Graph Models for Global Routing: Grid Graph

- Each cell is represented by a vertex.
- Two vertices are joined by an edge if the corresponding cells are adjacent to each other.
- The occupied cells are represented as filled circles, whereas the others are as clear circles.

Graph Model: Channel Intersection Graph

- Channels are represented as edges.
- Channel intersections are represented as vertices.
- Edge weight represents channel capacity.
- Extended channel intersection graph: terminals are also represented as vertices.

Global-Routing Problem

- Given a netlist $\mathrm{N}=\left\{N_{1}, N_{2}, \ldots, N_{n}\right\}$, a routing graph $G=(V, E)$, find a Steiner tree T_{i} for each net $N_{i}, 1 \leq i \leq n$, such that $U\left(e_{j}\right) \leq c\left(e_{j}\right), \forall e_{j} \in E$ and $\sum_{i=1}^{n} L\left(T_{i}\right)$ is minimized, where
- $c\left(e_{j}\right)$: capacity of edge e_{j};
$-x_{i j}=1$ if e_{j} is in $T_{i} ; x_{i j}=0$ otherwise;
$-U\left(e_{j}\right)=\sum_{i=1}^{n} x_{i j}$: \# of wires that pass through the channel corresponding to edge e_{j};
- $L\left(T_{i}\right)$: total wirelength of Steiner tree T_{i}.
- For high-performance, the maximum wirelength ($\max _{i=1}^{n} L\left(T_{i}\right)$) is minimized (or the longest path between two points in T_{i} is minimized).

Global Routing in different Design Styles

Global Routing in Standard Cell

- Objective
- Minimize total channel height.
- Assignment of feedthrough: Placement? Global routing?
- For high performance,
- Minimize the maximum wire length.
- Minimize the maximum path length.

Global Routing in Gate Array

- Objective
- Guarantee 100\% routability.
- For high performance,
- Minimize the maximum wire length.
- Minimize the maximum path length.

Each channel has a capacity of 2 tracks.

Global Routing in FPGA

- Objective
- Guarantee 100\% routability.
- Consider switch-module architectural constraints.
- For performance-driven routing,
- Minimize \# of switches used.
- Minimize the maximum wire length.
- Minimize the maximum path length.

Each channel has a capacity of 2 tracks.

Classification of Global-Routing Algorithm

- Sequential approach: Assigns priority to nets; routes one net at a time based on its priority (net ordering?).
- Concurrent approach: All nets are considered at the same time (complexity?)

Global-Routing: Maze Routing

- Routing channels may be modelled by a weighted undirected graph called channel connectivity graph.
- Node \leftrightarrow channel; edge \leftrightarrow two adjacent channels; capacity: (width, length)

updated channel graph

route $A-A$ ' via $5-6-7$

route $B-B$ ' via 5-6-7

maze routing for nets A and B

Global Routing by Integer Programming

- Suppose that for each net i, there are n_{i} possible trees $t_{1}^{i}, t_{2}^{i}, \ldots, t_{n_{i}}^{i}$ to route the net.
- Constraint I: For each net i, only one tree t_{j}^{i} will be selected.
- Constraint II: The capacity of each cell boundary c_{i} is not exceeded.
- Minimize the total tree cost.
- Question: Feasible for practical problem sizes?
- Key: Hierarchical approach!
an routing instance

trees of net 1

trees of net 2
a feasible routing

trees of net 3

An Integer-Programming Example

Boundary	t_{1}^{1}	t_{2}^{1}	t_{3}^{1}	t_{1}^{2}	t_{2}^{2}	t_{3}^{2}	t_{1}^{3}	t_{2}^{3}
B1	0	1	1	1	0	1	1	0
B2	1	0	1	0	1	1	1	0
B3	0	1	1	1	1	0	0	1
B4	1	1	0	0	1	1	0	1

- $g_{i, j}$: cost of tree $t_{j}^{i} \Rightarrow g_{1,1}=2, g_{1,2}=3, g_{1,3}=3, g_{2,1}=2, g_{2,2}=3, g_{2,3}=3, g_{3,1}=2, g_{3,2}=$ 2.

```
Minimize 2x,1 }+3\mp@subsup{x}{1,2}{}+3\mp@subsup{x}{1,3}{}+2\mp@subsup{x}{2,1}{}+3\mp@subsup{x}{2,2}{}+3\mp@subsup{x}{2,3}{}+2\mp@subsup{x}{3,1}{}+2\mp@subsup{x}{3,2}{
subject to
\[
\begin{aligned}
& x_{1,1}+x_{1,2}+x_{1,3}=1 \quad\left(\text { Constraint } I: t^{1}\right) \\
& x_{2,1}+x_{2,2}+x_{2,3}=1 \\
& x_{3,1}+x_{3,2}\left.=1 \quad \text { (Constraint } I: t^{2}\right) \\
&{\text { (Constraint I } \left.I: t^{3}\right)}^{x_{1,2}+x_{1,3}+x_{2,1}+x_{2,3}+x_{3,1}} \leq 2 \text { (Constraint II:B1) } \\
& x_{1,1}+x_{1,3}+x_{2,2}+x_{2,3}+x_{3,1} \leq 2 \text { (Constraint II:B2) } \\
& x_{1,2}+x_{1,3}+x_{2,1}+x_{2,2}+x_{3,2} \leq 2 \text { (Constraint II:B3) } \\
& x_{1,1}+x_{1,2}+x_{2,2}+x_{2,3}+x_{3,2} \leq 2 \text { (Constraint II:B4) } \\
& x_{i, j}=0,1,1 \leq i, j \leq 3
\end{aligned}
\]
```


Hierarchical Global Routing

- Marek-Sadowska, "Router planner for custom chip design," ICCAD, 1986.
- At each level of the hierarchy, an attempt is made to minimize the cost of nets crossing cut lines.
- At the lowest level of the hierarchy, the layout surface is divided into $R \times R$ grid regions with boundary capacity equal to C tracks.
- Let R_{l} be the $\#$ of grid regions of a given cut line l; a cut line can be divided into $M=\frac{R_{l}}{C}$ sections.
- Global routing can be formulated as a linear assignment problem:
$-x_{i, j}=1$ if net i is assigned to section $j ; x_{i, j}=0$ otherwise.
- Each net crosses the cut line exactly once: $\sum_{j=1}^{M} x_{i j}=1,1 \leq i \leq N$.
- Capacity constraint of each section: $\sum_{i=1}^{N} x_{i j} \leq C, 1 \leq j \leq M$.
- $w_{i j}$: cost of assigning net i to section j. Minimize $\sum_{i=1}^{N} \sum_{j=1}^{M} w_{i j} x_{i j}$.

The Routing-Tree Problem

- Problem: Given a set of pins of a net, interconnect the pins by a "routing tree."

standard cell

building block
- Minimum Rectilinear Steiner Tree (MRST) Problem: Given n points in the plane, find a minimum-length tree of rectilinear edges which connects the points.
- $\operatorname{MRST}(P)=M S T(P \cup S)$, where P and S are the sets of original points and Steiner points, respectively.

Theoretic Results for the MRST Problem

- Hanan's Thm: There exists an MRST with all Steiner points (set S) chosen from the intersection points of horizontal and vertical lines drawn points of P.
- Hanan, "On Steiner's problem with rectilinear distance," SIAM J. Applied Math., 1966.
- Hwang's Theorem: For any point set $P, \frac{\operatorname{Cost}(M S T(P))}{\operatorname{Cost}(M R S T(P))} \leq \frac{3}{2}$.
- Hwang, "On Steiner minimal tree with rectilinear distance," SIAM J. Applied Math., 1976.
- Best existing approximation algorithm: Performance bound $\frac{61}{48}$ by Foessmeier et al.
- Foessmeier et al, "Fast approximation algorithm for the rectilinear Steiner problem," Wilhelm Schickard-Institut für Informatik, TR WSI-93-14, 93.
- Zelikovsky, "An $\frac{11}{6}$ approximation algorithm for the network Steiner problem," Algorithmica., 1993.

Hanan grid

$\operatorname{Cost}(M S T) / \operatorname{Cost}(M R S T)$-> 3/2

A Simple Performance Bound

- Easy to show that $\frac{\operatorname{Cost}(M S T(P))}{\operatorname{Cost}(M R S T(P))} \leq 2$.
- Given any MRST T on point set P with Steiner point set S, construct a spanning tree T^{\prime} on P as follows:

1. Select any point in T as a root.
2. Perform a depth-first traversal on the rooted tree T.
3. Construct T^{\prime} based on the traversal.

$\operatorname{Cost}\left(T^{\prime}\right)<=2 \operatorname{Cost}(T)$

- depth-first traversal
- every edge is visited twice

