
M.A. Nascimento et al. (Eds.): SSTD 2013, LNCS 8098, pp. 165–182, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Energy Efficient In-Network Data Indexing
for Mobile Wireless Sensor Networks

Mohamed M. Ali Mohamed1, Ashfaq Khokhar1, and Goce Trajcevski2

1 University of Illinois at Chicago, ECE Department, USA
{mali25,ashfaq}@uic.edu

2 Northwestern University, EECS Department, USA
goce@eecs.northwestern.edu

Abstract. In-network indexing is a challenging problem in wireless sensor
networks (WSNs), particularly when sensor nodes are mobile. In the past,
several indexing structures have been proposed for WSNs for answering in-
network queries, however, their maintenance efficiency in the presence of
mobile nodes is relatively less understood. Assuming that mobility of the nodes
is driven by an underlying mobility control algorithm or application, we present
a novel distributed protocol for efficient maintenance of distributed hierarchical
indexing structures. The proposed protocol is generic, in the sense that it is
applicable to any hierarchical indexing structure that uses binary space
partitioning (BSP), such as k-d trees, Quadtrees and Octrees. It is based on
locally expanding and shrinking convex regions such that update costs are
minimized. Based on SIDnet-SWANS simulator, our experimental results
demonstrate the effectiveness of the proposed protocol under different mobility
models, mobility speeds, and query streams.

Keywords: Distributed Algorithms, Mobility, Wireless Sensor Networks, Data
Indexing, Query Processing.

1 Introduction

Wireless Sensor Networks (WSNs) have been proposed as effective and efficient
distributed systems for monitoring varieties of phenomena in different application
domains [1]. In particular, the ability of sensor nodes in WSNs to self organize and
provide coverage for monitoring a given region or activity makes them highly useful
for scenarios involving harsh conditions or remote surveillance. Typically, individual
sensor nodes cooperate in real-time monitoring of phenomena over a given
geographic region in two end-of-spectrum modalities: (1) either periodically reporting
the sensed values to a given sink (possibly coupled with in-network aggregation); or
(2) reporting detections of pre-defined events, i.e., exceeding of a certain temperature-
threshold – possibly over spatial extents. Broadly speaking, the purpose of indexing
structures in WSN is to facilitate the process of collaboration for monitoring the
sensed field, the detection/reporting events of interest, as well as providing in-network
storage for answering queries about the sensed phenomena.

166 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

Mobile sensor nodes [2, 21] greatly increase the adaptability of the WSNs from
different perspectives: (1) ensuring a level of Quality of Service (QoS) in response to
phenomena fluctuation, in the sense of providing better spatial resolution of sampling
in desired/targeted areas; (2) enabling a control over (balancing) the levels of
connectivity and coverage. We note that the motion of the nodes may vary in different
applications but, from a general perspective, it can be predictable [3], random [4], or
controlled [5]. For example, in the data coverage problem in WSN [22], controlled
mobility of the sensor nodes is utilized in different applications to achieve more
efficacious coverage.

An illustrating example of the motivation for this work is shown in Fig. 1. In Fig.
1(a), a sensed field with randomly deployed sensor nodes is shown. Part (b) of the
same figure shows the nodes location distribution, after the occurrence of an event of
interest in the southeast corner of the field, where the application or mobility control
algorithm (as [29]) has steered more sensor nodes towards that corner, in order to
collect more precise information, while still maintaining coverage and network
connectivity across the region. Due to this mobility of the nodes required by the
application, the underlying distributed indexing structure may become highly skewed,
unless it is adjusted to reflect the new distribution of the nodes in a balanced way. The
main question addressed in this work is how to efficiently adapt the indexing
structures that manage in-network query processing and aggregation in such mobility
scenarios, in response to the change of nodes’ distribution, such that the overall
maintenance cost is minimized. We emphasize that the actual mobility information as
to which nodes should move in what direction is given by the application. Also, it is
the application responsibility to guarantee minimum number of nodes needed to
provide connectivity and coverage. In order to show our work, we use [29] as the
dictating application for mobility.

Existing data indexing approaches in WSNs, centralized [6] (i.e., all the data are
gathered to one centralized sink node), or distributed [7, 8] – presume that the sensor
nodes are static, i.e., their locations do not change. Being centralized, they have two-
fold disadvantage: (1) increasing traffic towards the sink node, which creates a
communication bottleneck; and (2) decreasing the network lifetime, especially in the

(a) (b)

Fig. 1. Part (a) - a set of sensor nodes randomly deployed. Part (b) – nodes distribution after
occurrence of an event of interest in the southeast corner.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 167

vicinity of the sink node. Some data gathering algorithms employ mobile sink node(s)
that traverses the network to gather the data [9-11]. However, a potential drawback of
such approaches is the latency/delay.

Organizing the network information across a distributed indexing structure, while
knowing that the reporting nodes are not necessarily in the location they reported
information from is highly challenging, particularly when the nodes’ resources, such as
storage, computing power, communication range/bandwidth, and battery capacity are
limited. In order to accommodate mobility of the nodes in a general indexing framework,
the indexing structure should adapt to the vicissitude of nodes distribution across the
field. Once the mobility information for each node is available, the indexing structure
should adapt to the change in a distributed fashion to avoid skewed, unbalanced
structures. Furthermore, such adaptation should induce minimal overhead.

In this paper we present a novel protocol that enables several existing in-network data
indexing structures to incorporate mobile nodes with high transparency. Our approach is
applicable to data structures that use Binary Space Partitioning (BSP) [12, 13], where the
field is divided into contiguous, non-overlapping, convex regions (e.g., k-d trees,
Quadtrees, Octrees [23]). The proposed protocol runs in a distributed fashion, resolving
the consequences of the nodes mobility (i.e., relocation) within their regions by locally
shrinking or expanding the convex regions, reducing the need to transfer information
about this motion across the network or the indexing structure. After a small “transient
regime”, in the worst case scenario the message cost to re-stabilize the index over the
geographic field of interest is linear in the number of the indexing structure nodes. Our
simulation results on SIDnet-SWANS simulator [24] show that the cost of maintaining
the indexing structure under different mobility scenarios remains sub-linear. In our
experiments, over 83% of the mobility in the field is resolved locally, without the need of
informing the rest of the network with this mobility. The results also show an overall
improvement in the latency of data queries. Note that we do not compare our work to the
solutions that use mobile sink nodes, because they use different energy optimization
functions which include the consumed energy of mobility. Besides that these solutions
focus on data gathering rather than indexing.

The rest of the paper is organized as follows. In Section 2, we start with a
preliminary discussion on BSP based hierarchical structure, and outline one such
structure that we have used for in network indexing of static WSNs [27, 28]. We use
this indexing structure to explain our proposed mobility management protocol. The
details of the proposed protocol and its performance analysis are presented in Section
3, followed by a discussion of the applied experiments and simulation results in
Section 4, followed by a discussion of related work in section 5. Section 6 concludes
the paper and discusses future work.

2 Preliminaries

To better understand the proposed mobility management protocol, we now briefly
overview the features of BSP based hierarchical indexing structures. In such
structures, recursive splitting is applied to a given space into convex sets via

168 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

hyper-planes. As a hierarchical data structure, each node in the BSP tree represents a
space that is subdivided among its child nodes. At each level, the number of children
of each node represents the fan out, denoted as k. The root node of the tree represents
first split of the whole space, and the deeper a node in the tree is, the more local
(smaller) space split it represents. Each level in the tree contains nodes that embody
the whole space partitioned at a certain level of detail. A higher level in the tree
represents coarser partitioning (i.e, smaller number of larger subspaces), whereas a
lower level in the tree represents more detailed finer scale partitioning (i.e, larger
number of smaller subspaces).

In our previous work [27, 28], we have developed efficient abstractions of data and
spatial fields in a hierarchical BSP framework. These abstractions are performed for
representing the sensed values and positions of the sensor nodes, which we call
physical-space abstraction and data-space abstraction, respectively, both rooted at the
corresponding sink. Figures 2 and 3 depict numerical examples of physical-space
indexing at a leaf node of the indexing tree, as well as assembling/compressing the
data in intermediate non-leaf nodes at a given level in a fixed-size array (see [28] for
details). We used Wavelet Transform (WT) [30] to combine and compress the data
from the children-nodes.

Fig. 2. Processing of sensed values at indexing tree leaf node (Local Cluster Head)

Fig. 3. Processing of sensed values at indexing tree intermediate node(s)

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 169

Similarly, the data-space in each region is distributed among a group of nodes
managing that region. At the lowest level, the sibling leaf nodes in each locality
categorize the reported sensor nodes locations according to data range. Each inner
(non-leaf) node receives maps from the nodes in the lower level covering the same
data range, having multiple maps received for the same data range across a group of
contiguous regions. Fig. 4 shows an example of the process of creating hierarchical
maps for the data range (26 – 50) in a given region, and zooming it out to upper level
of the hierarchy with a 1:4 factor.

Fig. 4. Data space abstraction process. A set of sensed values in a region (to the left) have a
map created for the data range [26-50], then zoomed out twice with 1:4 factor.

Queries to the WSN originate at the sink node, which has a coarse representation
for the physical-space and data-space of the whole field, with a specific level of
accuracy. If the accuracy requirement for the given query cannot be satisfied by the
sink node, it forwards it to its child node(s) according to the query constraints of the
physical-space and/or data-space, and the process is recursively repeated until a
node(s) is reached capable of providing answer with a required level of accuracy. At
this stage the query response is backtracked across the same route in the indexing tree
[27, 28].

3 Managing Index Structures with Mobile Nodes

We now proceed with the details of the protocol for adapting the hierarchical indexing
structure to capture the mobility of the nodes. The protocol has three distinct stages
for which we present the corresponding algorithms and discuss the respective
complexities.

3.1 Initial Configuration

Assume that logically there are two types of nodes, senor nodes that sense the field
and indexing structure nodes that contain the keys to help maintain the indexing
structure. Physically, a node can be a sensor node as well as a node in the indexing
structure. Further assume that the number of nodes in the indexing structure is n, and
the fan-out of each inner node is k, such that the height of the indexing structure is
O(logk n). The initial setup of the protocol assigns an integer rank for each

170 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

border/hyperplane corresponding to node in the indexing BSP tree , equal to the depth
of the node in the tree (i.e., its level-distance from the root). Fig. 5 illustrates a field
with randomly deployed sensor with the corresponding borders rank (color-coded
with the same colors according to the splitting order). Each leaf node is responsible
for (the sensed values of) a group of m sensor nodes within its vicinity. Sensor nodes
periodically (with fixed cycle length) report their sensed values and locations to their
respective cluster head.

Fig. 5. The field contains (n = 103) randomly deployed (small size/red color) sensor nodes.
Example indexing structure in this figure is based on orthogonal bisections, performed
recursively, such that 16 (thin solid line/green color) local cluster heads are at the first level.
Second level of the indexing structure consists of four (thicker dashed line/blue color)
intermediate level cluster heads. Last is the (thickest dotted line/yellow color) sink node.
Border line shapes follow same nodes drawing/color. In this (initial) configuration, an event of
interest is observed in the South-East corner.

We reiterate that the motion/displacement of the nodes occurs due to a specific
objective (e.g., better coverage due to an observed event in a given geographic region)
and, as a result, some leaf node(s) in the indexing structure finds more sensor nodes
entering to its vicinity and requesting to join. For example, an event of interest may
require more sensor nodes to be moved towards, in order to monitor and report more
precise data, as depicted in Fig. 5. Also, note that sibling or child/parent node may not be
within single hop of each other. In such case, multihop routing of message will be
assumed.

3.2 Processing a Request to Incorporate New Mobile Node

Each leaf node has a specified capacity m' > m. A leaf node will accept the joining of
new sensor nodes coming into its vicinity until reaching the threshold m'. Congestion
happens when a new join request is received at leaf node that has reached its
maximum capacity m'. The leaf node then initiates a request to reduce the size of its

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 171

space of responsibility by changing the position of one of its surrounding
borders/hyperplanes.

The process of border change starts with a communication aiming at changing the
spatial splitting locally. The leaf node in the indexing structure experiencing
congestion starts by locating the border of its surrounding sides corresponding to the
lowest rank convex region. It sends to its sibling node(s) on the other side of the
lowest rank border, a change_border_request. When sibling leaf node receives the
change_border_request message, it starts assessing if it can change the specified
border in order to accommodate some of the sensor nodes currently managed by the
requesting sibling. The calculation in this case is based on the capacity of the leaf
node that received the request. A response is sent back to the requesting node after the
calculation. If all the involved leaf nodes have large populations, then they cannot
accommodate more incoming sensor nodes, causing them to reject the request. In
such case, since the change cannot be handled locally, a new request for changing
borders is propagated in the hierarchy to the node corresponding to the next higher
rank - i.e., the requesting leaf node sends the request message to its parent node. Upon
receiving the request, the parent node checks if the total number of sensor nodes
covered by its children is at the capacity limits. If not, it initiates a request to its
sibling on the other side of the smallest rank border of its region. The same
assessment algorithm runs at the sibling node, which consequently sends the response
back. In case of rejection, the same process is recursively applied - in the worst case,
reaching the root of the hierarchy (the sink). The algorithm executed locally by the
participating node is formalized below:

Algorithm 1: Forward Mobility Request
Input: Rank of the border required to change, The count of sensor nodes associated to the
requesting indexing node (or its subtree for non-leaf nodes)
Output: A border_change_response OR, in case the whole region is congested, it issues a new
border_change_request (if request is received from a child node).

Receive border_change_request (Receiver, Sender.Rank, Sender.nodesCount)

 If (Sender.depth == Receiver.depth) // If the request is received from a sibling node

 extraNodesCount = Sender.nodesCount - Receiver.optimalNodesCountForCluster

 If (Receiver.nodesCount + extraNodesCount < Receiver.maximumNodesCountForCluster)

 newBorderLocation = calculateNewBorderLocation(Sender.Rank, extraNodexCount)

 send border_change_response(Sender, accepted, Rank, newBorderLocation)

 apply border_change_inform(This, Rank, newBorderLocation)

 Else

 send border_change_response(Sender, rejected, Rank, Receiver.nodeCount)

 EndIf

 Else // If the request is received from a child node

 Receiver.UpdateNodesCount(Sender, Sender.nodesCount)

 If(Receiver.nodeCount < Receiver.maximumNodesCountForCluster)

 newBorderLocation = calculateNewBorderLocation(Sender.Rank)

 send border_change_response(Sender, accepted, Rank, newBorderLocation)

 Foreach childNode other than Sender

172 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

 send border_change_inform(childNode, Rank, newBorderLocation)

 Else

 Rank = Sender.Rank + 1

 send border_change_request (Sibling, Rank, Receiver.nodesCount)

 requestingBorderChange = True

 EndIf

 EndIf

End_Receive border_change_request
e,ii

The local behavior of the nodes participating in the border-adjustment is
formalized in Algorithm 2 below.

Algorithm 2: Receive Mobility Response
Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)
Output: Applies the border change for the node, in case of acceptance, Or initiate new request
in case of rejection.

Receive border_change_response (Receiver, response, Rank, newBorderLocation)

 if (response == accepted)

 apply border_change_inform(This, Rank, newBorderLocation)

 requestingBorderChange = False

 Else

 Rank = Sender.Rank + 1

 nodeCount = Sender.nodeCount + Receiver.nodesCount

 send border_change_request (Parent, Rank, nodesCount)

 EndIf

EndReceive border_change_response

Complexity: In the worst-case scenario, the request needs to be propagated all the
way to the sink node. For a BSP indexing tree consisting of n nodes, with a fan-out
factor k, at each level, at most k – 1 request message(s) will be transmitted to change
the lowest rank border, and k – 1 rejection message(s) will be received. In the 2D
planar case, k = 2 for k-d trees and k = 4 if quadtrees are used.

Since, by construction, the height of the BSP with n nodes and fan-out factor k is
logk n, the number of messages required 2 * (k –1) * (logk n – 1), bounding the
message complexity of the forwarding stage to O(logk n). We note that the overall
network-wide running time complexity is the same, since each participating node is
executing constant operations to check its current capacity.

3.3 Response Propagation

When a border change decision is taken in non-leaf nodes, all their affected child-
nodes are notified, recursively propagating the changes until the affected leaf nodes.
Leaf nodes, in turn, inform the affected sensor nodes to change their reporting
destination. While this border change information message is flowing through the

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 173

structure, each recipient node recalculates its population according to the new change
to ensure that it is within its capacity. If not, the node finding congestion in its region
initiates a new change_border_request message and sends it to its sibling node. The
important observation is that this particular message is guaranteed to affect borders
that are in the sub-tree of the originally changed border, which caused this new
congestion, because the capacity has already been checked/verified at the parent or
ancestor node.

The determining of the new border location is based on the population size of the
requesting (congested) and responding nodes. For that, we rely on the structural
properties of the tree’s boundary between the nodes at the same level. Namely, we
move the border of the node that has a capacity to incorporate new sensors in a
direction perpendicular to the current border’s position towards the requesting node
position, resulting in shrinking the requesting node's area, and accordingly getting
more sensor nodes out of its region towards the accepting node's region. The new
border location in the low level requests (i.e, requests between leaf nodes) is
determined by the requesting node, which knows exactly the location of all its sensor
nodes. In higher level requests, the border location change is proportional to the
desired new population size of the congested region. After the change takes place, the
node that asked for the border change recalculates its new population to ensure it is
within its capacity limits. If not, the node reissues a new border_change_request,
accordingly. Fig. 6 shows the reconfiguration of the borders after sensor nodes have
moved towards an event of interest in the southeast corner of the field.

Fig. 6. Borders reconfiguration after sensor nodes are moved towards an event of interest in the
southeast corner of the field

The last step of the protocol involves notifying the mobile motes about the new
borders of the tree, so that they know which node-ID to use when reporting the sensed
values. This if formalized below:

174 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

Algorithm 3: Apply and Propagate Mobility Response
Input: Rank of the border to be changed, The response (accept or reject), The new border
location (in case of acceptance)
Output: Applies the border change for the node, in case of acceptance, Or initiate new request
in case of rejection.

Receive border_change_inform (Receiver, Rank, newBorderLocation)

 Receiver.border[Rank] = newBorderLocation

 If (Receiver.depth == MaximumDepth) // Leaf node

 Foreach sensorNode

 If sensorNode.Location is out of leaf node new region

 send detach_sensor(sensorNode)

 EndIf

 Else // Non-leaf node

 Foreach childNode other than Sender

 send border_change_inform(childNode, Rank, newBorderLocation)

 EndIf

EndReceive border_change_inform

Complexity: Algorithm 3 executes when Algorithms 1 and 2 have terminated, and is
applied to all the children of the subtree rooted at the node at which Algorithm 2 has
terminated. In the worst-case scenario, the execution of Algorithms 1 and 2, will
cause the request to be forwarded all the way to the sink node. This, in turn, means
that each of the n nodes in the tree will have to be notified about borders change (and,
eventually, decide upon the new border’s location). Assuming an average of h hops
communication between the nodes participating in the tree, the total message-
complexity of Algorithm 3 is O(hn). On the other hand, the computation complexity
is bounded by O(log m) – the capacity of each node. Namely, in the worst case, the
neighboring nodes (siblings) will have a difference of m – 1 motes (assuming at least
one mote for a minimal occupancy). Sorting the nodes according to the common-
boundary coordinate will take O(log m), plus the constant time for placing the new
boundary.

We note that the mobility scenario that would make the protocol for adjusting the
tree incur its maximum cost, is having sensor nodes oscillating around the highest
rank border, in a way such that their majority moves towards one side of the border
within one update cycle causes the indexing nodes to discover congestion and issue
border_change_request(s). In the next update cycle, the sensor nodes return back to
the other side of the border. In such a scenario, starting from a balanced state, the
algorithm behavior would start by a first request at the node(s) adjacent to the highest
rank border to change their lowest rank border, which gets accepted at the same level.
After the accepting node(s) reach their capacity, while sensor nodes are still crossing
the highest rank border towards the adjacent cluster(s), the next request will need to
be elevated on level in the indexing tree. On the higher level, the same operation will
take place until the managed region is congested.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 175

3.4 Data Indexing under Mobility

The aim of a in-network data indexing system is to arrange and store the sensed data
in a distributed fashion. Indexing tree manages the sensor nodes where each group of
sensors report their sensed values and positions to a node of the indexing tree. The
recipient indexing nodes store the received information, process them, and elevate
approximate constructs across the indexing hierarchy. Mobility causes some of the
sensor nodes to move apart from their reporting node(s) of the indexing structure, and
hence, get into other node(s) vicinity. This causes unbalance in number of senor nodes
reporting to the nodes of the indexing structure. Such unbalance results in the reported
data across the indexing structure.

In physical-space abstraction, two approaches can be followed. The first approach
is to increase the size of the update message according to the count of the sensor
nodes population attached to each node of the indexing structure, in order to keep
same sampling distance between the update message values. This would not increase
the overall size of physical-space update messages traversed, because the total
number of sensor nodes in the field is the same. However, it will create a skew in the
size flowing in each branch of the indexing tree, where the larger population branches
will have larger size update messages than the other branches. The second approach is
keeping the update messages size unchanged, at the expense of increase in the
accuracy loss across the indexing hierarchy. In other words, upon receiving a
physical-space query, there might be a bigger chance of not being able to satisfy its
accuracy requirements from the higher level nodes of the indexing tree, and having to
forward the query to next level(s) for achieving the required accuracy. The advantage
for physical-space abstraction because of the mobility handling algorithm is that the
change in number of nodes is bounded by the capacity of each leaf node in the
indexing tree m'.

In data-space abstraction, the change occurring is not because of the motion of
sensor nodes, but rather because of the modification of borders location to balance the
indexing tree. Due to this change, the bitmap constructs used to represent each data-
space are increased/decreased in size, in order to represent the new cluster space.
Contrary to the physical-space abstraction, which has its skew factor bounded by the
capacity of the indexing structure leaf nodes m', the area of a single cluster can
increase to approach the size of the whole field. This can only be bounded with the
logic of the mobility algorithm, physical constraints of the sensors (i.e., robots
moving them), and the field physical barriers. In such extreme case, the large regions
can be represented with lower granularity, so the cell size would be coarser than the
same level other nodes. This would require high accuracy queries for this region to be
forwarded all the way to the leaf nodes. The other solution is to forward the update of
such lower level large size cluster(s) as an array of positions rather than a bitmap, and
insert them into the bitmap in the higher level node(s) of the indexing tree.

4 Experimental Results

The proposed mobility management protocol was implemented on SIDnet-SWANS
simulator for WSN [24]. IEEE 802.15.4 protocol is used for the MAC layer, and

176 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

Shortest Geographical Path Routing for the routing layer. The power consumption
characteristics are based on Mica2 Motes specifications, MPR500CA. Each sensor
node is assumed to have a GPS to obtain the location information. In this section, we
present the simulation results and discuss the performance.

The simulations were run for a 300-nodes network, where nodes were randomly
deployed in a 500x500 square meters geographic area. The nodes’ mobility was
assumed under two different mobility models: random and controlled. The controlled
mobility refers to a scenario where sensor nodes are moved based on an underlying
application requirement. For our simulations we used the algorithm presented in [29]
to compute the coordinates of mobile nodes at each step. In the case of random
mobility the new location of each node is computed using a random direction. In
addition, we also tested the mobility management protocol under different speeds,
ranging from 0.5 m/s to 2 m/s, which is practically used in several WSN systems [25,
26]. In our future work we plan to simulate higher speed nodes as well.

For our experiments, we have constructed a K-D tree based hierarchical indexing
structure over the sensed field. The index nodes are considered to be static, but would
rather be moved according to the borders change, to maintain connectivity with the
other nodes in their region. The cycle time in our simulations is 5 seconds, i.e., every
5 seconds, nodes inform their value as well positions to their immediate cluster heads
(indexing tree leaf nodes).

We measure the performance of the protocol in terms of following parameters:
mobility request latency, mobility resolution factor, and query latency. Mobility request
latency refers to the time it takes for the protocol to adjust the structure to reflect the
nodes new positions. Mobility resolution factor (MRF) reflects the percentage of requests
that required changes beyond the first level of the indexing hierarchy.

Fig. 7 plots the average mobility request latency under different mobility speeds.
The performance of both mobility cases is quite stable, where the latency is almost
consistent with the change of sensor nodes velocity. The mobility request latency for
the controlled mobility scenario (i.e. nodes move towards an events of interest while
maintaining coverage [29]) is around 15% higher than the random mobility request
latency. This is because the number of mobility request received by the cluster heads
in the case of controlled mobility is higher, compared to the random mobility. Note
that in the case of random mobility, overall more sensor nodes maybe moving.
However, a significant number of consecutive mobility steps may cancel each other,
thus keeping the sensor nodes within the same local region. On the other side, in the
controlled mobility scenario each sensor node is moving on a specific path towards
the target point. Accordingly, with each time step, a node progresses towards moving
into or outside of a specific local region, thus requiring mobility adjustment in the
indexing structure.

In Fig. 8, MRF is shown for different mobility scenarios. The general trend of the
MRF is larger for the controlled mobility algorithm, as the nodes following a specific
path are able to cause more disturbance in all the regions they pass by, which creates
unbalance in multiple local regions. Because of this unbalance, adjustment to mobility
may require adjustment at more than one of the hierarchy. The maximum MRF shown

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 177

Fig. 7. Average latency of incorporating mobile node in the indexing structure Vs. sensor node
speed

for all cases is less than 17%. Which means that the mobility management protocol is
able to resolve successfully over 83% of the mobility requests at the lowest level of
the indexing tree, without the need of having this mobility information traverse the
whole indexing structure.

Fig. 8. Mobility Resolution Factor (MRF): The percentage of mobility requests that the
mobility protocol is unable to resolve at the lowest level of the indexing structure

Figures 9 and 10 compare the latency of different data queries to the mobility
managed structure (under random and controlled mobility) and the static structure
where the indexing structure does not change itself to accommodate mobility and thus
becomes relatively unbalanced. We present results for three different types of queries.

Physical-space queries inquire values sensed in a specific region. Data-space
queries inquire locations of sensor nodes sensing data in a specific data range. A
hybrid query inquires either sensed values, or sensor nodes locations, giving
constraints of both region and data range. In approximate querying, the user defines a

178 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

desired level of accuracy to be met in the response. An example of an approximate
hybrid query is:

 SELECT TEMPRATURE_VALUES inquiring sensed values
 BETWEEN 70º TO 80º with data range constraint
 INSIDE RECTANGLE {[0,0],[30,50]} and a regional constraint
 WITH ACCURACY = 80% at a desired accuracy level

Fig. 9a shows the difference in data-space query latency for static as well mobility
manages structures under different mobility scenarios. The static case shows higher
costs for achieving more accurate results. This is because on the lower level of the
indexing structure, the static scenario would have a higher memory footprint for the
congested regions, which requires more processing and communication time. In Fig.
9b, physical space query latency of the static indexing structure almost matches the
mobility managed structure under the random mobility scenario for lower accuracy
levels, which is slightly higher than the controlled mobility scenario. However for
exact queries (i.e., 100% accuracy), which require the indexing structure to get the
data from its leaf nodes, static scenario incurs higher query latency costs.

(a) (b)

Fig. 9. Query latency for (a) data- and (b) physical-space queries Vs. required query response
accuracy

In Fig. 10, the hybrid query latency can be viewed as a combination of latencies of
both physical-space and data-space queries, where it is clear that the incurred latency
is higher for the static case when requiring higher accuracy level. These results show
the efficiency of appropriately handling mobility, and its effect on query latency for
most cases of mobility scenario, where the static indexing would not be able to
provide same latency for queries inquiring higher accuracy, especially for the queries
inquiring exact responses.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 179

Fig. 10. Query latency for hybrid queries Vs. required accuracy

5 Related Work

Data indexing in WSN has been studied over the past decade, and several algorithms
with different perspectives were proposed to solve it. The vast majority of these
algorithms did not consider the mobility of sensor nodes. Centralized solutions, as in
[6], proposed transmitting data across paths in the network using lifting technique and
wavelet based compression. In such methods the network usually suffers from
congestion around the sink node, which creates a communication bottleneck, and
decreases the lifetime of the nodes in the area around the sink node. Several
distributed data indexing algorithms were proposed [7, 8, 14]. In [7], a hierarchical
data structure is constructed and data is mapped to the indexing structure using
geographic hash tables (GHT). This algorithm creates redundancy in data
transmission, where the same raw data is reported to multiple nodes in the indexing
structure. Meliou et al.[9] proposed an algorithm with a novel idea for data indexing
of sensed values in a hierarchical data structure using approximate modeling.
Gaussian models were used in this system to abstract large amount of sensed values
and elevate them across the hierarchy, leading to more efficient reporting at the cost
of accuracy loss across the hierarchy. Such system lacks the representation of sensor
nodes positions, and assumes that Gaussian models are suitable for all types of sensed
phenomena, which is not generic enough for a wide range of sensed phenomena not
of Gaussian distribution nature. Also, Gaussian models are successful in representing
the average behavior of a region, but they lose the information about the extreme
(maximum and minimum) sensed values, which are of high interest for many WSN
applications. Another distributed algorithm proposed by Xiao et al.[14] which indexes
the WSN data across a spanning tree according to a key for each node of the spanning
tree. However this algorithm supports mobility of sensor nodes, it falls short in the
maintenance cost of the data updates, as a sensor node may have to update its
information at an indexing node that is far from its location. On the other side, if the
key is arranged in a way that favors position of sensor node for local region reporting,
the system doesn't support data-space indexing efficiently. Monitoring the WSN for

180 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

events have been studied in [15], where an algorithm is proposed to use an optimal
number of monitoring nodes and minimize false alarms. Such algorithms are useful
for event based monitoring applications, which do not consider aggregating the
network data as much as answering specific predicates.

Mobile WSN sink node idea in has taken good consideration in recent research.
Controlled mobility have been exploited in several works [16-20], in which the – one
or multiple – sink node(s) moves in the field and gathers the sensed data. Non-
hierarchical solutions, as [16-19], study the optimal path to move across the field, in
order to minimize latency. In [20], Xing et al. propose at two tier system of mobile
sink node(s) which collects data from static rendezvous points that collect sensed data
locally within their vicinity. This clustered data gathering approach increases the
efficiency of data gathering and scheduling for sink node(s) mobility, however it
doesn't provide a full hierarchical solution. It does not present a distributed data
indexing solution, but rather an optimized data gathering algorithm based on
clustering. Moreover, the energy minimization criteria is significantly different in
such solutions, because the amount of energy spent on mobility is orders of
magnitude higher than the energy spent on communication and computation.

6 Conclusion and Future Work

In this paper we presented a protocol to manage and maintain in-network indexing
structures in WSN under the constraint of mobile nodes. The protocol is applicable to
BSP tree structures, where it is based on assigning incrementing values for space
splitting borders of the BSP tree. The protocol is based on shrinking and expanding
the indexed regions according to the residing number of nodes, in order to keep a
balanced load for the indexing structure. The complexity of the proposed solution
does not exceed a linear order in the size of the indexing structure. Our results show
the capability of handling over 83% of mobility within their local regions of
occurrence, without the need of communicating this information across the network.
The average latency of balancing the structure in the presence of mobility is in
reasonable range. The results also show improvement for query latency results,
especially for the higher accuracy queries. In our future work, we plan to incorporate
mobility models that involve higher mobility speed and uniform direction. In addition,
we also plan to study mobility management under higher dimensional indexing
structures that do no involve orthogonal bisections. An extension of our work is to
consider the mobility of the nodes participating in the indexing structure itself.
Another extension is to incorporate the aspect of optimizing the coverage for
multiple-events monitoring.

Acknowledgments.This research has been supported in part by the NSF grants CNS
0910988, 0910952 and III 1213038.

 Energy Efficient In-Network Data Indexing for Mobile Wireless Sensor Networks 181

References

1. Zhao, F., Guibas, L.: Wireless Sensor Networks: An Information Processing Approach.
Morgan Kaufmann (2004)

2. Ekici, E., Gu, Y., Bozdag, D.: Mobility-Based Communication in Wireless Sensor
Networks. IEEE Comm. Magazine 44(7), 56–62 (2006)

3. Shah, R.C., Roy, S., Jain, S., Brunette, W.: Data MULEs: Modeling a Three-Tier
Architecture for Sparse Sensor Networks. In: 2003 IEEE Workshop Sensor Network
Protocols and Applications, SNPA 2003 (May 2003)

4. Chakrabarti, A., Sabharwal, A., Aazhang, B.: Using Predictable Observer Mobility for
Power Efficient Design of Sensor Networks. In: Proc. 2nd International Workshop on
Information Processing in Sensor Networks (2003)

5. Somasundara, A., Ramamoorthy, A., Srivastava, M.: Mobile Element Scheduling for
Efficient Data Collection in Wireless Sensor Networks with Dynamic Deadlines. In: Proc.
25th IEEE International Real-Time System Symposium (2004)

6. Ciancio, A., Pattem, S., Ortega, A., Krishnamachari, B.: Energy-Efficient Data
Representation and Routing for Wireless Sensor Networks Based on a Distributed Wavelet
Compression Algorithm. In: Proceedings of the 5th International Conference on
Information Processing in Sensor Networks, IPSN 2006, pp. 309–316 (2006)

7. Greenstein, B., Estrin, D., Govindan, R., Ratnasamy, S., Shenker, S.: DIFS: A Distributed
Index for Features in Sensor Networks. Ad Hoc Networks 1, 333–349 (2003)

8. Meliou, A., Guestrin, C., Hellerstein, J.: Approximating Sensor Network Queries Using In-
Network Summaries. In: Proceedings of the International Conference on Information
Processing in Sensor Networks, IPSN 2009, pp. 229–240 (2009)

9. Goldenberg, D., Lin, J., Morse, A., Rosen, B., Yang, Y.: Towards Mobility as a Network
Control Primitive. In: Proc. ACM MobiHoc (2004)

10. Wang, Z., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting Sink Mobility for
Maximizing Sensor Networks Lifetime. In: Proc. 38th Ann. Hawaii Int’l Conf. System
Sciences, HICSS 2005 (2005)

11. Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy Efficient Schemes for
Wireless Sensor Networks with Multiple Mobile Base Stations. In: Proc. IEEE Global
Telecomm. Conf., GlobeCom 2003 (2003)

12. Fuchs, H., Kedem, Z., Naylor, B.: On Visible Surface Generation by A Priori Tree
Structures. SIGGRAPH 1980 Proceedings of the 7th Annual Conference on Computer
Graphics and Interactive Techniques, pp. 124–133. ACM, New York (1980)

13. Thibault, C., Naylor, F.: Set operations on polyhedra using binary space partitioning trees.
In: SIGGRAPH 1987 Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 153–162. ACM, New York (1987)

14. Xiao, L., Ouksel, A.: Scalable Self-Configuring Integration of Localization and Indexing
in Wireless Ad-hoc Sensor Networks. In: IEEE International Conference on Mobile Data
Management, MDM, vol. 151 (2006)

15. Liu, C., Cao, G.: Distributed Monitoring and Aggregation in Wireless Sensor Networks.
In: Proc. of Infocom, pp. 1–9 (2010)

16. Gandham, S., Dawande, M., Prakash, R., Venkatesan, S.: Energy Efficient Schemes for
Wireless Sensor Networks with Multiple Mobile Base Stations. In: Proc. IEEE Global
Telecomm. Conf., GlobeCom 2003 (2003)

17. Luo, J., Hubaux, J.: Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor
Networks. In: Proc. IEEE INFOCOM (2005)

182 M.M. Ali Mohamed, A. Khokhar, and G. Trajcevski

18. Wang, Z., Basagni, S., Melachrinoudis, E., Petrioli, C.: Exploiting Sink Mobility for
Maximizing Sensor Networks Lifetime. In: Proc. 38th Ann. Hawaii Int’l Conf. System
Sciences, HICSS 2005 (2005)

19. Hanoun, S., Creighton, D., Nahavandi, S.: Decentralized mobility models for data
collection in wireless sensor networks. In: IEEE International Conference on Robotics and
Automation, ICRA (2008)

20. Xing, G., Li, M., Wang, T., Jia, W., Huang, J.: Efficient rendezvous algorithms for
mobility-enabled wireless sensor networks. IEEE Transactions on Mobile Computing
(2012)

21. Pileggi, F., Fernandez-Llatas, C., Meneu, T.: Evaluating mobility impact on wireless
sensor network. In: UkSim 13th International Conference on Modelling and Simulation,
pp. 461–466. IEEE (2011)

22. Mulligan, R., Ammari, H.: Coverage in Wireless Sensor Networks: A Survey. Network
Protocols and Algorithms 2(2) (2010)

23. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley (1990)
24. Ghica, O., Trajcevski, G., Scheuermann, P., Bischoff, Z., Valtchanov, N.: Sidnet-swans: A

simulator and integrated development platform for sensor networks applications. ACM
SenSys (2008)

25. Pon, R., Batalin, M., Gordon, J., Kansal, A., Liu, D., Rahimi, M., Shirachi, L., Yu, Y.,
Hansen, M., Kaiser, W., Srivastava, M., Sukhatme, G., Estrin, D.: Networked
Infomechanical Systems: A Mobile Embedded Networked Sensor Platform. In: Proc.
Fourth Int’l Symp. Information Processing in Sensor Networks, IPSN 2005 (2005)

26. Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.: Robomote:
Enabling Mobility in Sensor Networks. In: Proc. Fourth Int’l Symp. Information
Processing in Sensor Networks, IPSN 2005 (2005)

27. Mohamed, M., Khokhar, A.: Dynamic indexing system for spatio-temporal queries in
wireless sensor networks. In: 12th IEEE International Conference on Mobile Data
Management MDM, vol. 2, pp. 35–37 (2011)

28. Mohamed, M., Khokhar, A., Trajcevski, G., Ansari, R., Ouksel, A.: Approximate hybrid
query processing in wireless sensor networks. In: Proceedings of the 20th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2012), pp.
542–545. ACM, New York (2012)

29. Caicedo, C., Zefran, M.: A coverage algorithm for a class of non-convex regions. In: IEEE
Conference on Decision and Control, pp. 4244–4249 (2008)

30. Chui, C.: An Introduction to wavelets. Academic Press Prof. Inc., San Diego (1992)

	Energy Efficient In-Network Data Indexing
for Mobile Wireless Sensor Networks

	1 Introduction
	2 Preliminaries
	3 Managing Index Structures with Mobile Nodes
	3.1 Initial Configuration
	3.2 Processing a Request to Incorporate New Mobile Node
	3.3 Response Propagation
	3.4 Data Indexing under Mobility

	4 Experimental Results
	5 Related Work
	6 Conclusion and Future Work
	References

