved layer model

3 types of 3−layer models

3

Terminology for Channel Routing Problems
terminals

upper boundary

lower boundary

terminals

upper boundary

lower boundary

dogleg

trunks

branches

vias

0 1 4 5 1 6 7 0 4 9 10

2 3 5 3 5 2 6 8 9 8 7

netlist:
 0 1 4 5 1 6 7 0 4 9 10

2 3 5 3 5 2 6 8 9 8 7

1 3 5 5 4 3 3 3 4 3 2local
density

• Local density at column i: total # of nets that crosses column i.

• Channel density: maximum local density; # of horizontal tracks required ≥ channel
density.

4

Channel Routing Problem

• Assignments of horizontal segments of nets to tracks.

• Assignments of vertical segments to connect.

– horizontal segments of the same net in different tracks, and

– the terminals of the net to horizontal segments of the net.

• Horizontal and vertical constraints must not be violated.

– Horizontal constraints between two nets: The horizontal span of
two nets overlaps each other.

– Vertical constraints between two nets: There exists a column such
that the terminal on top of the column belongs to one net and the
terminal on bottom of the column belongs to the other net.

• Objective: Channel height is minimized (i.e., channel area is
minimized).

5

Horizontal Constraint Graph (HCG)

• HCG G = (V,E) is undirected graph where

– V = {vi|vi represents a net ni}
– E = {(vi, vj)| a horizontal constraint exists between ni and nj}.

• For graph G: vertices ⇔ nets; edge (i, j)⇔ net i overlaps net j.

01 5 2 0 2 1 1 3 4 0

3 0 1 2 5 3 4 0 0 2 3

1

2

3

4

5

A routing problem and its HCG.

6

Vertical Constraint Graph (VCG)

• VCG G = (V,E) is directed graph where

– V = {vi|vi represents a net ni}
– E = {(vi, vj)| a vertical constraint exists between ni and nj}.

• For graph G: vertices ⇔ nets; edge i→ j ⇔ net i must be above net j.

01 5 2 0 2 1 1 3 4 0

3 0 1 2 5 3 4 0 0 2 3

1

2

3

4

5

A routing problem and its VCG.

7

2-L Channel Routing: Basic Left-Edge
Algorithm

• Hashimoto & Stevens, “Wire routing by optimizing channel assignment
within large apertures,” DAC-71.

• No vertical constraint.

• HV-layer model is used.

• Doglegs are not allowed.

• Treat each net as an interval.

• Intervals are sorted according to their left-end x-coordinates.

• Intervals (nets) are routed one-by-one according to the order.

• For a net, tracks are scanned from top to bottom, and the first track
that can accommodate the net is assigned to the net.

• Optimality: produces a routing solution with the minimum # of tracks
(if no vertical constraint).

8

Basic Left-Edge Algorithm

Algorithm: Basic Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, . . . , In;
Ij = [sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U ← {I1, I2, . . . , In};
3 t← 0;
4 while (U 6= ∅) do
5 t← t+ 1;
6 watermark ← 0;
7 while (there is an Ij ∈ U s.t. sj > watermark) do
8 Pick the interval Ij ∈ U with sj > watermark,

nearest watermark;
9 track[j]← t;
10 watermark ← ej;
11 U ← U − {Ij};
12 end

9

Basic Left-Edge Example
• U = {I1, I2, . . . , I6}; I1 = [1, 3], I2 = [2, 6], I3 = [4, 8], I4 = [5, 10], I5 = [7, 11], I6 = [9, 12].

• t = 1:

– Route I1: watermark = 3;

– Route I3: watermark = 8;

– Route I6: watermark = 12;

• t = 2:

– Route I2: watermark = 6;

– Route I5: watermark = 11;

• t = 3: Route I4

1 00 2 3 0 0 5 6 0 5 0

1 0 4 0

1 2 3 4 5 6 7 8 9 10 11 12
0 0 4 2 0 3 0 6

column:

2density: 1 2 2 3 3 3 3 3 3 2 1

10

Constrained Left-Edge Algorithm

Algorithm: Constrained Left-Edge(U, track[j])
U: set of unassigned intervals (nets) I1, . . . , In;
Ij = [sj, ej]: interval j with left-end x-coordinate sj and right-end ej;
track[j]: track to which net j is assigned.

1 begin
2 U ← {I1, I2, . . . , In};
3 t← 0;
4 while (U 6= ∅) do
5 t← t+ 1;
6 watermark ← 0;
7 while (there is an unconstrained Ij ∈ U s.t. sj > watermark) do
8 Pick the interval Ij ∈ U that is unconstrained,

with sj > watermark, nearest watermark;
9 track[j]← t;
10 watermark ← ej;
11 U ← U − {Ij};
12 end

11

Constrained Left-Edge Example
• I1 = [1, 3], I2 = [1, 5], I3 = [6, 8], I4 = [10, 11], I5 = [2, 6], I6 = [7, 9].

• Track 1: Route I1 (cannot route I3); Route I6; Route I4.

• Track 2: Route I2; cannot route I3.

• Track 3: Route I5.

• Track 4: Route I3.
1 4 03 01 1 2 2 5 6

0 62 5 0 5 5 3 3 0 4

1

2

5

3

6

4

2

5

3

5

3 3
track 1 track 2 track 3 track 4

12

Dogleg Channel Router
• Deutch, “A dogleg channel router,” 13rd DAC, 1976.

• Drawback of Left-Edge: cannot handle the cases with constraint cycles.

– Doglegs are used to resolve constraint cycle.

0

1 1 2

2 1

?

0

1 1 2

2 1

1

2

• Drawback of Left-Edge: the entire net is on a single track.

– Doglegs are used to place parts of a net on different tracks to minimize channel
height.

– Might incur penalty for additional vias.

3 4

0 1 2 2 0 3 0 4

1 2 0 3 4 0 3 4

0 1 2 2 0 3 0 4

1 2 0 3 4 0

no dogleg with dogleg

save 2 tracks, with via penalty

13

Dogleg Channel Router

• Each multi-terminal net is broken into a set of 2-terminal nets.

• Two parameters are used to control routing:

– Range: Determine the # of consecutive 2-terminal subnets of the same net that
can be placed on the same track.

– Routing sequence: Specifies the starting position and the direction of routing
along the channel.

• Modified Left-Edge Algorithm is applied to each subnet.
2 31 1 2 0

2 3 0 3 4 4

1
2a 2b

3a 3b

4

1

2a 3a

2b 3b

4

2 31 1 2 0

2 3 0 3 4 4

1

2a

2b
3a 3b

4

14

Over-the-Cell Routing
• Routing over the cell rows is possible due to the limited use of the 2nd (M2) metal

layers within the cells.

• Divide the over-the-cell routing problem into 3 steps: (1) routing over the cell, (2)
choosing the net segments, and (3) routing within the channel.

• Reference: Cong & Liu, “Over-the-cell channel routing,” IEEE TCAD, Apr. 1990.

1 2 1 6 2 6 3 4 3 4 6

2 1 3 1 6 4 5 6 5 4 4

Over−the−cell routing

Over−the−cell routing

VDD
GND

GND
VDD

15

Over-the-Cell Channel Routing
• Cong & Liu, “Over-the-cell channel routing,” IEEE TCAD, Apr. 1990.

Select terminals among
"equivalent" ones for regular
channel routing
(Goal: minimize channel density
 NP−complete!)

Plannar routing for
over−the−cell nets
 +
Regular channel routing

3

Select over−the−cell nets
use Supowit’s Max. Independent
Set algorithm for circle graph
(solvable in O(c) time,
 c: # of columns)

16

Supowit’s Algorithm
• Supowit, “Finding a maximum plannar subset of a set of nets in a channel,” IEEE

TCAD, 1987.

• Problem: Given a set of chords, find a maximum plannar subset of chords.

– Label the vertices on the circle 0 to 2n− 1.

– Compute MIS(i, j): size of maximum independent set between vertices i and j,
i < j.

– Answer = MIS(0, 2n− 1).
0

1

2

3
4

5
6

7

8

9

10

11

a

b
f

d

c

e

0
1

2

3
4

5
6

7

8

9

10

11

a
b

c

e

d
f

a

b
f

d

c

e

A set of chords.

circle graph

Maximum plannar
subset of chords.

Maximum independent
set: nodes

02n−1

2n−2 1

2

i

j

MIS(i, j): size of max.
independent set here

vetrices on the circle MIS(i, j), i < j

c f

b

b, c, f

17

Dynamic Programming in Supowit’s Algorithm

• Apply dynamic programming to compute MIS(i, j).

i

j

k

MIS(i, j) = MIS(i, j−1)

case 1

i

j k

i

j

case 2 case 3

MIS(i, j) = MIS(i, k−1) + 1
 + MIS(k+1, j−1)

MIS(i, j) = MIS(i+1, j−1) + 1

i

j
j−1

k

MIS(i, j−1)

i

j
j−1

k

i

j
j−1

k+1

k−1

MIS(k+1, j−1)

MIS(i, k−1)

MIS(i+1, j−1)

i+1

18

