Partitioning

- Decomposition of a complex system into smaller subsystems.
- Each subsystem can be designed independently speeding up the design process.
- Decomposition scheme has to minimize the interconnections among the subsystems.
- Decomposition is carried out hierarchically until each subsystem is of managable size.

Circuit Partitioning

- Objective: Partition a circuit into parts such that every component is within a prescribed range and the \# of connections among the components is minimized.
- More constraints are possible for some applications.
- Cutset? Cut size? Size of a component?

Problem Definition: Partitioning

- k-way partitioning: Given a graph $G(V, E)$, where each vertex $v \in V$ has a size $s(v)$ and each edge $e \in E$ has a weight $w(e)$, the problem is to divide the set V into k disjoint subsets $V_{1}, V_{2}, \ldots, V_{k}$, such that an objective function is optimized, subject to certain constraints.
- Bounded size constraint: The size of the i-th subset is bounded by B_{i} ($\sum_{v \in V_{i}} s(v) \leq B_{i}$).
- Is the partition balanced?
- Min-cut cost between two subsets: Minimize $\sum_{\forall e=(u, v) \wedge p(u) \neq p(v)} w(e)$, where $p(u)$ is the partition \# of node u.
- The 2-way, balanced partitioning problem is NP-complete, even in its simple form with identical vertex sizes and unit edge weights.

Kernighan-Lin Algorithm

- Kernighan and Lin, "An efficient heuristic procedure for partitioning graphs," The Bell System Technical Journal, vol. 49, no. 2, Feb. 1970.
- An iterative, 2-way, balanced partitioning (bi-sectioning) heuristic.
- Till the cut size keeps decreasing
- Vertex pairs which give the largest decrease or the smallest increase in cut size are exchanged.
- These vertices are then locked (and thus are prohibited from participating in any further exchanges).
- This process continues until all the vertices are locked.

Kernighan-Lin Algorithm: A Simple Example

- Each edge has a unit weight.

- Questions: How to compute cost reduction? What pairs to be swapped?
- Consider the change of internal \& external connections.

Properties

- Two sets A and B such that $|A|=n=|B|$ and $A \cap B=\emptyset$.
- External cost of $a \in A: E_{a}=\sum_{v \in B} c_{a v}$.
- Internal cost of $a \in A$: $I_{a}=\sum_{v \in A} c_{a v}$.
- D-value of a vertex $a: D_{a}=E_{a}-I_{a}$ (cost reduction for moving a).
- Cost reduction (gain) for swapping a and $b: g_{a b}=D_{a}+D_{b}-2 c_{a b}$.
- If $a \in A$ and $b \in B$ are interchanged, then the new D-values, D^{\prime}, are given by

$$
\begin{aligned}
& D_{x}^{\prime}=D_{x}+2 c_{x a}-2 c_{x b}, \forall x \in A-\{a\} \\
& D_{y}^{\prime}=D_{y}+2 c_{y b}-2 c_{y a}, \forall y \in B-\{b\} .
\end{aligned}
$$

Internal cost vs. External cost

updating D-values

Kernighan-Lin Algorithm: A Weighted Example

costs associated with a
Initial cut cost $=(3+2+4)+(4+2+1)+(3+2+1)=22$

- Iteration 1 :

$$
\begin{array}{lll}
I_{a}=1+2=3 ; & E_{a}=3+2+4=9 ; & D_{a}=E_{a}-I_{a}=9-3=6 \\
I_{b}=1+1=2 ; & E_{b}=4+2+1=7 ; & D_{b}=E_{b}-I_{b}=7-2=5 \\
I_{c}=2+1=3 ; & E_{c}=3+2+1=6 ; & D_{c}=E_{c}-I_{c}=6-3=3 \\
I_{d}=4+3=7 ; & E_{d}=3+4+3=10 ; & D_{d}=E_{d}-I_{d}=10-7=3 \\
I_{e}=4+2=6 ; & E_{e}=2+2+2=6 ; & D_{e}=E_{e}-I_{e}=6-6=0 \\
I_{f}=3+2=5 ; & E_{f}=4+1+1=6 ; & D_{f}=E_{f}-I_{f}=6-5=1
\end{array}
$$

Weighted Example (cont'd)

- Iteration 1:

$$
\begin{array}{lll}
I_{a}=1+2=3 ; & E_{a}=3+2+4=9 ; & D_{a}=E_{a}-I_{a}=9-3=6 \\
I_{b}=1+1=2 ; & E_{b}=4+2+1=7 ; & D_{b}=E_{b}-I_{b}=7-2=5 \\
I_{c}=2+1=3 ; & E_{c}=3+2+1=6 ; & D_{c}=E_{c}-I_{c}=6-3=3 \\
I_{d}=4+3=7 ; & E_{d}=3+4+3=10 ; & D_{d}=E_{d}-I_{d}=10-7=3 \\
I_{e}=4+2=6 ; & E_{e}=2+2+2=6 ; & D_{e}=E_{e}-I_{e}=6-6=0 \\
I_{f}=3+2=5 ; & E_{f}=4+1+1=6 ; & D_{f}=E_{f}-I_{f}=6-5=1
\end{array}
$$

- $g_{x y}=D_{x}+D_{y}-2 c_{x y}$.

$$
\begin{aligned}
g_{a d} & =D_{a}+D_{d}-2 c_{a d}=6+3-2 \times 3=3 \\
g_{a e} & =6+0-2 \times 2=2 \\
g_{a f} & =6+1-2 \times 4=-1 \\
g_{b d} & =5+3-2 \times 4=0 \\
g_{b e} & =5+0-2 \times 2=1 \\
g_{b f} & =5+1-2 \times 1=4 \text { (maximum) } \\
g_{c d} & =3+3-2 \times 3=0 \\
g_{c e} & =3+0-2 \times 2=-1 \\
g_{c f} & =3+1-2 \times 1=2
\end{aligned}
$$

- Swap b and f ! ($\left.\widehat{g_{1}}=4\right)$

Weighted Example (cont'd)

- $D_{x}^{\prime}=D_{x}+2 c_{x p}-2 c_{x q}, \forall x \in A-\{p\}$ (swap p and $\left.q, p \in A, q \in B\right)$

$$
\begin{aligned}
& D_{a}^{\prime}=D_{a}+2 c_{a b}-2 c_{a f}=6+2 \times 1-2 \times 4=0 \\
& D_{c}^{\prime}=D_{c}+2 c_{c b}-2 c_{c f}=3+2 \times 1-2 \times 1=3 \\
& D_{d}^{\prime}=D_{d}+2 c_{d f}-2 c_{d b}=3+2 \times 3-2 \times 4=1 \\
& D_{e}^{\prime}=D_{e}+2 c_{e f}-2 c_{e b}=0+2 \times 2-2 \times 2=0
\end{aligned}
$$

- $g_{x y}=D_{x}^{\prime}+D_{y}^{\prime}-2 c_{x y}$.

$$
\begin{aligned}
g_{a d} & =D_{a}^{\prime}+D_{d}^{\prime}-2 c_{a d}=0+1-2 \times 3=-5 \\
g_{a e} & =D_{a}^{\prime}+D_{e}^{\prime}-2 c_{a e}=0+0-2 \times 2=-4 \\
g_{c d} & =D_{c}^{\prime}+D_{d}^{\prime}-2 c_{c d}=3+1-2 \times 3=-2 \\
g_{c e} & =D_{c}^{\prime}+D_{e}^{\prime}-2 c_{c e}=3+0-2 \times 2=-1 \text { (maximum) }
\end{aligned}
$$

- Swap c and e ! $\left(\hat{g_{2}}=-1\right)$

Weighted Example (cont'd)

- $D_{x}^{\prime \prime}=D_{x}^{\prime}+2 c_{x p}-2 c_{x q}, \forall x \in A-\{p\}$

$$
\begin{aligned}
& D_{a}^{\prime \prime}=D_{a}^{\prime}+2 c_{a c}-2 c_{a e}=0+2 \times 2-2 \times 2=0 \\
& D_{d}^{\prime \prime}=D_{d}^{\prime}+2 c_{d e}-2 c_{d c}=1+2 \times 4-2 \times 3=3
\end{aligned}
$$

- $g_{x y}=D_{x}^{\prime \prime}+D_{y}^{\prime \prime}-2 c_{x y}$.

$$
g_{a d}=D_{a}^{\prime \prime}+D_{d}^{\prime \prime}-2 c_{a d}=0+3-2 \times 3=-3\left(\widehat{g_{3}}=-3\right)
$$

- Note that this step is redundant $\left(\sum_{i=1}^{n} \widehat{g}_{i}=0\right)$.
- Summary: $\widehat{g_{1}}=g_{b f}=4, \widehat{g_{2}}=g_{c e}=-1, \widehat{g_{3}}=g_{a d}=-3$.
- Largest partial sum $\max \sum_{i=1}^{k} \widehat{g}_{i}=4(k=1) \Rightarrow$ Swap b and f.

Weighted Example (cont'd)

	a	b	c	d	e	f
a	0	1	2	3	2	4
b	1	0	1	4	2	1
c	2	1	0	3	2	1
d	3	4	3	0	4	3
e	2	2	2	4	0	2
f	4	1	1	3	2	0

Initial cut cost $=(1+3+2)+(1+3+2)+(1+3+2)=18(22-4)$

- Iteration 2: Repeat what we did at Iteration 1 (Initial cost=22-4=18).
- Summary: $\widehat{g_{1}}=g_{c e}=-1, \widehat{g_{2}}=g_{a b}=-3, \widehat{g_{3}}=g_{f d}=4$.
- Largest partial sum $=\max \sum_{i=1}^{k} \widehat{g}_{i}=0(k=3) \Rightarrow$ Stop!

```
Algorithm: Kernighan-Lin ( \(G\) )
Input: \(G=(V, E),|V|=2 n\).
Output: Balanced bi-partition \(A\) and \(B\) with ''small', cut cost.
1 begin
2 Bipartition \(G\) into \(A\) and \(B\) such that \(\left|V_{A}\right|=\left|V_{B}\right|, V_{A} \cap V_{B}=\emptyset\),
    and \(V_{A} \cup V_{B}=V\).
3 repeat
4 Compute \(D_{v}, \forall v \in V\).
5 for \(i=1\) to \(n\) do
6 Find a pair of unlocked vertices \(v_{a i} \in V_{A}\) and \(v_{b i} \in V_{B}\) whose
    exchange makes the largest decrease or smallest increase in
    cut cost;
7 Mark \(v_{a i}\) and \(v_{b i}\) as locked, store the gain \(\widehat{g}_{i}\), and compute
    the new \(D_{v}\), for all unlocked \(v \in V\);
8 Find \(k\), such that \(G_{k}=\sum_{i=1}^{k} \widehat{g}_{i}\) is maximized;
9 if \(G_{k}>0\) then
10 Move \(v_{a 1}, \ldots, v_{a k}\) from \(V_{A}\) to \(V_{B}\) and \(v_{b 1}, \ldots, v_{b k}\) from \(V_{B}\) to \(V_{A}\);
11 Unlock \(v, \forall v \in V\).
12 until \(G_{k} \leq 0\);
13 end
```


Time Complexity

- Line 4: Initial computation of $D: O\left(n^{2}\right)$
- Line 5: The for-loop: $O(n)$
- The body of the loop: $O\left(n^{2}\right)$.
- Lines 6-7: Step i takes $(n-i+1)^{2}$ time.
- Lines 4-11: Each pass of the repeat loop: $O\left(n^{3}\right)$.
- Suppose the repeat loop terminates after r passes.
- The total running time: $O\left(r n^{3}\right)$.

Extensions of K-L Algorithm

- Unequal sized subsets (assume $n_{1}<n_{2}$)

1. Partition: $|A|=n_{1}$ and $|B|=n_{2}$.
2. Add $n_{2}-n_{1}$ dummy vertices to set A. Dummy vertices have no connections to the original graph.
3. Apply the Kernighan-Lin algorithm.
4. Remove all dummy vertices.

- Unequal sized "vertices"

1. Assume that the smallest "vertex" has unit size.
2. Replace each vertex of size s with s vertices which are fully connected with edges of infinite weight.
3. Apply the Kernighan-Lin algorithm.

- k-way partition

1. Partition the graph into k equal-sized sets.
2. Apply the Kernighan-Lin algorithm for each pair of subsets.
3. Time complexity? Can be reduced by recursive bi-partition.

A "Better" Implementation of K-L Algorithm

- Sort the D-values in a non-increasing order:
$D_{a_{1}} \geq D_{a_{2}} \geq \ldots \geq D_{a_{n}}$
$D_{b_{1}} \geq D_{b_{2}} \geq \ldots \geq D_{b_{n}}$
- Start with a_{1}, compute $g_{a_{1}, b_{i}}, \forall b_{i}$

Start with a_{2}, compute $g_{a_{2}, b_{i}}, \forall b_{i}$
whenever $D_{a_{i}}+D_{b_{j}} \leq$ Maximum gain found so far (Quit!).

- Partition $A=\{a, b, c\}: D_{a}=6 ; \quad D_{b}=5 ; \quad D_{c}=3$;

Partition $B=\{d, e, f\}: D_{d}=3 ; \quad D_{f}=1 ; \quad D_{e}=0$;
Compute g 's
$g_{a d}=3 \rightarrow g_{a f}=-1 \quad \rightarrow \quad g_{a e}=2$
$g_{b d}=0 \quad \rightarrow \quad g_{b f}=4 \quad \rightarrow \quad g_{b e}=1$
$g_{c d}=0 \rightarrow$ No need to compute $g_{c f}$ (Quit!)
since $D_{c}+D_{f} \leq g_{b f}=4$.

- Note that the overall time complexity remains $O\left(r n^{3}\right)$.

Drawbacks of the Kernighan-Lin Heuristic

- The K-L heuristic handles only unit vertex weights.
- Vertex weights might represent block sizes, different from blocks to blocks.
- Reducing a vertex with weight $w(v)$ into a clique with $w(v)$ vertices and edges with a high cost increases the size of the graph substantially.
- The K-L heuristic handles only exact bisections.
- Need dummy vertices to handle the unbalanced problem.
- The K-L heuristic cannot handle hypergraphs.
- Need to handle multi-terminal nets directly.
- The time complexity of a pass is high, $O\left(n^{3}\right)$.

Coping with Hypergraph

- A hypergraph $H=(N, L)$ consists of a set N of vertices and a set L of hyperedges, where each hyperedge corresponds to a subset N_{i} of distinct vertices with $\left|N_{i}\right| \geq 2$.

- Schweikert and Kernighan, "A proper model for the partitioning of electrical circuits," 9th Design Automation Workshop, 1972.
- For multi-terminal nets, net cut is a more accurate measurement for cut cost (i.e., deal with hyperedges).
- $\{A, B, E\},\{C, D, F\}$ is a good partition.
- Should not assign the same weight for all edges.

Net-Cut Model

- Let $n(i)=\#$ of cells associated with Net i.
- Edge weight $w_{x y}=\frac{2}{n(i)}$ for an edge connecting cells x and y.

- Easy modification of the K-L heuristic.

Network Flow Based Partitioning

- Min-cut balanced partitioning: Yang and Wong, ICCAD-94.
- Based on max-flow min-cut theorem.

- Gate replication for partitioning: Yang and Wong, ICCAD-95.
- Performance-driven multiple-chip partitioning: Yang and Wong, FPGA'94, ED\&TC-95.
- Multi-way partitioning with area and pin constraints: Liu and Wong, ISPD-97.
- Multi-resource partitioning: Liu, Zhu, and Wong, FPGA-98.
- Partitioning for time-multiplexed FPGAs: Liu and Wong, ICCAD-98.

Flow Networks

- A flow network $G=(V, E)$ is a directed graph in which each edge $(u, v) \in E$ has a capacity $c(u, v)>0$.
- There is exactly one node with no incoming (outgoing) edges, called the source s (sink t).
- A flow $f: V \times V \rightarrow R$ satisfies
- Capacity constraint: $f(u, v) \leq c(u, v), \forall u, v \in V$.
- Skew symmetry: $f(u, v)=-f(v, u), \forall u, v \in V$.
- Flow conservation: $\sum_{v \in V} f(u, v)=0, \forall u \in V-\{s, t\}$.
- The value of a flow $f:|f|=\sum_{v \in V} f(s, v)=\sum_{v \in V} f(v, t)$
- Maximum-flow problem: Given a flow network G with source s and sink t, find a flow of maximum value from s to t.

Max-FIow Min-Cut

- A cut (X, \bar{X}) of flow network $G=(V, E)$ is a partition of V into X and $\bar{X}=V-X$ such that $s \in X$ and $t \in \bar{X}$.
- Capacity of a cut: $\operatorname{cap}(X, \bar{X})=\sum_{u \in X, v \in \bar{X}} c(u, v)$. (Count only forward edges!)
- Max-flow min-cut theorem Ford \& Fulkerson, 1956.
$-f$ is a max-flow $\Longleftrightarrow|f|=\operatorname{cap}(X, \bar{X})$ for some min-cut (X, \bar{X}).

flow/capacity
max flow $|f|=16+7=23$
$\operatorname{cap}(X, \bar{X})=12+7+4=23$

Network Flow Algorithms

- An augmenting path p is a simple path from s to t with the following properties:
- For every edge $(u, v) \in E$ on p in the forward direction (a forward edge), we have $f(u, v)<c(u, v)$.
- For every edge $(u, v) \in E$ on p in the reverse direction (a backward edge), we have $f(u, v)>0$.
- f is a max-flow \Longleftrightarrow no more augmenting path.

- First algorithm by Ford \& Fulkerson in 1959: $O(|E||f|)$; First polynomial-time algorithm by Edmonds \& Karp in 1969: $O\left(|E|^{2}|V|\right)$; Goldberg \& Tarjan in 1985: $O\left(|E||V| \lg \left(|V|^{2} /|E|\right)\right)$, etc.

Network Flow Based Partitioning

- Why was the technique not wisely used in partitioning?
- Works on graphs, not hypergraphs.
- Results in unbalanced partitions; repeated min-cut for balance: $|V|$ max-flows, time-consuming!
- Yang \& Wong, ICCAD-94.
- Exact net modeling by flow network.
- Optimal algorithm for min-net-cut bipartition (unbalanced).
- Efficient implementation for repeated min-net-cut: same asymptotic time as one max-flow computation.

Min-Net-Cut Bipartition

- Net modeling by flow network:

- A min-net-cut (X, \bar{X}) in $N \Longleftrightarrow$ A min-capacity-cut $\left(X^{\prime}, \bar{X}^{\prime}\right)$ in N^{\prime}.
- Size of flow network: $\left|V^{\prime}\right| \leq 3|V|,\left|E^{\prime}\right| \leq 2|E|+3|V|$.
- Time complexity: $O($ min-net-cut-size) $\times|E|=O(|V||E|)$.

Repeated Min-Cut for Balanced Bipartition (FBB)

- Allow component weights to deviate from ($1-\epsilon$) $W / 2$ to ($1+$ є) $W / 2$.

\bigcirc An un-saturated net
- A saturated net

A node to be collapsed to s or t

Incremental FIow

- Repeatedly compute max-flow: very time-consuming.
- No need to compute max-flow from scratch in each iteration.
- Retain the flow function computed in the previous iteration.
- Find additional flow in each iteration. Still correct.
- FBB time complexity: $O(|V||E|)$, same as one max-flow.
- At most $2|V|$ augmenting path computations.
* At each augmenting path computation, either an augmenting path is found, or a new cut is found, and at least 1 node is collapsed to s or t.
* At most $|f| \leq|V|$ augmenting paths found, since bridging edges have unit capacity.
- An augmenting path computation: $O(|E|)$ time.

